Afterword: Why Space Advocates and Environmentalists Should Work Together

Total Page:16

File Type:pdf, Size:1020Kb

Afterword: Why Space Advocates and Environmentalists Should Work Together Afterword: Why Space Advocates and Environmentalists Should Work Together Aerospace is not usually considered verdant. Jet aircraft emit tons of carbon dioxide into the atmosphere; some of the companies that make them are defense contrac- tors, and nobody considers weapons of war, necessary or not, to be green. These companies are in business to make money for their shareholders and will only be green if it somehow benefits their bottom line or if law or mandate requires them to be so. This reality, and there are exceptions, also taints those involved in space exploration and development. But painting the entire canvas with the same brush is not only grossly unfair, it is also incorrect. Many people who devote their lives and careers to the exploration of space are not in it for the money. Sure, they need to earn a living like everyone else. But that is not why the authors of this book chose their careers. Greg Matloff is an astronomer and astronomy professor. He lives, breathes, studies, and teaches about the heavens. He does this, in part, because studying the universe tells us something about ourselves. As we have explored the universe around us, we have learned how precious our planet Earth truly is. C Bangs explores archetypes of Earth and depicts cosmological elements from an ecological and feminist perspective. One premise of her work is that we are part of Earth and all the elements of our bodies at one time were within a star. We contain both systems within us. Her art in a wide variety of media is informed by mythology and the hope for human evolution. Space is not only about individual heroics or national pride. Ultimately, it deals with the expansion of consciousness and the survival of the human species and other terrestrial life forms. For example, by studying the climate of Mars, we have something to which we can compare Earth’s climate. This provides us with another data point, and that is vitally important because it is difficult, if not impossible, to explain anything generally with only one example. An analogy would be trying to draw a line using only one point. You are free to draw such a line in any direction within a 360 angle. Making conclusions about any specific line that one draws as being “correct” is therefore impossible. With two points, you may draw a line. It may still not accurately describe the system, but it will likely be closer to correct than any G. Matloff et al., Harvesting Space for a Greener Earth, 205 DOI 10.1007/978-1-4614-9426-3, © Springer Science+Business Media New York 2014 206 Afterword: Why Space Advocates and Environmentalists Should Work Together other of the infinite set of lines that could have otherwise been drawn through a single point. Les Johnson is a NASA physicist and manager. He dreamed of working for NASA since he was a 7-year-old boy in Ashland, Kentucky, and watched on television as Neil Armstrong set foot on the Moon. He knew then that he wanted to be part of that great adventure and that he had to become a scientist in order to do so. The three of us are not unique, nor are we in the minority among those who work in the field of space exploration and science. Most of our colleagues with whom we have discussed career motivations (“Why did you study science and become an astronomer/physicist/engineer?”) share our fundamental love of knowledge and passion to explore, develop, and use space for the betterment of humankind. And this passion is not limited to scientists and engineers. Businessman Robert Bigelow is using the fortune he earned in business to foster space development. He is the founder and owner of Bigelow Aerospace near Las Vegas, Nevada, which is building what may be the world’s first orbital hotel. Bigelow has already flown subscale prototypes into Earth orbit and has plans to loft full-scale pressurized modules within the near future. Another businessman, Elon Musk, is using his dot.com wealth to develop a new generation of inexpensive rockets to carry machines and eventually people into space at a lower cost than is currently possible. Environmentalists share the vision of protecting and preserving life on Earth. By working together we stand a much better chance of being able to make this vision a reality. As we gaze skyward on a starry night, we are struck by how immense and seemingly lifeless the universe appears to be. If we are not alone among the stars, then we are among a very few civilizations likely separated by an abyss that will be impossible to cross. Hence the imperative that we preserve that which makes us unique. We are part of a living planet. Exploring and developing space will help us make this a better, greener world. Brooklyn, NY, USA Greg Matloff Brooklyn, NY, USA C Bangs Madison, Al, USA Les Johnson Appendix 1: The Current NASA Approach to Human Life Support in Space G. Matloff et al., Harvesting Space for a Greener Earth, 207 DOI 10.1007/978-1-4614-9426-3, © Springer Science+Business Media New York 2014 208 Appendix 1: The Current NASA Approach to Human Life Support in Space Appendix 1: The Current NASA Approach to Human Life Support in Space 209 210 Appendix 1: The Current NASA Approach to Human Life Support in Space Appendix 1: The Current NASA Approach to Human Life Support in Space 211 212 Appendix 1: The Current NASA Approach to Human Life Support in Space Appendix 2: NASA’s Current Plans for Human Exploration Above Low Earth Orbit Include the Multi-Purpose Crewed Vehicle (Orion) and the Huge Space Launch System (SLS) Booster G. Matloff et al., Harvesting Space for a Greener Earth, 213 DOI 10.1007/978-1-4614-9426-3, © Springer Science+Business Media New York 2014 214 Appendix 2: NASA’s Current Plans for Human Exploration... Appendix 2: NASA’s Current Plans for Human Exploration... 215 216 Appendix 2: NASA’s Current Plans for Human Exploration... Appendix 2: NASA’s Current Plans for Human Exploration... 217 Appendix 3: Mitigating Global Warming Using Ground-Based (Terrestrial) Geoengineering Robert G Kennedy III, PE; Kenneth I. Roy, PE; Eric Hughes, David E. Fields, Ph.D. Acronyms CCS Carbon capture and sequestration CDM/CDR/ Carbon dioxide management/removal/avoidance CDA CPI Consumer Price Index EHV Extremely high voltage EJ Exajoule, large SI unit for energy ¼ 1018 J ERO(E)I Energy-return-on-(energy)-invested GHG Greenhouse gas IPCC Intergovernmental Panel on Climate Change PV Photovoltaic Q “Quad”, large US customary unit for energy ¼ 1015 quadrillion British thermal units SLOC Sea line of communication SRM Solar radiation management WWI/II World Wars I and II Introduction to Appendix 3 Next to escaping pathogen load and the burden of disease, environmental and resource crises have been the greatest strategic motivators for human exploration and migration into unpeopled realms. We cannot qualify this statement with “in human history”, since most of these paleolithic peregrinations in search of epide- miological liberation took place tens of millennia ago, lost in the dustbin of prehistory. Even absent writing, the archaeological record demonstrates well G. Matloff et al., Harvesting Space for a Greener Earth, 219 DOI 10.1007/978-1-4614-9426-3, © Springer Science+Business Media New York 2014 220 Appendix 3: Mitigating Global Warming Using... Fig. A3.1 Drivers and dependencies for anthropogenic climate change, with the spectrum of approaches and points of their application (emphasizing geoengineering) for intervention. Dia- gram by authors (2013), after Caldeira (2013) enough that ancient societies that outgrew their contado (geographic extent of their resource base, typically fuel wood) crashed. So it is today—the climate crisis is upon us. We are still in the early exponential growth phases of it—the worst positive feedback loops (next section) have yet to commence. Wise guys have quipped, “we are venusforming Terra”. It is the mission of this book to show that the climate challenge is in fact pertinent to the development of a spacefaring civilization—and the other way round! As the astronomy community realized after discovering the true cause of the dinosaurs’ demise just 33 years ago, the ability to work in space is not a luxury, but a necessity for long-term survival. It is time for people to find a new contado by looking in a new direction—not to the far horizon, but up. The Climate-Carbon-Water-Energy Nexus Water means life, and we live on a water world. Ultimately, climate change (Fig. A3.1) is about water also: too much water where it is not supposed to be or when; not enough water where or when it is supposed to be; plus drying soils, changing habitats and ocean currents, and rising sea levels over the next century submerging the most historically important, densely occupied, and productive real Appendix 3: Mitigating Global Warming Using... 221 Fig. A3.2 A simple CO2 syllogism: one latent released positive-feedback loop wildfires Temp. rise waiting to take off eco stress tree death estate on Earth. Warm air holds much more water than cool air, and when it is released, weather events tend to be more violent and shift toward the extreme ends of the probability distribution. Agricultural practices and our modest pantry of staple crops (not to mention the wider ecosystem) are adapted to long term averages with predictable error bars. As the old saying goes, climate is the weather one expects, while weather is the precipitation one gets, therefore climate change means getting the unexpected.
Recommended publications
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Winning the Salvo Competition Rebalancing America’S Air and Missile Defenses
    WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK 2016 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2016 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004. Mark was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2005–2006 Quadrennial Defense Review. Following the QDR, he served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, a Master of Public Administration from Central Michigan University, and a B.S. in chemistry from the United States Air Force Academy.
    [Show full text]
  • Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid
    Georgetown University Law Center Scholarship @ GEORGETOWN LAW 2019 Exoatmospheric Plowshares: Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid David A. Koplow Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/2197 https://ssrn.com/abstract=3229382 UCLA Journal of International Law & Foreign Affairs, Spring 2019, Issue 1, 76. This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Air and Space Law Commons, International Law Commons, Law and Philosophy Commons, and the National Security Law Commons EXOATMOSPHERIC PLOWSHARES: USING A NUCLEAR EXPLOSIVE DEVICE FOR PLANETARY DEFENSE AGAINST AN INCOMING ASTEROID DavidA. Koplow* "They shall bear their swords into plowshares, and their spears into pruning hooks" Isaiah 2:4 ABSTRACT What should be done if we suddenly discover a large asteroid on a collision course with Earth? The consequences of an impact could be enormous-scientists believe thatsuch a strike 60 million years ago led to the extinction of the dinosaurs, and something ofsimilar magnitude could happen again. Although no such extraterrestrialthreat now looms on the horizon, astronomers concede that they cannot detect all the potentially hazardous * Professor of Law, Georgetown University Law Center. The author gratefully acknowledges the valuable comments from the following experts, colleagues and friends who reviewed prior drafts of this manuscript: Hope M. Babcock, Michael R. Cannon, Pierce Corden, Thomas Graham, Jr., Henry R. Hertzfeld, Edward M.
    [Show full text]
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 Using AI To Boost How Emirates Is Extending ATM Efficiency Maintenance Intervals ™ $14.95 JANUARY 13-26, 2020 2020 THE YEAR OF SUSTAINABILITY RICH MEDIA EXCLUSIVE Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Part I: Introduction
    Part I: Introduction “Perhaps the sentiments contained in the following pages are not yet sufficiently fashionable to procure them general favor; a long habit of not thinking a thing wrong gives it a superficial appearance of being right, and raises at first a formidable outcry in defense of custom. But the tumult soon subsides. Time makes more converts than reason.” -Thomas Paine, Common Sense (1776) “For my part, whatever anguish of spirit it may cost, I am willing to know the whole truth; to know the worst and provide for it.” -Patrick Henry (1776) “I am aware that many object to the severity of my language; but is there not cause for severity? I will be as harsh as truth. On this subject I do not wish to think, or speak, or write, with moderation. No! No! Tell a man whose house is on fire to give a moderate alarm; tell him to moderately rescue his wife from the hands of the ravisher; tell the mother to gradually extricate her babe from the fire into which it has fallen -- but urge me not to use moderation in a cause like the present. The apathy of the people is enough to make every statue leap from its pedestal, and to hasten the resurrection of the dead.” -William Lloyd Garrison, The Liberator (1831) “Gas is running low . .” -Amelia Earhart (July 2, 1937) 1 2 Dear Reader, Civilization as we know it is coming to an end soon. This is not the wacky proclamation of a doomsday cult, apocalypse bible prophecy sect, or conspiracy theory society.
    [Show full text]
  • Space Weapons Earth Wars
    CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that EDUCATION AND THE ARTS helps improve policy and decisionmaking through ENERGY AND ENVIRONMENT research and analysis. HEALTH AND HEALTH CARE This electronic document was made available from INFRASTRUCTURE AND www.rand.org as a public service of the RAND TRANSPORTATION Corporation. INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND Purchase this document TERRORISM AND HOMELAND SECURITY Browse Reports & Bookstore Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. The monograph/report was a product of the RAND Corporation from 1993 to 2003. RAND monograph/reports presented major research findings that addressed the challenges facing the public and private sectors. They included executive summaries, technical documentation, and synthesis pieces. SpaceSpace WeaponsWeapons EarthEarth WarsWars Bob Preston | Dana J. Johnson | Sean J.A. Edwards Michael Miller | Calvin Shipbaugh Project AIR FORCE R Prepared for the United States Air Force Approved for public release; distribution unlimited The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003.
    [Show full text]
  • A Brief Discussion from the Epistemological, Religious and Societal Dimension
    International Journal of Astrobioethics: a brief discussion from Astrobiology the epistemological, religious and cambridge.org/ija societal dimension Octavio A. Chon-Torres1 Research Article Programa de Estudios Generales, Universidad de Lima, Lima, Peru Cite this article: Chon-Torres OA (2019). Astrobioethics: a brief discussion from Abstract the epistemological, religious and As astrobiology progresses in its quest to discover life on other planets or to put ourselves in societal dimension. International Journal of another one, so does its moral problematic. Astrobiology is not only part of natural sciences, Astrobiology 1–7. https://doi.org/10.1017/ S147355041900017X but also deals with direct aspects of humanities. For this reason, this paper aims to briefly examine astrobioethics from the epistemological, religious and societal dimension. It also Received: 31 January 2019 deals with different researches in this regard, in order to better understand the state of the Revised: 24 June 2019 art on this topic and that astrobioethics can help us not only on how we should relate with Accepted: 25 June 2019 extraterrestrial lifeforms, but even with terrestrials. Key words: Astrobiocentrism; astrobioethics; astrobiology; transdisciplinarity Astrobioethics is the discipline inside astrobiology that studies not only the morality of all activities related to the presence of life on other worlds, but also studies our attitude towards Author for correspondence: the expansion of terrestrial life in the Universe. The discipline that focuses on moral problems Octavio A. Chon-Torres, E-mail: ochon@ulima. edu.pe is ethics; however, as ethics is not an exact science but rather a branch of philosophy, its prob- lematic nature makes its content always updated according to the social context in which it operates.
    [Show full text]
  • Perceptions of Female High School Students on Engineering
    Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol.7, No.25, 2016 Perceptions of Female High School Students on Engineering Diana Starovoytova Madara* Sitati Namango School of Engineering, Moi University P. O .Box 3900, Eldoret, Kenya Abstract There is overwhelming evidence that females are underrepresented in engineering worldwide, and Kenya is not an exception. Recent study at School of Engineering (SOE), Moi University (MU) established that engineering parity ration was found to be 1.68 %, meaning that for every 59 students admitted to MU there was only one student admitted to SOE. Engineering female parity index was found to be 0.0038, meaning that, on average, for 260 female students admitted to MU, only 1(one) female student was admitted to SOE. Humankind depends on engineers to create new technologies, to find solutions to practical problems and to shape the world that people live in and the future they rely on. Yet young people have little or no perception of engineering and the understanding they do have is all too often confused with other careers, such as science. The perception of engineering as “masculine” and “too hard” is a contributing factor for the female minority in engineering. On the other hand there are very few studies on what high school students think about engineering. In view of the above, this paper will try to fill this gap of information, by exploring teenage girls’ perceptions of engineering as a subject for study and as a potential career choice. Furthermore, it will attempt to raise awareness about and improve the image of engineering, by providing fused notion of engineering to the potential broad audience of this paper.
    [Show full text]
  • M/OD Hypervelocity Impacts and Protection Research in CAST
    2010 Beijing Orbital Debris Mitigation Workshop 18-19 October, 2010, Beihang University M/OD Hypervelocity Impacts and Protection Research in CAST Zizheng Gong PhD, Professor Leading Scientist of hypervelocity impact research Beijing Institute of Spacecraft Environment Engineering, China Academy of Space Technology(CAST), China China Academy of Space Technology(CAST) • Founded in February 20, 1968 ; • The first president: Chien Hsuch-Sen; • The largest space technology research center in China • The largest Spacecraft development, production base in China. • April 24, 1970 : Chinese first artificial Earth satellite – DFH-1; • October 2003: manned spacecraft – Shenzhou-5; • October 24, 2007: Chinese first lunar detector – Chang'E-1 ; • September 25, 2008: the first Extravehicular activity – Shenzhou-7. • October 1,2010,the second lunar detector Chang'E-2 • Beijing Institute of Spacecraft Environment Engineering • The Spacecraft Environment Engineering department of CAST. Outline §1 Space Debris Environment and Its Risks §2 Space Debris Modeling §3 Orbital Debris impact Risk Assessment in CAST §4 HVI Testing and M/OD Protection in CAST §5 Orbital Debris Mitigation in CAST 2010 Beijing Orbital Debris Mitigation Workshop 18-19 October, 2010, Beihang University § 1 Space Debris Environment and Its Risks Orbital debris : Humankind digs his own grave ! Space debris are all man made objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non functional. Obtial debris is the only man-made Space environment. The past 50 years of space exploration has unfortunately generated a lot of junk that threatens the reliability of spacecraft. The Space Debris Environment in 2010 More than 5000 satellite launches since 1957 till the end of October 2010; 245 on-orbit break-ups led to 12,500 objects in the US Space Surveillance catalog; catalog size threshold 10cm; mass on orbit 6,000 tons; catalog orbit distributions: - low Earth orbits 73%; - near-geostationary orbits 8%; - highly eccentric orbits 10%; - other orbits (incl.
    [Show full text]
  • Solar Sails and Lunar South Pole Coverage
    Solar Sails and Lunar South Pole Coverage M. T. Ozimek,∗ D. J. Grebow,∗ K. C. Howelly Purdue University, West Lafayette, IN, 47907-2045, USA Potential orbits for continuous surveillance of the lunar south pole with just one space- craft and a solar sail are investigated. Periodic orbits are first computed in the Earth- Moon Restricted Three-Body Problem, using Hermite-Simpson and seventh-degree Gauss- Lobatto collocation schemes. The schemes are easily adapted to include path constraints fa- vorable for lunar south pole coverage. The methods are robust, generating a control history and a nearby solution with little information required for an initial guess. Five solutions of interest are identified and, using collocation, transitioned to the full ephemeris model (including the actual Sun-to-spacecraft line and lunar librations). Of the options investi- gated, orbits near the Earth-Moon L2 point yield the best coverage results. Propellant-free transfers from a geosynchronous transfer orbit to the coverage orbits are also computed. A steering law is discussed and refined by the collocation methods. The study indicates that solar sails remain a feasible option for constant lunar south pole coverage. Nomenclature x State Variable Vector t Time u Control Variable Vector r; v Position and Velocity Vectors, Earth-Moon Rotating Frame U Potential Function a Sail Acceleration Vector R; V Position and Velocity Vectors, EMEJ2000 Frame κ Characteristic Acceleration l Sun-to-Spacecraft Unit-Vector !s Angular Rate of Sun, Earth-Moon Rotating Frame n Number of Nodes ∆i Defect Vector Ti Segment Time i Control Magnitude Constraint gi Path Constraint Vector hk General Node States and/or Control Constraint X Total Design Variable Vector F Full Constraint Vector DF Jacobian Matrix φ Elevation Angle from the Lunar South Pole a Altitude from the Lunar South Pole δ Sail Clock Angle α Sail Pitch Angle E Two-Body Energy with Respect to Earth H Two-Body Angular Momentum with Respect to Earth ∗Ph.D.
    [Show full text]
  • Long Futures and Type Iv Civilizations
    PERIODICA POLYTECHNICA SER. SOC. MAN. SCI. VOL. 12, NO. 1, PP. 83–89 (2004) LONG FUTURES AND TYPE IV CIVILIZATIONS Zoltán GALÁNTAI Department of Innovation Studies and History of Technology Budapest University of Technology and Economics H–1111 Hungary, Budapest, Stoczek u. 2., bg. St., gfloor 7. Tel: (+36) 1 463–2141, Fax: (+36) 1 463–1412 e-mail: [email protected] Received: September 7, 2003 Abstract The emergence of the physical eschatology in the last decades led to an opportunity to ask questions about the fate of our Universe from a cosmologist’s point of view and to study mankind’s possible future on a cosmological scale, while we can define some theoretical limits of a civilization’s possible developments. Keywords: physical eschatology, Kardashev civilizations, Type IV civilization, criticism of Anthropic Cosmological Principle, artificial and natural signs. “Whether the details of my calculations turn out to be correct or not, I think I have shown that there are good scientific reasons for taking seriously the possibility that life and intelligence can succeed in mold- ing this universe of ours to their own purposes.” (Freeman Dyson: Time Without End: Physics and Biology in an Open Universe) 1. Introduction We could imagine a physicist floating in his laboratory in the outer space, far from any celestial body. That physicist would never discover the gravitational force without the closeness of big masses like our planet, wrote Astronomer Royal Sir Martin Rees, and similarly, the existence of some unknown forces is also imaginable, whose effects are not detectable on the scale of our Planetary System – but they would play an important role either in the centers of galaxies or in cosmology [1].
    [Show full text]
  • JBIS Journal of the British Interplanetary Society
    JBIS Journal of the British Interplanetary Society VOL. 66 No. 5/6 MAY/JUNE 2013 Contents On the Possibility of Detecting Class A Stellar Engines using Exoplanet Transit Curves Duncan H. Forgan Asteroid Control and Resource Utilization Graham Paterson, Gianmarco Radice and J-Pau Sanchez Application of COTS Components for Martian Surface Exploration Matthew Cross, Christopher Nicol, Ala’ Qadi and Alex Ellery In-Orbit Construction with a Helical Seam Pipe Mill Neill Gilhooley The Effect of Probe Dynamics on Galactic Exploration Timescales Duncan H. Forgan, Semeli Papadogiannakis and Thomas Kitching Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines Christopher MacLeod Gravitational Assist via Near-Sun Chaotic Trajectories of Binary Objects Joseph L. Breeden jbis.org.uk ISSN 0007-084X Publication Date: 24 July 2013 Notice to Contributors JBIS welcomes the submission for publication of suitable technical articles, research contributions and reviews in space science and technology, astronautics and related fields. Text should be: Figure captions should be short and concise. Every figure 1. As concise as the scientific or technical content allows. used must be referred to in the text. Typically 5000 to 6000 words but shorter (2-3 page) papers 2. Permission should be obtained and formal acknowledgement are also accepted called Technical Notes. Papers longer made for use of a copyright illustration or material from than this would only be accepted when the content demands elsewhere. it, such as a major subject review. 3. Photos: Original photos are preferred if possible or good 2. Mathematical equations may be either handwritten or typed, quality copies.
    [Show full text]