Chapter 1: Introduction to Composite Materials / 3

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1: Introduction to Composite Materials / 3 Structural Composite Materials Copyright © 2010, ASM International® F.C. Campbell All rights reserved. (#05287G) www.asminternational.org Chapter 1 Introduction to Composite Materials A CoMpoSIte MAterIAl can be defined sheets of continuous fibers in different orienta- as a combination of two or more materials that tions to obtain the desired strength and stiffness results in better properties than those of the indi- properties with fiber volumes as high as 60 to vidual components used alone. In contrast to 70 percent. Fibers produce high-strength com- metallic alloys, each material retains its separate posites because of their small diameter; they con- chemical, physical, and mechanical properties. tain far fewer defects (normally surface defects) the two constituents are a reinforcement and a compared to the material produced in bulk. As a matrix. the main advantages of composite ma- general rule, the smaller the diameter of the fiber, terials are their high strength and stiffness, com- the higher its strength, but often the cost increases bined with low density, when compared with as the diameter becomes smaller. In addition, bulk materials, allowing for a weight reduction smaller-diameter high-strength fibers have greater in the finished part. flexibility and are more amenable to fabrication the reinforcing phase provides the strength processes such as weaving or forming over radii. and stiffness. In most cases, the reinforcement is typical fibers include glass, aramid, and carbon, harder, stronger, and stiffer than the matrix. the which may be continuous or discontinuous. reinforcement is usually a fiber or a particulate. the continuous phase is the matrix, which is a particulate composites have dimensions that are polymer, metal, or ceramic. polymers have low approximately equal in all directions. they may strength and stiffness, metals have intermediate be spherical, platelets, or any other regular or ir- strength and stiffness but high ductility, and ce- regular geometry. particulate composites tend to ramics have high strength and stiffness but are be much weaker and less stiff than continuous- brittle. the matrix (continuous phase) performs fiber composites, but they are usually much less several critical functions, including maintaining expensive. particulate reinforced composites usu- the fibers in the proper orientation and spacing ally contain less reinforcement (up to 40 to 50 and protecting them from abrasion and the envi- volume percent) due to processing difficulties ronment. In polymer and metal matrix compos- and brittleness. ites that form a strong bond between the fiber A fiber has a length that is much greater than and the matrix, the matrix transmits loads from its diameter. the length-to-diameter (l/d) ratio is the matrix to the fibers through shear loading at known as the aspect ratio and can vary greatly. the interface. In ceramic matrix composites, the Continuous fibers have long aspect ratios, while objective is often to increase the toughness rather discontinuous fibers have short aspect ratios. than the strength and stiffness; therefore, a low Continuous-fiber composites normally have a interfacial strength bond is desirable. preferred orientation, while discontinuous fibers the type and quantity of the reinforcement generally have a random orientation. examples determine the final properties. Figure 1.2 shows of continuous reinforcements include unidirec- that the highest strength and modulus are ob- tional, woven cloth, and helical winding (Fig. tained with continuous-fiber composites. there is 1.1a), while examples of discontinuous rein- a practical limit of about 70 volume percent rein- forcements are chopped fibers and random mat forcement that can be added to form a composite. (Fig. 1.1b). Continuous-fiber composites are At higher percentages, there is too little matrix to often made into laminates by stacking single support the fibers effectively. the theoretical 2 / Structural Composite Materials Fig. 1.1 Typical reinforcement types strength of discontinuous-fiber composites can a low-viscosity resin that reacts and cures during approach that of continuous-fiber composites processing, forming an intractable solid. A ther- if their aspect ratios are great enough and they moplastic is a high-viscosity resin that is pro- are aligned, but it is difficult in practice to main- cessed by heating it above its melting tempera- tain good alignment with discontinuous fibers. ture. Because a thermoset resin sets up and cures Discontinuous-fiber composites are normally during processing, it cannot be reprocessed by somewhat random in alignment, which dramati- reheating. By comparison, a thermoplastic can cally reduces their strength and modulus. How- be reheated above its melting temperature for ad- ever, discontinuous-fiber composites are gen- ditional processing. there are processes for both erally much less costly than continuous-fiber classes of resins that are more amenable to dis- composites. therefore, continuous-fiber com- continuous fibers and others that are more ame- posites are used where higher strength and stiff- nable to continuous fibers. In general, because ness are required (but at a higher cost), and metal and ceramic matrix composites require discontinuous-fiber composites are used where very high temperatures and sometimes high pres- cost is the main driver and strength and stiffness sures for processing, they are normally much are less important. more expensive than polymer matrix composites. Both the reinforcement type and the matrix af- However, they have much better thermal stabil- fect processing. the major processing routes for ity, a requirement in applications where the com- polymer matrix composites are shown in Fig. 1.3. posite is exposed to high temperatures. two types of polymer matrices are shown: ther- this book will deal with both continuous and mosets and thermoplastics. A thermoset starts as discontinuous polymer, metal, and ceramic matrix Chapter 1: Introduction to Composite Materials / 3 Fig. 1.2 Influence of reinforcement type and quantity on composite performance Fig. 1.3 Major polymer matrix composite fabrication processes 4 / Structural Composite Materials composites, with an emphasis on continuous- material is anisotropic (for example, the compos- fiber, high-performance polymer composites. ite ply shown in Fig. 1.5), it has properties that vary with direction within the material. In this example, the moduli are different in each direc- tion (E0° ≠ E45° ≠ E90°). While the modulus of 1.1 Isotropic, anisotropic, and elasticity is used in the example, the same depen- Orthotropic Materials dence on direction can occur for other material properties, such as ultimate strength, poisson’s Materials can be classified as either isotropic ratio, and thermal expansion coefficient. or anisotropic. Isotropic materials have the same Bulk materials, such as metals and polymers, material properties in all directions, and normal are normally treated as isotropic materials, while loads create only normal strains. By compari- composites are treated as anisotropic. However, son, anisotropic materials have different mate- even bulk materials such as metals can become rial properties in all directions at a point in the anisotropic––for example, if they are highly cold body. there are no material planes of symmetry, worked to produce grain alignment in a certain and normal loads create both normal strains and direction. shear strains. A material is isotropic if the prop- Consider the unidirectional fiber-reinforced erties are independent of direction within the composite ply (also known as a lamina) shown material. in Fig. 1.6. the coordinate system used to de- For example, consider the element of an iso- scribe the ply is labeled the 1-2-3 axes. In this tropic material shown in Fig. 1.4. If the material case, the 1-axis is defined to be parallel to the is loaded along its 0°, 45°, and 90° directions, fibers (0°), the 2-axis is defined to lie within the the modulus of elasticity (E) is the same in each plane of the plate and is perpendicular to the fi- direction (E0° = E45° = E90°). However, if the bers (90°), and the 3-axis is defined to be normal Fig. 1.4 Element of isotropic material under stress Chapter 1: Introduction to Composite Materials / 5 Fig. 1.5 Element of composite ply material under stress Fig. 1.6 Ply angle definition 6 / Structural Composite Materials to the plane of the plate. the 1-2-3 coordinate Consider the unidirectional composite shown system is referred to as the principal material in the upper portion of Fig. 1.7, where the unidi- coordinate system. If the plate is loaded parallel rectional fibers are oriented at an angle of 45 de- to the fibers (one- or zero-degree direction), the grees with respect to the x-axis. In the small, modulus of elasticity E11 approaches that of the isolated square element from the gage region, be- fibers. If the plate is loaded perpendicular to cause the element is initially square (in this ex- the fibers in the two- or 90-degree direction, the ample), the fibers are parallel to diagonal AD of modulus E22 is much lower, approaching that of the element. In contrast, fibers are perpendicular the relatively less stiff matrix. Since E11 >> E22 to diagonal BC. this implies that the element is and the modulus varies with direction within the stiffer along diagonal AD than along diagonal material, the material is anisotropic. BC. When a tensile stress is applied, the square Composites are a subclass of anisotropic mate- element
Recommended publications
  • Green Composites in Architecture and Building Material Science
    Modern Applied Science; Vol. 9, No. 1; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Green Composites in Architecture and Building Material Science Ruslan Lesovik1, Yury Degtev1, Mahmud Shakarna1 & Anastasiya Levchenko1 1 Belgorod Shukhov State Technological University, 308012, Belgorod, Russia Correspondence: Ruslan Lesovik, Belgorod Shukhov State Technological University, 308012, Belgorod, Russia. Received: September 5, 2014 Accepted: September 8, 2014 Online Published: November 23, 2014 doi:10.5539/mas.v9n1p45 URL: http://dx.doi.org/10.5539/mas.v9n1p45 Abstract Currently, the topic of improvement of man`s live ability is becoming increasingly important. The notion of luxury living in the city includes social comfort, environment comfort (urban, natural landscape component). A wide range of small architectural forms of different architectural design and purpose is developed. The basic material for the production of small architectural forms is concrete. On optimal combination of negative and positive qualities, concrete is the most cost- effective material. In order to avoid increasing the price of hardscape, at their creating, it`s actual to use local raw materials and industrial waste. On their basis the modern high quality building materials are developed. To reduce prime costs of construction materials the technogenic raw materials are used. The solution of this actual problem possibly on the basis of expansion of a source of raw materials of the stone materials suitable for production
    [Show full text]
  • 10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
    EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch.
    [Show full text]
  • Testing Several Composite Materials in a Material Science Course Under the Engineering Technology Curriculum
    AC 2010-133: TESTING SEVERAL COMPOSITE MATERIALS IN A MATERIAL SCIENCE COURSE UNDER THE ENGINEERING TECHNOLOGY CURRICULUM N.M. Hossain, Eastern Washington University Dr. Hossain is an assistant professor in the Department of Engineering and Design at Eastern Washington University, Cheney. His research interests involve the computational and experimental analysis of lightweight space structures and composite materials. Dr. Hossain received M.S. and Ph.D. degrees in Materials Engineering and Science from South Dakota School of Mines and Technology, Rapid City, South Dakota. Jason Durfee, Eastern Washington University Professor DURFEE received his BS and MS degrees in Mechanical Engineering from Brigham Young University. He holds a Professional Engineer certification. Prior to teaching at Eastern Washington University he was a military pilot, an engineering instructor at West Point and an airline pilot. His interests include aerospace, aviation, professional ethics and piano technology. Page 15.1201.1 Page © American Society for Engineering Education, 2010 Testing Several Composite Materials in a Material Science Course under the Engineering Technology Curriculum Abstract The primary objective of a material science course is to provide the fundamental knowledge necessary to understand important concepts in engineering materials, and how these concepts relate to engineering design. In our institution, this course involves different laboratory performances to obtain various material properties and to reinforce students’ understanding to grasp the course objectives. As we are on a quarter system, this course becomes very aggressive and challenging to complete the intended course syllabus in a satisfactory manner within the limited time. It leaves very little time for students and instructor to incorporate thorough study any additional items such as composite materials.
    [Show full text]
  • Ceramic Matrix Composites with Nano Technology–An Overview
    International Review of Applied Engineering Research. ISSN 2248-9967 Volume 4, Number 2 (2014), pp. 99-102 © Research India Publications http://www.ripublication.com/iraer.htm Ceramic Matrix Composites with Nano Technology–An Overview Saubhagya Sharma, Samresh Kumar Shashi and Vikram Tomar Department of Material Science & Nano Technology, University of Petroleum & Energy Studies, Dehradun, Uttrakhand. Abstract Ceramic matrix composites (CMCs) are promising materials for use in high temperature structural applications. This class of materials offers high strength to density ratios. Also, their higher temperature capability over conventional super alloys may allow for components that require little or no cooling. This benefit can lead to simpler component designs and weight savings. These materials can also contribute in increasing the operating efficiency due to higher operating temperatures being achieved. Using carbon/carbon composites with the help of Nanotechnology is more beneficial in structural engineering and can decrease the production cost. They can withstand high stresses and temperatures than the traditional alumina, silicon carbide which fracture easily under mechanical loads Fundamental work in processing, characterization and analysis is important before the structural properties of this new class of Nano composites can be optimized. The fields of the Nano composite materials have received a lot of attention to scientists and engineers in recent years. The fabrication of such composites using Nano technology can make a revolution in the field of material science engineering and can make the composites able to be used in long lasting applications. 1. Introduction As we know that Composite materials are the type of materials that are formed by combining two or more materials of different physical and chemical properties.
    [Show full text]
  • Definition of Brittleness: Connections Between Mechanical
    DEFINITION OF BRITTLENESS: CONNECTIONS BETWEEN MECHANICAL AND TRIBOLOGICAL PROPERTIES OF POLYMERS Haley E. Hagg Lobland, B.S., M.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS August 2008 APPROVED: Witold Brostow, Major Professor Rick Reidy, Committee Member and Chair of the Department of Materials Science and Engineering Dorota Pietkewicz, Committee Member Nigel Shepherd, Committee Member Costas Tsatsoulis, Dean of the College of Engineering Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Hagg Lobland, Haley E. Definition of brittleness: Connections between mechanical and tribological properties of polymers. Doctor of Philosophy (Materials Science and Engineering), August 2008, 51 pages, 5 tables, 13 illustrations, 106 references. The increasing use of polymer-based materials (PBMs) across all types of industry has not been matched by sufficient improvements in understanding of polymer tribology: friction, wear, and lubrication. Further, viscoelasticity of PBMs complicates characterization of their behavior. Using data from micro-scratch testing, it was determined that viscoelastic recovery (healing) in sliding wear is independent of the indenter force within a defined range of load values. Strain hardening in sliding wear was observed for all materials—including polymers and composites with a wide variety of chemical structures—with the exception of polystyrene (PS). The healing in sliding wear was connected to free volume in polymers by using pressure- volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with again the exception of PS. The exceptional behavior of PS has been attributed qualitatively to brittleness.
    [Show full text]
  • New Model of Brittleness Index to Locate the Sweet Spots for Hydraulic Fracturing in Unconventional Reservoirs
    VOL. 14, NO. 18, SEPTEMBER 2019 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences ©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. www.arpnjournals.com NEW MODEL OF BRITTLENESS INDEX TO LOCATE THE SWEET SPOTS FOR HYDRAULIC FRACTURING IN UNCONVENTIONAL RESERVOIRS Omer Iqbal1, Maqsood Ahmad1 and Eswaran Padmanabhan2 1Department of Petroleum Engineering, Institute of Hydrocarbon recovery (IHR), Universiti Teknologi PETRONAS, Malaysia 2Department of Petroleum Geoscience, Institute of Hydrocarbon recovery (IHR), Universiti Teknologi PETRONAS, Malaysia E-Mail: [email protected] ABSTRACT Rock characterization in term of brittleness is necessary for successful stimulation of shale gas reservoirs. High brittleness is required to prevent healing of natural and induced hydraulic fractures and also to decrease the breakdown pressure for fracture initiation and propagation. Several definitions of brittleness and methods for its estimation has been reviewed in this study in order to come up with most applicable and promising conclusion. The brittleness in term of brittleness index (BI) can be quantified from laboratory on core samples, geophysical methods and from well logs. There are many limitations in lab-based estimation of BI on core samples but still consider benchmark for calibration with other methods. The estimation of brittleness from mineralogy and dynamic elastic parameters like Young’s modulus, Poison’s ratio is common in field application. The new model of brittleness index is proposed based on mineral contents and geomechanical properties, which could be used to classify rock into brittle and ductile layers. The importance of mechanical behavior in term of brittle and ductile in shale gas fracturing were also reviewed because shale with high brittleness index (BI) or brittle shale exist natural fractures that are closed before stimulation and can provide fracture network or avenues through stimulation.
    [Show full text]
  • Hybrid Self-Reinforced Composite Materials Based on Ultra-High Molecular Weight Polyethylene
    materials Article Hybrid Self-Reinforced Composite Materials Based on Ultra-High Molecular Weight Polyethylene Dmitry Zherebtsov 1,* , Dilyus Chukov 1 , Eugene Statnik 2 and Valerii Torokhov 1 1 Center of Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia; [email protected] (D.C.); [email protected] (V.T.) 2 Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; [email protected] * Correspondence: [email protected] Received: 2 March 2020; Accepted: 3 April 2020; Published: 8 April 2020 Abstract: The properties of hybrid self-reinforced composite (SRC) materials based on ultra-high molecular weight polyethylene (UHMWPE) were studied. The hybrid materials consist of two parts: an isotropic UHMWPE layer and unidirectional SRC based on UHMWPE fibers. Hot compaction as an approach to obtaining composites allowed melting only the surface of each UHMWPE fiber. Thus, after cooling, the molten UHMWPE formed an SRC matrix and bound an isotropic UHMWPE layer and the SRC. The single-lap shear test, flexural test, and differential scanning calorimetry (DSC) analysis were carried out to determine the influence of hot compaction parameters on the properties of the SRC and the adhesion between the layers. The shear strength increased with increasing hot compaction temperature while the preserved fibers’ volume decreased, which was proved by the DSC analysis and a reduction in the flexural modulus of the SRC. The increase in hot compaction pressure resulted in a decrease in shear strength caused by lower remelting of the fibers’ surface. It was shown that the hot compaction approach allows combining UHMWPE products with different molecular, supramolecular, and structural features.
    [Show full text]
  • Cohesive Crack with Rate-Dependent Opening and Viscoelasticity: I
    International Journal of Fracture 86: 247±265, 1997. c 1997 Kluwer Academic Publishers. Printed in the Netherlands. Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling ZDENEKÏ P. BAZANTÏ and YUAN-NENG LI Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208, USA Received 14 October 1996; accepted in revised form 18 August 1997 Abstract. The time dependence of fracture has two sources: (1) the viscoelasticity of material behavior in the bulk of the structure, and (2) the rate process of the breakage of bonds in the fracture process zone which causes the softening law for the crack opening to be rate-dependent. The objective of this study is to clarify the differences between these two in¯uences and their role in the size effect on the nominal strength of stucture. Previously developed theories of time-dependent cohesive crack growth in a viscoelastic material with or without aging are extended to a general compliance formulation of the cohesive crack model applicable to structures such as concrete structures, in which the fracture process zone (cohesive zone) is large, i.e., cannot be neglected in comparison to the structure dimensions. To deal with a large process zone interacting with the structure boundaries, a boundary integral formulation of the cohesive crack model in terms of the compliance functions for loads applied anywhere on the crack surfaces is introduced. Since an unopened cohesive crack (crack of zero width) transmits stresses and is equivalent to no crack at all, it is assumed that at the outset there exists such a crack, extending along the entire future crack path (which must be known).
    [Show full text]
  • Tensile Strength of C/C Composites
    16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS TENSILE STRENGTH OF C/C COMPOSITES Jun Koyanagi*, Hiroshi Hatta*, Yasuo Kogo**, Ichiro Shiota*** *Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, **Department of Materials Science and Technology, Tokyo University of Science *** Department of Materials Science and Technology, Kogakuin University Keywords : C/C composites, tensile strength, fracture mechanism ABSTRACT changing heat treatment temperature, and the tensile Fracture mechanism and model based on it in strength and interfacial strength were measured. In Carbon-carbon composites are studied. Interfacial addition, comparing these results with their fracture strength between reinforcing fiber and matrix is a patterns, a tensile fracture model of C/Cs was potential candidate governing the tensile fracture of proposed. C/Cs. However, The mechanisms connecting the tensile strength and the factor have not yet been 2. EXPERIMENTAL PROCEDURE clarified. In the present study, tensile fracture 2.1 Materials patterns of various C/C composites with changing Two types of C/Cs were examined. These the interfacial strength were observed in detail, and C/Cs were different only in their reinforcing fibers, a fundamental tensile fracture model of C/C K321 and K633 by Mitsubishi Sanshi Co. Japan. composites in accordance with the experimental These fibers were fabricated from the same observations were proposed. The analytical result precursor but differed only in HTT. Hereafter, the shows reasonable agreement with the experimental C/Cs reinforced with K321 and K633 will be results, and verifies that the fracture mechanism is referred to as K321-C/C and K633-C/C, respectively. consistent. Both C/Cs were of a symmetric 0°/90° cross-ply lamination, fabricated from carbon fiber reinforced phenolic resin matrix composites, CFRPs, with a 1.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • A Study of the Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Two Types of Flax Fabric Reinforcement
    polymers Article A Study of the Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Two Types of Flax Fabric Reinforcement Dumitru Bolcu † and Marius Marinel St˘anescu*,† Department of Mechanics, University of Craiova, 165 Calea Bucure¸sti,200620 Craiova, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-740-355-079 † These authors contributed equally to this work. Received: 7 July 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The need to protect the environment has generated, in the past decade, a competition at the producers’ level to use, as much as possible, natural materials, which are biodegradable and compostable. This trend and the composite materials have undergone a spectacular development of the natural components. Starting from these tendencies we have made and studied from the point of view of mechanical and chemical properties composite materials with three types of hybrid matrix based on the Dammar natural hybrid resin and two types of reinforcers made of flax fabric. We have researched the mechanical properties of these composite materials based on their tensile strength and vibration behavior, respectively. We have determined the characteristic curves, elasticity modulus, tensile strength, elongation at break, specific frequency and damping factor. Using SEM (Scanning Electron Microscopy) analysis we have obtained images of the breaking area for each sample that underwent a tensile test and, by applying FTIR (Fourier Transform Infrared Spectroscopy) and EDS (Energy Dispersive Spectroscopy) analyzes, we have determined the spectrum bands and the chemical composition diagram of the samples taken from the hybrid resins used as a matrix for the composite materials under study.
    [Show full text]
  • NI\SI\ ! F\1V\"VJN, VII(GINIA National Aeronautics and Space Administration Langley Research Center Hampton
    lII/JSlJ TIlf- glS7~ NASA Technical Memorandum 87572 .. NASA-TM-87572 19850023836 THERMAL EXPANSION OF SELECTED GRAPHITE REINFORCED POLYIMIDE-, EPOXY-, AND GLASS-MATRIX COMPOSITE Stephen S. Tompkins JULY 1985 \ '~-·"·'·1 LI~HARY COpy AUG 1 91005 I i,l ,:.,1 II I,Lsc"nCH CUJ I FII lIHr~ARY, NlISA NI\SI\ ! f\1V\"VJN, VII(GINIA National Aeronautics and Space Administration Langley Research center Hampton. Virginia 23665 '1 Lli':'lIT.22./84-:S5· 1 RN/NASA-TM-87572 [1 ISPLA\i 251,,/·~:! ../'l 85N321"49*# ISSUE 21 PAGE 3561 CATEGORY 24 RPT#: NASA-TM-87572 NAS 1.15:87572 85/07/00 20 PAGES UNCLASSIFIED DOCUMENT t~)fTL~ Tt-"ierrfi,31 e~:<p,3rr3il)(l {)f ~3elec·-ted ~9r"cH:it-'tit2 (e·irlr(;;t"c:eci l::tol'ilrni(ie-, EtJ{)){'l-, ar\c! glass-matrix COffiPostte . I~UTH: A.·/·TCit:,tlPK If\!:=;, ~; •.s. LvRP: National. Aeronautics and Space Administration. LangleY Rese~rch Center, Hampton,V~. AVAIL. NTIS SAP: He A02/MF AOl p\R·._.IS ~ /"::'::8()F~CI:31 LI C~ATE (;LASS ....... ~·::C:AR.8(Jr\1 FI BEF~:3 .../:,~~!~F:AF!H ITE -PCiL\tI t~'l ILiE COf'·'lPf):; ITES.·./::-:; T~ERMAL EXPANSION (ftiNS: ! 'OIMENSIONAL STABILITY; LAMINATES/ RESIDUAL STRESS HbA: At!thCj( j J J J J J J J J J J J J J J J J J J J J J J J J J J J SUMMARY .The thermal expansion of three epoxy-matrix composites, a polymide-matrix composite and a borosilicate glass-matrix composite, each reinforced with con­ tinuous carbon fibers, has been measured and compared.
    [Show full text]