A Diagnostic Method for the Simultaneous Detection and Identification of Pospiviroids

Total Page:16

File Type:pdf, Size:1020Kb

A Diagnostic Method for the Simultaneous Detection and Identification of Pospiviroids Journal of Plant Pathology (2014), 96 (1), 151-158 Edizioni ETS Pisa, 2014 Luigi et al. 151 A DIAGNOSTIC METHOD FOR THE SIMULTANEOUS DETECTION AND IDENTIFICATION OF POSPIVIROIDS M. Luigi, E. Costantini, D. Luison, P. Mangiaracina, L. Tomassoli and F. Faggioli Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C.G. Bertero 22, 00156 Roma, Italy SUMMARY Viroids are classified into two families, Pospiviroidae [type species Potato spindle tuber viroid (PSTVd)] and Potato spindle tuber viroid (PSTVd) was the first spe- Avsunviroidae, [type species Avocado sunblotch viroid cies of the genus Pospiviroid detected in naturally infected (ASBVd)] (Flores et al., 2003; Owens et al., 2011), that rep- symptomless ornamental plants (Solanum jasminoides) in licate and accumulate in the nucleus and the chloroplast, 2006. Since then, other pospiviroid species were found in respectively. The viroid classification scheme is also sup- several naturally infected solanaceous ornamentals. The ported by other criteria, including the presence of ham- combination of latent infection, the widespread occurrence merhead ribozymes in members of the family Avsunviroi- and the possibility of transmission to edible solanaceous dae and of a central conserved region (CCR) in members crops (tomato and potato) has made the development of the family Pospiviroidae. of accurate and reliable molecular diagnostic detection The family Pospiviroidae includes the genus Pospiviroid methods a high priority. The aim of this study was the composed of ten phylogenetically related species: PSTVd, development of a genus-specific RT-PCR protocol, using Chrysanthemum stunt viroid (CSVd), Citrus exocortis viroid universal pospiviroid primers, which would allow also a (CEVd), Columnea latent viroid (CLVd), Iresine viroid 1 species-specific identification through restriction fragment (IrVd-1), Mexican papita viroid (MPVd), Tomato apical stunt length polymorphism (RFLP) analysis. The primers were viroid (TASVd), Tomato chlorotic dwarf viroid (TCDVd), designed to amplify the majority of the pospiviroid ge- Tomato planta macho viroid (TPMVd) and Pepper chat fru- nome (ca. 80%) and the identification of each species using it viroid (PCFVd) (Verhoeven et al., 2009). These species appropriate restriction endonuclease enzymes (AluI and show a high genomic identity, in some cases higher than Sau96I). The method was evaluated for specificity using 80% (Table 1). Moreover, most pospiviroids are almost healthy and/or non-target viroid-infected plants and for indistinguishable in biological features from one other. sensitivity using serial dilutions of total RNA extracted Most pospiviroids can cause severe diseases and dam- from plants infected by different pospiviroid species. The ages to most species in the family Solanaceae, potato (So- reliability of the method was successfully ascertained dur- lanum tuberosum) and tomato (Solanum lycopersicum) in ing a survey when numerous plants of the families Sola- particular, in which they induce epinasty, stunting, leaf naceae and Asteraceae were assayed for single and mixed distortion or discoloration and necrosis (usually vein ne- infection of pospiviroid species. crosis) (Singh, 1973; Galindo et al., 1982; Owens, 1990; Martinez-Soriano et al., 1996; Singh et al., 1999, 2003). Key words: RT-PCR, RFLP, Pospiviroid, diagnosis, ge- Notwithstanding the above, PSTVd is currently the only nus-specific detection, species-specific detection Solanaceae-infecting pospiviroid with an explicitly regu- lated status in Europe (Council Directive 2000/29/EC), USA and Canada (NAPPO, 2007). INTRODUCTION In 2006, PSTVd was found for the first time in latently infected solanaceous ornamentals. i.e. Solanum jasminoi- Viroids, the smallest pathogens known, are composed des and Brugmansia spp. (Verhoeven et al., 2008). Many of a highly complementary naked single-stranded circular other pospiviroid species were subsequently recovered RNA ranging in size from 246 to 401 nucleotides and do from different symptomless such plants, that represent a not encode any protein. Despite this minimal molecular sanitary hazard, as they constitute a source of inoculum for composition, viroids contain sufficient information to in- other susceptible hosts (Navarro et al., 2009). Simultane- fect host plants, to manipulate their gene expression and ous infections by PSTVd and TASVd, CEVd and TASVd, induce specific diseases (Hadidi et al., 2003). PSTVd and CEVd have recently been detected in S. jasmi- noides and Cestrum auranticum (Luigi et al., 2011; Torchetti et al., 2011). Corresponding author: F. Faggioli Fax: +39.06.82070246 This situation and the recent discovery that CSVd, E-mail: [email protected] another quarantinable pospiviroid, is able to infect 152 Simultaneous detection and identification of pospiviroids Journal of Plant Pathology (2014), 96 (1), 151-158 Table 1. Percentage of nucleotide identity among reference sequences for each pospiviroid species. CSVd CEVd CLVd IrVd MPVd PCFVd PSTVd TASVd TCDVd TPMVd CSVd 100% CEVd 75% 100% CLVd 73% 68% 100% IrVd 68% 70% 62% 100% MPVd 75% 75% 75% 71% 100% PCFVd 69% 71% 67% 74% 73% 100% PSTVd 73% 74% 76% 71% 86% 71% 100% TASVd 81% 83% 76% 67% 79% 74% 75% 100% TCDVd 75% 74% 75% 70% 84% 71% 91% 75% 100% TPMVd 75% 73% 75% 72% 92% 73% 84% 79% 82% 100% Sequences retrieved from the NCBI database were: CSVd [NC_002015], CEVd [NC_001464.1], CLVd [NC_003538.1], IrVd 1[NC_003613.1], MPVd [NC_003637.1], PCFVd [NC_011590.1], PSTVd [NC_002030.1], TASVd [NC_001553.1], TCDVd [NC_000885.1] and TPMVd [NC_001558.1]. In bold are the highest percentages of identity. symptomlessly Argyranthemum frutescens in Italy (Tor- fragment length polymorphism (RFLP) for identification chetti et al., 2012a) and France (Marais et al., 2011), have at the species level. increased the concern for the incumbent phytosanitary risks (EFSA, 2011, 2012), thus calling for the adoption of regulatory measures based on the use of viroid-free propa- MATERIALS AND METHODS gation material and, when possible, on the interception of infected plants. Effectiveness of these defense strategies Source of materials. The CRA-Plant Pathology Re- requires a rapid, efficient and reliable method for pospivi- search Centre (CRA-PAV, Rome) germplasm collection roids generic detection and specific identification. provided S. jasminoides plants infected by CEVd, TASVd In the past, different diagnostic methods have been and PSTVd in single and mixed infection, Chrysanthemum developed either for the genus-specific or species-specific sp. plants infected by CSVd and healthy controls of S. ja- detection of members of the genus Pospiviroid: (i) northern sminoides, tomato and potato. Positive controls infected by blot hybridization (Owens and Diener, 1981; Singh, 1999); CEVd, CLVd, IrVd, MPVd, PCFVd, TASVd, TCDVd and (ii) a single polyprobe for the simultaneous identification TPMVd were kindly supplied by Dr. J. Th. J.Verhoeven of eight viroids (Torchetti et al., 2012b); (iii) RT-PCR and (Dutch Plant Protection Service and Laboratory of Virol- Real time RT-PCR protocols using primers for pospiviroid ogy, Wageningen University) and maintained on tomato generic detection (Bostan et al., 2004; Verhoeven et al., plants in a greenhouse. 2004; Botermans et al., 2013); (iv) specific primer pairs for To test the efficiency and accuracy of the method, 200 species-specific detection (RT-PCR and real-time RT-PCR) plants were collected from different nurseries and exam- (Yang et al., 1992; Hooftman et al., 1996; Spieker, 1996; ined (Table 2). Their sanitary status has previously been Shamloul et al., 1997; Mumford et al., 2000; Boonham et ascertained using specific diagnostic methods (Di Serio, al. 2004; Roenhorst et al., 2005) 2007; Önelge, 1997; Levy and Hadidi, 1992; Tomassoli et This paper reports the development of a genus- and al., 2004; Verhoeven et al., 2010). species-specific diagnostic method for pospiviroids. The method involves RT-PCR amplification of viroidal RNA RNA extraction from pospiviroid-infected and unin- using universal pospiviroid primers for genus detection, fected plants. Total RNA was extracted from each control after which the amplified DNA is analyzed by restriction and test sample using the Spectrum™ Plant Total RNA Kit (Sigma, Germany) according to the manufacturer’s in- structions. RNA was finally eluted with 100 µl of RNase- free water. Primer design and RT-PCR for detecting members of the genus Pospiviroid. Reference sequences of all pospi- viroids were retrieved from the NCBI database (Table 1) and used to perform a multiple alignment for designing an universal genus-specific primer set (Table 3) by selecting the most conserved region among all pospiviroids (Fig. 1). Fig. 1. Alignments of all pospiviroids in the two selected For efficiency testing, selected primers were first used regions for primer design. Left, the reverse primer and in boxes the degenerate nucleotides are highlighted. Right, the in a two-steps, two-tubes RT-PCR (Menzel et al., 2002). forward primer, the letter n highlights the variable positions Specifically, 2 µl of extracted total RNA were added to among different homologous primers. 18 µl of a random reverse transcriptase reaction mixture Journal of Plant Pathology (2014), 96 (1), 151-158 Luigi et al. 153 Table 2. Plant species assayed for possible detection of naturally-infected pospiviroids. Species Viroid detected No. infected plants/ No. analyzed plants Brugmansia sp. 0/8 Cestrum sp.
Recommended publications
  • Normes OEPP EPPO Standards
    © 2004 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 34, 155 –157 Blackwell Publishing, Ltd. Organisation Européenne et Méditerranéenne pour la Protection des Plantes European and Mediterranean Plant Protection Organization Normes OEPP EPPO Standards Diagnostic protocols for regulated pests Protocoles de diagnostic pour les organismes réglementés PM 7/33 Organization Européenne et Méditerranéenne pour la Protection des Plantes 1, rue Le Nôtre, 75016 Paris, France 155 156 Diagnostic protocols Approval • laboratory procedures presented in the protocols may be adjusted to the standards of individual laboratories, provided EPPO Standards are approved by EPPO Council. The date of that they are adequately validated or that proper positive and approval appears in each individual standard. In the terms of negative controls are included. Article II of the IPPC, EPPO Standards are Regional Standards for the members of EPPO. References Review EPPO/CABI (1996) Quarantine Pests for Europe, 2nd edn. CAB Interna- tional, Wallingford (GB). EPPO Standards are subject to periodic review and amendment. EU (2000) Council Directive 2000/29/EC of 8 May 2000 on protective The next review date for this EPPO Standard is decided by the measures against the introduction into the Community of organisms EPPO Working Party on Phytosanitary Regulations harmful to plants or plant products and against their spread within the Community. Official Journal of the European Communities L169, 1–112. FAO (1997) International Plant Protection Convention (new revised text). Amendment record FAO, Rome (IT). IPPC (1993) Principles of plant quarantine as related to international trade. Amendments will be issued as necessary, numbered and dated. ISPM no. 1. IPPC Secretariat, FAO, Rome (IT).
    [Show full text]
  • Potato Spindle Tuber Viroid 2006-022 Agenda Item:N/A Page 1 of 20
    International Plant Protection Convention 2006-022 2006-022: Draft Annex to ISPM 27:2006 – Potato spindle tuber viroid Agenda Item:n/a [1] DRAFT ANNEX to ISPM 27:2006 – Potato spindle tuber viroid (2006-022) [2] Development history [3] Date of this document 2013-03-20 Document category Draft new annex to ISPM 27:2006 (Diagnostic protocols for regulated pests) Current document stage Approved by SC e-decision for member consultation (MC) Origin Work programme topic: Viruses and phytoplasmas, CPM-2 (2007) Original subject: Potato spindle tuber viroid (2006-022) Major stages 2006-05 SC added topic to work program 2007-03 CPM-2 added topic to work program (2006-002) 2012-11 TPDP revised draft protocol 2013-03 SC approved by e-decision to member consultation (MC) (2013_eSC_May_10) 2013-07 Member consultation (MC) Discipline leads history 2008-04 SC Gerard CLOVER (NZ) 2010-11 SC Delano JAMES (CA) Consultation on technical The first draft of this protocol was written by (lead author and editorial level team) Colin JEFFRIES (Science and Advice for Scottish Agriculture, Edinburgh, UK); Jorge ABAD (USDA-APHIS, Plant Germplasm Quarantine Program, Beltsville, USA); Nuria DURAN-VILA (Conselleria de Agricultura de la Generalitat Valenciana, IVIA, Moncada, Spain); Ana ETCHERVERS (Dirección General de Servicios Agrícolas, Min. de Ganadería Agricultura y Pesca, Montevideo, Uruguay); Brendan RODONI (Dept of Primary Industries, Victoria, Australia); Johanna ROENHORST (National Reference Centre, National Plant Protection Organization, Wageningen, the Netherlands); Huimin XU (Canadian Food Inspection Agency, Charlottetown, Canada). In addition, JThJ VERHOEVEN (National Reference Centre, National Plant Protection Organization, The Netherlands) was significantly involved in the Page 1 of 20 2006-022 2006-022: Draft Annex to ISPM 27:2006 – Potato spindle tuber viroid development of this protocol.
    [Show full text]
  • Potato Spindle Tuber Viroid
    This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2015. The annex is a prescriptive part of ISPM 27. ISPM 27 Annex 7 INTERNATIONAL STANDARDS FOR PHYTOSANITARY MEASURES ISPM 27 DIAGNOSTIC PROTOCOLS DP 7: Potato spindle tuber viroid (2015) Contents 1. Pest Information ............................................................................................................................... 3 2. Taxonomic Information .................................................................................................................... 4 3. Detection ........................................................................................................................................... 4 3.1 Sampling ........................................................................................................................... 6 3.2 Biological detection .......................................................................................................... 6 3.3 Molecular detection ........................................................................................................... 7 3.3.1 Sample preparation ............................................................................................................ 7 3.3.2 Nucleic acid extraction ...................................................................................................... 8 3.3.3 Generic molecular methods for pospiviroid detection .....................................................
    [Show full text]
  • A Current Overview of Two Viroids That Infect Chrysanthemums: Chrysanthemum Stunt Viroid and Chrysanthemum Chlorotic Mottle Viroid
    Viruses 2013, 5, 1099-1113; doi:10.3390/v5041099 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review A Current Overview of Two Viroids That Infect Chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid Won Kyong Cho, Yeonhwa Jo, Kyoung-Min Jo and Kook-Hyung Kim * Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; E-Mails: [email protected] (W.K.C.); [email protected] (Y.J.); [email protected] (K.-M.J.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-2-880-4677; Fax: +82-2-873-2317. Received: 1 March 2013; in revised form: 8 April 2013 / Accepted: 8 April 2013 / Published: 17 April 2013 Abstract: The chrysanthemum (Dendranthema X grandiflorum) belongs to the family Asteraceae and it is one of the most popular flowers in the world. Viroids are the smallest known plant pathogens. They consist of a circular, single-stranded RNA, which does not encode a protein. Chrysanthemums are a common host for two different viroids, the Chrysanthemum stunt viroid (CSVd) and the Chrysanthemum chlorotic mottle viroid (CChMVd). These viroids are quite different from each other in structure and function. Here, we reviewed research associated with CSVd and CChMVd that covered disease symptoms, identification, host range, nucleotide sequences, phylogenetic relationships, structures, replication mechanisms, symptom determinants, detection methods, viroid elimination, and development of viroid resistant chrysanthemums, among other studies. We propose that the chrysanthemum and these two viroids represent convenient genetic resources for host–viroid interaction studies.
    [Show full text]
  • In Vivo Generated Citrus Exocortis Viroid Progeny Variants Display a Range of Phenotypes with Altered Levels of Replication, Systemic Accumulation and Pathogenicity
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Virology 417 (2011) 400–409 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro In vivo generated Citrus exocortis viroid progeny variants display a range of phenotypes with altered levels of replication, systemic accumulation and pathogenicity Subhas Hajeri a,1, Chandrika Ramadugu b, Keremane Manjunath c, James Ng a, Richard Lee c, Georgios Vidalakis a,⁎ a Department of Plant Pathology and Microbiology, University of California, Riverside CA 92521, USA b Department of Botany and Plant Sciences, University of California, Riverside CA 92521, USA c USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA article info abstract Article history: Citrus exocortis viroid (CEVd) exists as populations of heterogeneous variants in infected hosts. In vivo Received 26 January 2011 generated CEVd progeny variants (CEVd-PVs) populations from citrus protoplasts, seedlings and mature Accepted 13 June 2011 plants, following inoculation with transcripts of a single CEVd cDNA-clone (wild-type, WT), were studied. The Available online 22 July 2011 CEVd-PVs population in protoplasts was heterogeneous and became progressively more homogeneous in seedlings and mature plants. The infectivity and pathogenicity of selected CEVd-PVs was evaluated in citrus Keywords: Viroid RNA evolution and herbaceous experimental hosts. The CEVd-PVs U30C, G128A and U182C were not infectious; G50A and Population composition 108U+ were infectious but reverted back to WT and 62A+, U129A and U278A were infectious, genetically Genomic diversity stable and more severe than WT. The 62A+ and U278A and U129A accumulated at higher levels than WT in Infectivity protoplasts and seedlings respectively.
    [Show full text]
  • Virus Research Pepper Chat Fruit Viroid
    Virus Research 144 (2009) 209–214 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Pepper chat fruit viroid: Biological and molecular properties of a proposed new species of the genus Pospiviroid J.Th.J. Verhoeven a,∗, C.C.C. Jansen a, J.W. Roenhorst a, R. Flores b,M.delaPena˜ b a Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands b Instituto de Biología Moleculary Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain article info abstract Article history: In autumn 2006, a new disease was observed in a glasshouse-grown crop of sweet pepper (Capsicum Received 31 October 2008 annuum L.) in the Netherlands. Fruit size of the infected plants was reduced up to 50%, and plant growth Received in revised form 21 April 2009 was also slightly reduced. Here we show that the disease is caused by a previously non-described viroid. Accepted 3 May 2009 The pepper viroid is transmitted by both mechanical inoculation and pepper seeds and, when inoculated Available online 12 May 2009 experimentally, it infects several solanaceous plant species inducing vein necrosis and reduced fruit and tuber size in tomato and potato, respectively. The viroid RNA genome consists of 348 nucleotides and, Keywords: with minor modifications, it has the central conserved and the terminal conserved regions characteristic Pospiviroidae Potato spindle tuber viroid of members of the genus Pospiviroid. Classification of the pepper viroid within the genus Pospiviroid is Small non-coding RNAs further supported by the presence and structure of hairpins I and II, the presence of internal and external Capsicum annuum RY motifs, and phylogenetic analyses.
    [Show full text]
  • Identification and Epidemiology of Pospiviroids
    Identification and epidemiology of pospiviroids Jacobus Th.J. Verhoeven Thesis committee Thesis supervisor Prof.dr. J. M. Vlak Personal Chair at the Laboratory of Virology Wageningen University Thesis co-supervisor Dr. J.W. Roenhorst Senior Scientist & Group Leader Plant Protection Service Ministry of Agriculture, Nature and Food Quality Other members Prof.dr.ir. P.J.G.M. de Wit, Wageningen University Dr. R. Flores Pedauyé, Universdidad Politécnica, Valencia, Spain Dr.ir. E.T.M. Meekes, Naktuinbouw, Roelofarendsveen Dr.ir. H. Huttinga, Wageningen This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Identification and epidemiology of pospiviroids Jacobus Th.J. Verhoeven Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof.dr. M.J. Kropff in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 2 June 2010 at 13.30 p.m. in the Aula J.Th.J. Verhoeven Identification and epidemiology of pospiviroids 136 pages Thesis, Wageningen University, Wageningen, NL (2010) With references, with summaries in Dutch and English ISBN 978-90-8585-623-8 Contents Abstract 7 Abbreviations 8 Chapter 1 9 General Introduction Chapter 2 27 Natural infections in tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid Chapter 3 39 Epidemiological evidence that vegetatively propagated, solanaceous plant species
    [Show full text]
  • Potato Spindle Tuber Viroid
    EPPO Datasheet: Potato spindle tuber viroid Last updated: 2021-03-02 IDENTITY Preferred name: Potato spindle tuber viroid Taxonomic position: Viruses and viroids: Viroids: Pospiviroidae Other scientific names: PSTVd, Potato gothic virus, Potato spindle tuber pospiviroid, Potato spindle tuber virus, Tomato bunchy top viroid Common names: bunchy top of tomato, spindle tuber of potato view more common names online... EPPO Categorization: A2 list view more categorizations online... EU Categorization: Emergency measures (formerly), RNQP more photos... (Annex IV) EPPO Code: PSTVD0 Notes on taxonomy and nomenclature Potato spindle tuber viroid (PSTVd) was the first species to be identified as a viroid, a new type of pathogen different from bacteria and viruses (Diener, 1971). Gross et al. (1978) was able to determine the nucleotide sequence and predicted its characteristic secondary structure, a covalently closed circular RNA molecule of 359 nucleotides forming a rod-like structure by internal base pairing. Analysis of the sequence showed that all open reading frames were too small to encode a protein. It was consequently understood that viroids occur as naked RNA molecules. PSTVd is the type species of both the genus Pospiviroid and family Pospiviroidae (Di Serio et al., 2017; 2020). HOSTS The main host is potatoes (Solanum tuberosum and other tuber-bearing Solanum spp.). Many other Solanaceous species have been reported as hosts, including important vegetable crops such as tomato (Solanum lycopersicum), pepper (Capsicum spp.), and a wide range of other fruit and ornamental crops and weeds (see Host list). Infections in ornamental crops and weeds often remain symptomless. A wide range of other members of the Solanaceae have been experimentally infected, as well as a few species in other families (Singh, 1973).
    [Show full text]
  • Citrus Viroids
    Citrus Viroids Ron Brlansky • Viroids are unique plant pathogens that are smaller than viruses and consist of a short single-stranded circular RNA without a protein coat (Diener, 1971). • These pathogens cause damage to a number of economic important crops. Traditional detection methods for viroids include hybridization methods, return gel PAGE, dot blot hybridization, RT-PCR, and Next Generation Sequencing Citrus Viroids • Exocortis • Cachexia (caused by variants of CVd-II) • CVd-I • CVd-III • CVd-IV • CVd-V • CVd-VI • Variants are common within groups and mixed infections of several groups occur Differentiation of Viroids on Symptom Expression in Citron History of Viroids • In the 1920s, symptoms of a previously unknown potato disease were seen in New York & New Jersey. The tubers on affected plants were elongated and misshapen, hence the name potato spindle tuber disease. • The symptoms appeared on plants onto which pieces from affected plants had been budded—indicating the disease was caused by a transmissible pathogenic agent. However, a fungii or bacteria could not be found consistently associated and therefore, it was assumed the disease was caused by a virus. • Numerous attempts over the years to isolate and purify the assumed virus, using increasingly sophisticated methods, these were unsuccessful. • In 1971 T. O. Diener showed that the agent was not a virus, but a totally unexpected novel type of pathogen, 1/80th the size of typical viruses. He proposed the term "viroid“. • Semancik & Weathers in 1972 isolated & characterized Citrus exocortis viroid • Basic research elucidated the ‘viroids' physical, chemical, and macromolecular properties. Shown to consist of short stretches of single-stranded RNA without a protein coat.
    [Show full text]
  • Citrus Exocortis Viroid
    -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Citrus exocortis viroid Current Pest Rating: C Proposed Pest Rating: C Domain: Virus, Group: Viroids, Family: Pospiviroidae, Genus: Pospiviroid Comment Period: 08/10/2021 through 09/24/2021 Initiating Event: A pest rating has not been written for this pathogen. The risk to California from Citrus exocortis viroid (CEVd) is described herein and a permanent rating is proposed. History & Status: Background: Exocortis is a bark-scaling and stunting disease that affects many species and cultivars of citrus and some citrus relatives. It can be latent and there are non-citrus hosts. In the past, viroids were difficult to diagnose and were commonly moved with clonal propagative material. Advances in testing and the widespread use of certified budwood, along with sanitation techniques during propagation, has reduced this disease to the point that it exists mainly in older orchards and in non-citrus hosts. It is not known to be seedborne. Viroids are the smallest known plant pathogens and are composed of only a short, circular, single- stranded RNA. Although viroids are composed of nucleic acid, they do not encode any protein and have no protein coats. All viroids are inhabitants of higher plants; some cause diseases while others are asymptomatic. Viroids are classified within two families: Pospiviroidae and Avsunviroidae. Citrus are natural hosts of several viroid species that belong to the family Pospiviroidae. CEVd replicates using "rolling circle" synthesis to make new RNA from the negative strand viroid RNA by RNA polymerase II, a host cell enzyme normally associated with synthesis of messenger RNA from -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ plant DNA (Warrilow and Symons, 1999).
    [Show full text]
  • Classification of the Pospiviroidae Based on Their Structural Hallmarks
    RESEARCH ARTICLE Classification of the Pospiviroidae based on their structural hallmarks Tamara Giguère, Jean-Pierre Perreault* RNA Group/Groupe ARN, DeÂpartement de biochimie, Faculte de meÂdecine et des sciences de la santeÂ, Pavillon de recherche appliqueÂe sur le cancer, Universite de Sherbrooke, Sherbrooke, QueÂbec, Canada * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 The simplest known plant pathogens are the viroids. Because of their non-coding single- a1111111111 stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2'- hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid OPEN ACCESS structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Citation: Giguère T, Perreault J-P (2017) Classification of the Pospiviroidae based on their Pospiviroidae. In this study, with the goal of providing an entire compendium of the second- structural hallmarks. PLoS ONE 12(8): e0182536. ary structures of the various viroid species, a total of thirteen new Pospiviroidae members https://doi.org/10.1371/journal.pone.0182536 were probed in solution using the SHAPE protocol. More specifically, the secondary struc- Editor: Ulrich Melcher, Oklahoma State University, tures of eleven species for which the genus was previously known were initially elucidated. UNITED STATES At this point, considering all of the SHAPE elucidated secondary structures, a classification Received: June 6, 2017 system for viroids in their respective genera was proposed.
    [Show full text]
  • Encyclopedia of Plant Viruses and Viroids K
    Encyclopedia of Plant Viruses and Viroids K. Subramanya Sastry • Bikash Mandal John Hammond • S. W. Scott R. W. Briddon Encyclopedia of Plant Viruses and Viroids K. Subramanya Sastry Bikash Mandal Indian Council of Agricultural Indian Agricultural Research Institute Research, IIHR New Delhi, India Bengaluru, India Indian Council of Agricultural Research, IIOR and IIMR Hyderabad, India John Hammond S. W. Scott USDA, Agricultural Research Service Clemson University Beltsville, MD, USA Clemson, SC, USA R. W. Briddon John Innes Centre Norwich, UK ISBN 978-81-322-3911-6 ISBN 978-81-322-3912-3 (eBook) ISBN 978-81-322-3913-0 (print and electronic bundle) https://doi.org/10.1007/978-81-322-3912-3 # Springer Nature India Private Limited 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]