Epidermolysis Bullosa Simplex: a Keratin 5 Mutation Is a Fully

Total Page:16

File Type:pdf, Size:1020Kb

Epidermolysis Bullosa Simplex: a Keratin 5 Mutation Is a Fully Am. J. Hum. Genet. 56:577-585, 1995 Epidermolysis Bullosa Simplex: A Keratin 5 Mutation Is a Fully Dominant Allele in Epidermal Cytoskeleton Function Karen Stephens,' Abraham Zlotogorski,7 Lynne Smith,23 Pamela Ehrlich,' Ellen Wijsman,"4 Robert J. Livingston,l and Virginia P. Sybert 2'5'6 Department of Medicine, Divisions of 'Medical Genetics and 2Dermatology, and Departments of 'Biological Structure, 4Biostatistics, and 5Pediatrics, University of Washington, and 6Children's Hospital and Medical Center, Seattle; and 7Department of Dermatology, Hadassah University Hospital, Jerusalem Summary mediately form a coiled-coil heterodimer. The heterodimers are the building blocks for the higher-order interactions To explore the relationship between abnormal keratin necessary for assembly of the 10-nm-diameter KIF (re- molecules, 10-nm intermediate filament (IF) organization, viewed by Steinert 1993). The tissue- and differentiation- and epidermal fragility and blistering, we sought to deter- specific expression of each mutated keratin gene appears mine the functional consequences of homozygosity for a to be the primary determinant of the clinical phenotype in dominant keratin defect. We describe a family with an epidermal blistering disorders. A single mutation in either autosomal dominant skin-blistering disorder, epidermoly- gene encoding the coexpressed basal cell-specific keratins sis bullosa simplex, Koebner subtype (EBS-K), that has a 5 (K5, type II) and 14 (K14, type I) causes at least three novel point mutation, occurring in the keratin 5 gene of the autosomal dominant disorders known as "epider- (KRT5), that predicts the substitution of an evolutionarily molysis bullosa simplex" (EBS) (Bonifas et al. 1991; Cou- conserved lysine by an asparagine residue (K173N). Unlike lombe et al. 1991; Dong et al. 1993; Rugg et al. 1993; previous heterozygous mutations located within the initial Stephens et al. 1993; Chan et al. 1994a), which are charac- segment of domain 1A of keratin molecules, K173N heter- terized primarily by nonscarring intraepidermal blisters re- ozygosity did not result in severe disease or clumping of sulting from basal cell cytolysis (Fine et al. 1991). Muta- keratin filaments. One family member was found to be tions in the suprabasal cell-specific keratins underlie sev- homozygous for the K173N allele, having inherited it from eral autosomal dominant conditions characterized by each of her affected first-cousin parents. Despite a lack of epidermolytic hyperkeratosis with cytolysis of the su- normal keratin 5 molecules, and an effective doubling of prabasal cells of the spinous layers. For example, mutation abnormal molecules, available for heterodimerization with of keratins 1 or 10 (K1, type II; and K10, type I) result in keratin 14 during IF formation, there were no significant the generalized blistering disorder bullous congenital ich- differences in the clinical severity or the ultrastructural thyosiform erythroderma (BCIE; or epidermolytic hyper- organization of the keratin IF cytoskeleton of the homozy- keratosis [EH]; Traupe 1989), while mutation of keratin 9 gous individual. These data demonstrate that the K173N (K9), expressed in the suprabasal cells of sole and palm, mutation behaves as a fully dominant allele and indicate results in the localized blistering disorder epidermolytic pal- that a limited number of abnormal keratin molecules are mar plantar keratoderma (EPPK; Reis et al. 1994; Torchard sufficient to impair cytoskeletal function and elicit epider- et al. 1994). mal fragility and blistering. Identified keratin gene defects, which include point muta- tions and in-frame deletions (reviewed by Compton 1994), Introduction produce abnormal molecules that disrupt heterodimeriza- tion and/or interactions between heterodimers necessary Several disorders of blistering and fragility of the epidermis for KIF assembly/function. Several lines of evidence provide result from defects in the keratin intermediate filament support for dominant-negative effects of keratin mutations. (KIF) cytoskeleton. KIFs of epithelial cells are assembled Disorganized clumps of KIF in basal and suprabasal cells from cytoplasmic type I (acidic) and type II (neutral basic) are hallmarks of Dowling-Meara, the most severe type of keratin polypeptides that individually are unstable and im- EBS (EBS-DM), and of BCIE and EPPK (Traupe 1989; Fine et al. 1991), respectively. Perturbation of KIF networks has also been induced in vitro by synthetic mutant oligo- Received September 28, 1994; accepted for publication December 19, peptides or during transient transfections by bacterially ex- 1994. pressed mutant K5 or K14 (Coulombe et al. 1991; Letai Address for correspondence and reprints: Dr. Karen Stephens, Univer- et al. 1993; Steinert et al. 1993). In addition, basal cell KIF sity of Washington, Division of Medical Genetics, RG-25, 1959 N.E. networks and tissue architecture in the mouse Pacific Street, Seattle, WA 98195. epidermal © 1995 by The American Society of Human Genetics. All rights reserved. were altered by a K14 transgene with a C-terminal deletion 0002-9297/95/5603-0004$02.00 (Vassar et al. 1991). 577 578 Am. J. Hum. Genet. 56:577-585, 1995 The identification of keratin mutations that underlie hu- nant EBS disorder or the ultrastructure of the basal cell man skin-blistering disorders may reveal critical residues KIF network. or domains involved in assembly and/or function of normal KIF and may explain the molecular basis for the clumping Material and Methods of certain abnormal KIFs. In contrast to the histopathology of EBS-DM, basal cell KIFs do not aggregate into clumps Family-Tissue Studies in other EBS disorders, specifically the Koebner subtype Family EB13, identified and published initially as EBS- (EBS-K) with generalized blistering and the Weber-Cock- DM (Hacham-Zadeh et al. 1988), was recontacted, inter- ayne subtype (EBS-WC) with blistering primarily localized viewed, physically examined, and sampled for blood; the to the hands and feet (reviewed by Fine et al. 1991). Al- homozygous status of individual 31 was unknown at time though all three EBS subtypes result from mutations in of exam. Affected family members had nonscarring gener- K5 or K14, the molecular basis for clumping of certain alized blistering with obvious exacerbation during the sum- abnormal KIF molecules is not known. Functional assays mer and with fever, few or no milia, and no tooth involve- suggest that mutations at the ends of the keratin central ment, as reported elsewhere (Hacham-Zadeh et al. 1988). rod domain are the most effective in perturbing KIF organi- Immnortalized cell lines were established by transformation zation (Coulombe et al. 1991; Letai et al. 1993; Steinert et of peripheral lymphocytes with Epstein-Barr virus (Nietzel al. 1993). Further investigations are necessary to determine 1986). From a total of eight individuals, skin biopsies (2 the effects that specific mutated residues or domains and/ mm), taken from the upper outer arm after rubbing or, in or altered ratios of defective to normal peptides have on one case, without rubbing, were analyzed (see Results). KIF organization and function. Skin biopsies were transported in glutaraldehyde and were In an attempt to identify an individual homozygous processed for electron microscopy as described elsewhere for a keratin mutation, we have studied a large family (Smith and Sybert 1990). with a consanguineous mating between two related indi- viduals with dominant EBS. The phenotype of an indi- Linkage Studies vidual homozygous for a defective keratin would reveal For genotyping, Southern blots were prepared and hy- the functional consequences of effectively doubling the bridized as described elsewhere (Kayes et al. 1992), to number of abnormal keratin molecules available for het- probes pEFD33.2 (D12S14) and pCMM86 (D17S74). erodimer formation, in a background of no normal mol- LOD scores were calculated with the computer program ecules. Although individuals homozygous for mutations LIPED (Ott 1976) modified to handle large numbers of for dominant human disease can provide insight into alleles (Schellenberg et al. 1992). To reduce computation pathogenesis, they are rarely encountered (Wilkie 1994). time, sampled but unaffected individuals in consanguineous Examples of disorders in which homozyogotes were marriages were assumed to be unrelated to the rest of the found to have more severe disease than did their hetero- pedigree. Analyses were done under the assumption that zygous relatives include thalassemia (Weatherall 1994), the disease locus and marker loci were in linkage equilib- familial hypercholesterolemia (Hobbs et al. 1992), rium. The EBS disease allele was assumed to have a fre- Charcot-Marie-Tooth syndrome (Lupski et al. 1991), quency of .005. Allele frequencies used for the marker loci and achondroplasia (Shiang et al. 1994). Fewer domi- were estimated from the observed alleles in the pedigree, nant disorders in which homozygotes and heterozygotes because frequency information was unavailable for a repre- are affected to a similar degree have been reported, per- sentative control population. It should be noted that, in the haps because clinical recognition of homozygosity is pre- case of G531C, this most likely overestimates the frequency cluded and homozygosity can only be identified by mo- of the mutant allele. Analysis with a low allele frequency lecular studies. Mutational and/or linkage analyses have of .0001 for the G521C mutation gave essentially the same
Recommended publications
  • Associated Palmoplantar Keratoderma
    DR ABIGAIL ZIEMAN (Orcid ID : 0000-0001-8236-207X) Article type : Review Article Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: New insight into skin epithelial homeostasis and avenues for treatment Authors: A. G. Zieman1 and P. A. Coulombe1,2 # Affiliations: 1Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; 2Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA #Corresponding author: Pierre A. Coulombe, PhD, 3071 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-7509. Email: [email protected]. Funding Sources: These studies were supported by grant AR044232 issued to P.A.C. from the National Institute of Arthritis, Musculoskeletal and Skin Disease (NIAMS). A.G.Z. received support from grant T32 CA009110 from the National Cancer Institute. Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/BJD.18033 This article is protected by copyright. All rights reserved Conflict of interest disclosures: None declared. Bulleted statements: What’s already known about this topic? Pachyonychia congenita is a rare genodermatosis caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, KRT17, which are normally expressed in skin appendages and induced following injury. Individuals with PC present with multiple clinical symptoms that usually include thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts, and oral leukokeratosis.
    [Show full text]
  • Transgenic Cyclooxygenase-2 Overexpression Sensitizes Mouse Skin for Carcinogenesis
    Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis Karin Mu¨ ller-Decker*†, Gitta Neufang*, Irina Berger‡, Melanie Neumann*, Friedrich Marks*, and Gerhard Fu¨ rstenberger* *Research Program Tumor Cell Regulation, Deutsches Krebsforschungszentrum, and ‡Department of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany Edited by Philip Needleman, Pharmacia Corporation, St. Louis, MO, and approved July 29, 2002 (received for review May 30, 2002) Genetic and pharmacological evidence suggests that overexpres- there is a causal relationship between COX-2 overexpression sion of cyclooxygenase-2 (COX-2) is critical for epithelial carcino- and tumor development. Recently, we have shown that the genesis and provides a major target for cancer chemoprevention keratin 5 (K5) promoter-driven overexpression of COX-2 in by nonsteroidal antiinflammatory drugs. Transgenic mouse lines basal cells of interfollicular epidermis and the pilosebaceous unit with keratin 5 promoter-driven COX-2 overexpression in basal led to a preneoplastic skin phenotype in 4 of 4 high-expression epidermal cells exhibit a preneoplastic skin phenotype. As shown mouse lines (15). here, this phenotype depends on the level of COX-2 expression and To delineate COX-2 functions for carcinogenesis, we have COX-2-mediated prostaglandin accumulation. The transgenics did used the initiation–promotion model (2) for the induction of skin not develop skin tumors spontaneously but did so after a single tumors in wild-type (wt) NMRI mice and COX-2 transgenic application of an initiating dose of the carcinogen 7,12-dimethyl- mouse lines. This multistage model allows the analysis of the benz[a]anthracene (DMBA). Long-term treatment with the tumor carcinogenic process in terms of distinct stages, i.e., initiation by promoter phorbol 12-myristate 13-acetate, as required for tumor- application of a subcarcinogenic dose of a carcinogen such as igenesis in wild-type mice, was not necessary for transgenics.
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Keratin 9 Point Mutation in the Pedigree of Epidermolytic Hereditary Palmoplantar Keratoderma Perturbs Keratin Intermediate Filament Network Formation
    FEBS 17004 FEBS Letters 386 (1996) 149-155 Keratin 9 point mutation in the pedigree of epidermolytic hereditary palmoplantar keratoderma perturbs keratin intermediate filament network formation Setsu Kobayashi, Toshihiro Tanaka*, Norihisa Matsuyoshi, Sadao Imamura Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606 Japan Received 12 January 1996; revised version received 4 April 1996 Abstract Keratins form an intracellular keratin filament net- point mutations in the K9 gene in EHPPK [4-8] but none work in keratinocytes. Point mutations in the epidermal keratins showed a function assay with these mutations. Here, we pro- could lead to the disruption of keratin filament formation, vide the first demonstration that the point mutation found in developing skin diseases such as epidermolytic hereditary a pedigree of EHPPK has a dominant-negative effect on the palmoplantar keratoderma (EHPPK). We found a G to A assembly of keratin intermediate filaments in the cells. transition in keratin 9 (K9) cDNA, resulting in the substitution of glutamine for arginine at 162, in all patients of a pedigree of 2. Materials and methods EHPPK. Transfection into MDCK cells and DJM-1 cells revealed that the plasmid CMX vector containing normal keratin 2.1. PCR and DNA sequence 9 cDNA showed normal keratin network formation, whereas the Genomic DNA was extracted and purified from blood or biopsy vector with a G to A point mutated keratin 9 cDNA showed specimens from the patients. The primers were designed at nucleotide disrupted keratin filaments with droplet formation in the cells. 263 282 and 664-683 based on the K9 cDNA sequence [9].
    [Show full text]
  • Craniosynostosis Genetics: the Mystery Unfolds
    Review Article Craniosynostosis genetics: The mystery unfolds Inusha Panigrahi Department of Pediatrics, Genetic and Metabolic Unit, Advanced Pediatric Center, PGIMER, Chandigarh, India The syndromes associated with craniosynostosis Craniosynsostosis syndromes exhibit considerable phenotypic and genetic heterogeneity. Sagittal synostosis include Apert syndrome, Crouzon syndrome, Greig is common form of isolated craniosynostosis. The cephalopolysyndactyly, and Saethre-Chotzen syndrome. sutures involved, the shape of the skull and associated malformations give a clue to the specific diagnosis. It is genetically heterogeneous disorder with mutation Crouzon syndrome is one of the most common of the identifi ed in several genes, predominantly the fi broblast craniosynostosis syndromes. Apert syndrome accounts for growth factor receptor genes.[3,4] Saethre-Chotzen 4.5% of all craniosynostoses and is one of the most serious of these syndromes. Most syndromic craniosynostosis syndrome and craniosynostosis (Boston-type) arise require multidisciplinary management. The following review from mutations in the Twist and muscle segment provides a brief appraisal of the various genes involved in craniosynostosis syndromes, and an approach to diagnosis homeobox 2 (MSX2) transcription factors, respectively. and genetic counseling. Rates of neuropsychological defi cits range from 35 to Key words: Apert syndrome, FGFR2 mutations, 50% in school-aged children with isolated single suture hydrocephalus, plagiocephaly, sutural synostosis, craniosynostosis.[5] Secondary effects of craniosynostosis syndromes may include vision problems and increased intracranial pressure, among others. Patients with TWIST gene Introduction mutations may have more ophthalmic abnormalities, including more strabismus, ptosis, and amblyopia.[6] The following discussion gives a comprehensive review Craniosynostosis, premature suture fusion, is one of of different disorders presenting with craniosynostosis, the most common craniofacial anomalies with incidence their diagnosis, and genetic counseling.
    [Show full text]
  • Comparative Genomics Analyses of Alpha-Keratins Reveal Insights Into
    Sun et al. Frontiers in Zoology (2017) 14:41 DOI 10.1186/s12983-017-0225-x RESEARCH Open Access Comparative genomics analyses of alpha- keratins reveal insights into evolutionary adaptation of marine mammals Xiaohui Sun, Zepeng Zhang, Yingying Sun, Jing Li, Shixia Xu* and Guang Yang* Abstract Background: Diversity of hair in marine mammals was suggested as an evolutionary innovation to adapt aquatic environment, yet its genetic basis remained poorly explored. We scanned α-keratin genes, one major structural components of hair, in 16 genomes of mammalian species, including seven cetaceans, two pinnipeds, polar bear, manatee and five terrestrial species. Results: Extensive gene loss and high pseudogenization rate of α-keratin genes were identified in cetaceans when compared to terrestrial artiodactylans (average number of α-keratins 37.29 vs. 58.33; pseudogenization rate 29.89% vs. 8.00%), especially of hair follicle-specific keratin genes (average pseudogenization rate in cetaceans of 43.88% relative to 3.80% artiodactylian average). Compared to toothed whale, the much more number of intact functional α-keratin genes was examined in the baleen whale that had specific keratinized baleen. In contrast, the number of keratin genes in pinnipeds, polar bear and manatee were comparable to those of their respective terrestrial relatives. Additionally, four keratin genes (K39, K9, K42, and K74) were found to be pseudogenes or lost uniquely in cetaceans and manatees. Conclusions: Species-specific evolution of α-keratin gene family identified in the marine mammals might be responsible for their different hair characteristics. Increased gene loss and pseudogenization rate identified in cetacean lineages was likely to contribute to hair-less phenotype to adaptation for complete aquatic environment.
    [Show full text]
  • Blueprint Genetics Craniosynostosis Panel
    Craniosynostosis Panel Test code: MA2901 Is a 38 gene panel that includes assessment of non-coding variants. Is ideal for patients with craniosynostosis. About Craniosynostosis Craniosynostosis is defined as the premature fusion of one or more cranial sutures leading to secondary distortion of skull shape. It may result from a primary defect of ossification (primary craniosynostosis) or, more commonly, from a failure of brain growth (secondary craniosynostosis). Premature closure of the sutures (fibrous joints) causes the pressure inside of the head to increase and the skull or facial bones to change from a normal, symmetrical appearance resulting in skull deformities with a variable presentation. Craniosynostosis may occur in an isolated setting or as part of a syndrome with a variety of inheritance patterns and reccurrence risks. Craniosynostosis occurs in 1/2,200 live births. Availability 4 weeks Gene Set Description Genes in the Craniosynostosis Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ALPL Odontohypophosphatasia, Hypophosphatasia perinatal lethal, AD/AR 78 291 infantile, juvenile and adult forms ALX3 Frontonasal dysplasia type 1 AR 8 8 ALX4 Frontonasal dysplasia type 2, Parietal foramina AD/AR 15 24 BMP4 Microphthalmia, syndromic, Orofacial cleft AD 8 39 CDC45 Meier-Gorlin syndrome 7 AR 10 19 EDNRB Hirschsprung disease, ABCD syndrome, Waardenburg syndrome AD/AR 12 66 EFNB1 Craniofrontonasal dysplasia XL 28 116 ERF Craniosynostosis 4 AD 17 16 ESCO2 SC phocomelia syndrome, Roberts syndrome
    [Show full text]
  • Proteomic Approaches Identify Members of Cofilin Pathway Involved in Oral Tumorigenesis
    Proteomic Approaches Identify Members of Cofilin Pathway Involved in Oral Tumorigenesis Giovana M. Polachini1, Lays M. Sobral2, Ana M. C. Mercante3, Adriana F. Paes-Leme4, Fla´via C. A. Xavier5, Tiago Henrique1, Douglas M. Guimara˜es6, Alessandra Vidotto1, Erica E. Fukuyama7, Jose´ F. Go´ is-Filho7, Patricia M. Cury8, Ota´vio A. Curioni9, Pedro Michaluart Jr10, Adriana M. A. Silva11, Victor Wu¨ nsch-Filho12, Fabio D. Nunes6, Andre´ia M. Leopoldino2, Eloiza H. Tajara1,13* 1 Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), Sa˜oJose´ do Rio Preto, SP, Brazil, 2 Departamento de Ana´lises Clı´nicas, Toxicolo´gicas e Bromatolo´gicas, Faculdade de Cieˆncias Farmaceˆuticas da Universidade de Sa˜o Paulo, Ribeira˜o Preto, SP, Brazil, 3 Laborato´rio de Patologia, Hospital Helio´polis, Sa˜o Paulo, SP, Brazil, 4 Laborato´rio Nacional de Biocieˆncias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil, 5 Departamento de Propedeˆutica e Clı´nica Integrada, Faculdade de Odontologia da Universidade Federal da Bahia, Salvador,BA, Brazil, 6 Departamento de Estomatologia, Faculdade de Odontologia da Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil, 7 Servic¸o de Cirurgia de Cabec¸a e Pescoc¸o, Instituto do Caˆncer Arnaldo Vieira de Carvalho, Sa˜o Paulo, SP, Brazil, 8 Departamento de Patologia e Medicina Legal, Faculdade de Medicina (FAMERP), Sa˜oJose´ do Rio Preto, SP, Brazil, 9 Departamento de Cirurgia de Cabec¸a e Pescoc¸o e Otorrinolaringologia, Hospital Helio´polis, Sa˜o Paulo, SP, Brazil, 10 Divisa˜o
    [Show full text]
  • A Curated Gene List for Reporting Results of Newborn Genomic Sequencing
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE A curated gene list for reporting results of newborn genomic sequencing Ozge Ceyhan-Birsoy, PhD1,2,3, Kalotina Machini, PhD1,2,3, Matthew S. Lebo, PhD1,2,3, Tim W. Yu, MD3,4,5, Pankaj B. Agrawal, MD, MMSC3,4,6, Richard B. Parad, MD, MPH3,7, Ingrid A. Holm, MD, MPH3,4, Amy McGuire, PhD8, Robert C. Green, MD, MPH3,9,10, Alan H. Beggs, PhD3,4, Heidi L. Rehm, PhD1,2,3,10; for the BabySeq Project Purpose: Genomic sequencing (GS) for newborns may enable detec- of newborn GS (nGS), and used our curated list for the first 15 new- tion of conditions for which early knowledge can improve health out- borns sequenced in this project. comes. One of the major challenges hindering its broader application Results: Here, we present our curated list for 1,514 gene–disease is the time it takes to assess the clinical relevance of detected variants associations. Overall, 954 genes met our criteria for return in nGS. and the genes they impact so that disease risk is reported appropri- This reference list eliminated manual assessment for 41% of rare vari- ately. ants identified in 15 newborns. Methods: To facilitate rapid interpretation of GS results in new- Conclusion: Our list provides a resource that can assist in guiding borns, we curated a catalog of genes with putative pediatric relevance the interpretive scope of clinical GS for newborns and potentially for their validity based on the ClinGen clinical validity classification other populations. framework criteria, age of onset, penetrance, and mode of inheri- tance through systematic evaluation of published evidence.
    [Show full text]
  • The Correlation of Keratin Expression with In-Vitro Epithelial Cell Line Differentiation
    The correlation of keratin expression with in-vitro epithelial cell line differentiation Deeqo Aden Thesis submitted to the University of London for Degree of Master of Philosophy (MPhil) Supervisors: Professor Ian. C. Mackenzie Professor Farida Fortune Centre for Clinical and Diagnostic Oral Science Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2009 Contents Content pages ……………………………………………………………………......2 Abstract………………………………………………………………………….........6 Acknowledgements and Declaration……………………………………………...…7 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...12 Abbreviations….………………………………………………………………..…...14 Chapter 1: Literature review 16 1.1 Structure and function of the Oral Mucosa……………..…………….…..............17 1.2 Maintenance of the oral cavity...……………………………………….................20 1.2.1 Environmental Factors which damage the Oral Mucosa………. ….…………..21 1.3 Structure and function of the Oral Mucosa ………………...….……….………...21 1.3.1 Skin Barrier Formation………………………………………………….……...22 1.4 Comparison of Oral Mucosa and Skin…………………………………….……...24 1.5 Developmental and Experimental Models used in Oral mucosa and Skin...……..28 1.6 Keratinocytes…………………………………………………….….....................29 1.6.1 Desmosomes…………………………………………….…...............................29 1.6.2 Hemidesmosomes……………………………………….…...............................30 1.6.3 Tight Junctions………………………….……………….…...............................32 1.6.4 Gap Junctions………………………….……………….….................................32
    [Show full text]
  • Proteome Profiling of Exosomes Purified from a Small Amount Of
    proteomes Article Proteome Profiling of Exosomes Purified from a Small Amount of Human Serum: The Problem of Co-Purified Serum Components Mateusz Smolarz 1, Monika Pietrowska 1, Natalia Matysiak 2, Łukasz Miela ´nczyk 2 and Piotr Widłak 1,* 1 Maria Skłodowska-Curie Institute—Oncology Center, Gliwice Branch, 44-101 Gliwice, Poland; [email protected] (M.S.); [email protected] (M.P.) 2 Department of Histology and Cell Pathology, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; [email protected] (N.M.); [email protected] (Ł.M.) * Correspondence: [email protected]; Tel.: +48-32-2789672 Received: 26 March 2019; Accepted: 26 April 2019; Published: 28 April 2019 Abstract: Untargeted proteomics analysis of extracellular vesicles (EVs) isolated from human serum or plasma remains a technical challenge due to the contamination of these vesicles with lipoproteins and other abundant serum components. Here we aimed to test a simple method of EV isolation from a small amount of human serum (<1 mL) using the size-exclusion chromatography (SEC) standalone for the discovery of vesicle-specific proteins by the untargeted LC–MS/MS shotgun approach. We selected the SEC fraction containing vesicles with the size of about 100 nm and enriched with exosome markers CD63 and CD81 (but not CD9 and TSG101) and analyzed it in a parallel to the subsequent SEC fraction enriched in the lipoprotein vesicles. In general, there were 267 proteins identified by LC–MS/MS in exosome-containing fraction (after exclusion of immunoglobulins), yet 94 of them might be considered as serum proteins.
    [Show full text]
  • Identification of Trichoplein, a Novel Keratin Filament- Binding Protein
    Research Article 1081 Identification of trichoplein, a novel keratin filament- binding protein Miwako Nishizawa1,*, Ichiro Izawa1,*, Akihito Inoko1,*, Yuko Hayashi1, Koh-ichi Nagata1, Tomoya Yokoyama1,2, Jiro Usukura3 and Masaki Inagaki1,‡ 1Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan 2Department of Dermatology, Mie University Faculty of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan 3Department of Anatomy and Cell Biology, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 29 November 2004 Journal of Cell Science 118, 1081-1090 Published by The Company of Biologists 2005 doi:10.1242/jcs.01667 Summary Keratins 8 and 18 (K8/18) are major components of the antibody in a complex with K8/18 and immunostaining intermediate filaments (IFs) of simple epithelia. We report revealed that trichoplein colocalized with K8/18 filaments here the identification of a novel protein termed in HeLa cells. In polarized Caco-2 cells, trichoplein trichoplein. This protein shows a low degree of sequence colocalized not only with K8/18 filaments in the apical similarity to trichohyalin, plectin and myosin heavy chain, region but also with desmoplakin, a constituent of and is a K8/18-binding protein. Among interactions desmosomes. In the absorptive cells of the small intestine, between trichoplein and various IF proteins that we trichoplein colocalized with K8/18 filaments at the apical tested using two-hybrid methods, trichoplein interacted cortical region, and was also concentrated at desmosomes.
    [Show full text]