Whistling Duck
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Yellow-Crowned Night-Heron Nyctanassa Violacea
Yellow-crowned Night-Heron Nyctanassa violacea Bob Moul Photo CURRENT STATUS: In Pennsylvania, the yellow-crowned night-heron is listed as state endangered and protected under the Game and Wildlife Code. Nationally, they are not listed as an endangered or threat- ened species. All migratory birds are protected under the federal Migratory Bird Treaty Act of 1918. POPULATION TREND: Yellow-crowned night-herons (Nyctanassa violacea) are one of the state’s rarest nesting birds). They are rare, regular visitors or residents in the Piedmont region of southeastern Penn- sylvania (all or parts of Bucks, Northampton, Lehigh, Berks, Lebanon, Lancaster, Dauphin, York, Adams and Cumberland counties), where they breed locally. In the coastal plain area along the Delaware River near Philadelphia, they are rare, irregular visitors. They are accidental visitors elsewhere in the state, particularly in late summer following the breeding season. Currently, the only known breeding sites are in Cumberland, Dauphin and York counties. They nest singly and in loose colonies regularly along Conodo- quinet Creek. A few yellow-crowned night-herons also nest on private property in an urban setting in Dauphin County and at Kiwanis Lake in York. Nests were once also found along Conestoga and Little Conestoga creeks in Lancaster County. Surveys in the 1990s counted not more than eight to 12 nests in any year in the state. Yellow-crowned night-herons were first listed as threat- ened species in 1990 because of their limited popula- tion and restricted range. They were downgraded to endangered in 1999 because of their small and vulner- able population. IDENTIFYING CHARACTERISTICS: Adults are me- dium-sized, 22 to 28 inches in length from bill tip to tail tip, gray with a black head and whitish cheek patch and crown. -
Resource Selection by an Ectothermic Predator in a Dynamic Thermal Landscape
Received: 2 May 2017 | Revised: 16 August 2017 | Accepted: 17 August 2017 DOI: 10.1002/ece3.3440 ORIGINAL RESEARCH Resource selection by an ectothermic predator in a dynamic thermal landscape Andrew D. George1 | Grant M. Connette2 | Frank R. Thompson III3 | John Faaborg1 1Division of Biological Sciences, University of Missouri, Columbia, MO, USA Abstract 2Smithsonian Conservation Biology Institute, Predicting the effects of global climate change on species interactions has remained Front Royal, VA, USA difficult because there is a spatiotemporal mismatch between regional climate models 3U.S.D.A. Forest Service Northern Research and microclimates experienced by organisms. We evaluated resource selection in a Station, Columbia, MO, USA predominant ectothermic predator using a modeling approach that permitted us to Correspondence assess the importance of habitat structure and local real- time air temperatures within Andrew D. George, Department of Biology, Pittsburg State University, Pittsburg, KS USA. the same modeling framework. We radio- tracked 53 western ratsnakes (Pantherophis Email: [email protected] obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this spe- cies has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the sea- sonal effects of fine- scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This sea- sonal shift potentially reflects differences in resource requirements and thermoregula- tion behavior. -
Santee National Wildlife Refuge Road 2125 Fort Watson Summerton, South Carolina 29148 803/ 478 2217 U.S
U.S. Fish and Wildlife Service Rogers Road Santee National Taw Caw Refuge Creek Entrance Wildlife Refuge State Potato Migratory Creek Wildlife Drive Bird Information Sanctuary Kiosk Interpretive Guide 12 1 8 2 Woods Road 3 5 2 4 6 7 9 Cuddo West 1 11 Cuddo East North Loop 15 Black Bottom 3 Pond 10 Timber 14 Island Plantation Islands Field (proposed) 4 10 11 9 Wilderness Otter Trail Black 5 Area Bottom South Loop 13 12 8 Alligator Alley Hundred Acre Island Shuler's 6 7 Refuge boundary Round Auto tour route, interpretive markers 1-12 Island Foot access only Boundaries represented Bicycle and foot access only are approximate. Canoe trail, markers 1-15 Goat Cuddo and Area closed to all entry Island West November 1 until March 1 Santee National Wildlife Refuge Road 2125 Fort Watson Summerton, South Carolina 29148 803/ 478 2217 http://fws.gov/santee U.S. Fish and Wildlife Service 1 800/344 WILD September 2010 1. Santee National Wildlife Refuge 7. Bluebird boxes 10. Wildlife Drive - Otter Trail Starting at The Santee National Wildlife Refuge was established in 1941 Wooden boxes mounted on posts along the To continue down the Wildlife Drive, turn RIGHT at this as a migratory bird sanctuary. The refuge boasts nearly 300 edge of the road are nesting boxes for eastern intersection. the Cuddo bird species recorded on the refuge. Mammal species found bluebirds (Sialia sialis), which nest on the refuge Wildlife on the refuge include white-tailed deer, beaver, river along field and forest edge habitats. Bluebirds 11. -
Owl Eyes Activity
EXPAND YOUR SENSES! TRY USING YOUR OWLTEX T EYES Age Range: Grades K-5 Time: 10-15 minutes Location: Indoor or outdoor space Materials: Yourself, a place to stand where you can focus your eyes on a fixed object at eye level. Instructional video: https://www.youtube.com/watch? Barn Owl v=2js74vxOXfg&feature=youtu.be Illustrations by Amira Maddison USING YOUR “OWL EYES” ACTIVATES YOUR PERIPHERAL VISION What is peripheral vision? It’s the ability to see movement and objects outside of what your eyes are directly focused on. ACTIVITY PART 1: BECOMING AN OWL Start by finding a quiet place to go and stand. Take a little bit of time to start imagining that you are becoming an owl. Notice where your feet are positioned. Make sure they are firmly positioned on the ground. Imagine that your feet have become talons and they are gripped around the branch of a tree. You are tucked away in the tree, so no one else can see you. Now it’s time to take it all in and comfortably stare into the distance. If you are outside, make sure you can see the sky and the ground. If you are inside, make sure you can see the ceiling and the floor. Notice your eyes going soft and imagine that you can now see everything happening around you. For a few minutes, take it all in. To finish, take a big breath in and when you breathe out, release that feeling of becoming an owl. Next, you will work on activating your eyesight. -
Downloaded from Brill.Com10/06/2021 09:29:00AM Via Free Access 42 Luiselli Et Al
Contributions to Zoology, 74 (1/2) 41-49 (2005) Analysis of a herpetofaunal community from an altered marshy area in Sicily; with special remarks on habitat use (niche breadth and overlap), relative abundance of lizards and snakes, and the correlation between predator abundance and tail loss in lizards Luca Luiselli1, Francesco M. Angelici2, Massimiliano Di Vittorio3, Antonio Spinnato3, Edoardo Politano4 1 F.I.Z.V. (Ecology), via Olona 7, I-00198 Rome, Italy. E-mail: [email protected] 2 F.I.Z.V. (Mammalogy), via Cleonia 30, I-00152 Rome, Italy. 3 Via Jevolella 2, Termini Imprese (PA), Italy. 4 Centre of Environmental Studies ‘Demetra’, via Tomassoni 17, I-61032 Fano (PU), Italy Abstract relationships, thus rendering the examination of the relationships between predators and prey an extreme- A field survey was conducted in a highly degraded barren en- ly complicated task for the ecologist (e.g., see Con- vironment in Sicily in order to investigate herpetofaunal com- nell, 1975; May, 1976; Schoener, 1986). However, munity composition and structure, habitat use (niche breadth and there is considerable literature (both theoretical and overlap) and relative abundance of a snake predator and two spe- empirical) indicating that case studies of extremely cies of lizard prey. The site was chosen because it has a simple community structure and thus there is potentially less ecological simple communities, together with the use of appropri- complexity to cloud any patterns observed. We found an unexpect- ate minimal models, can help us to understand the edly high overlap in habitat use between the two closely related basis of complex patterns of ecological relationships lizards that might be explained either by a high competition for among species (Thom, 1975; Arditi and Ginzburg, space or through predator-mediated co-existence i.e. -
Free Knitting Pattern Lion Brandоаlionоаsuede Desert Poncho
Free Knitting Pattern Lion Brand® Lion® Suede Desert Poncho Pattern Number: 40607 Free Knitting Pattern from Lion Brand Yarn Lion Brand® Lion® Suede Desert Poncho Pattern Number: 40607 SKILL LEVEL: Intermediate (Level 3) SIZE: Small, Medium, Large Width 10 (10½, 11)" [25.5 (26.5, 28) cm] at neck; 60 ½ (64, 68½)" [153.5 (162.5, 174) cm] at lower edge Length 23 (25½, 28)" [58.5 (65, 71) cm] at sides; 30 (32 ½, 35)" [76 (82.5, 89) cm] at points Note: Pattern is written for smallest size with changes for larger sizes in parentheses. When only one number is given, it applies to all sizes. To follow pattern more easily, circle all numbers pertaining to your size before beginning. CORRECTIONS: None as of Jun 30, 2016. To check for later updates, click here. MATERIALS • 210126 Lion Brand Lion Suede Yarn: Coffee 6 (6, 7) Balls (A) • 210125 Lion Brand Lion Suede Yarn: Mocha *Lion® Suede (Article #210). 100% Polyester; package size: Solids: 3.00 3 (4, 4) Balls (B) oz./85g; 122 yd/110m balls • 210098 Lion Brand Lion Suede Yarn: Ecru Prints: 3:00 oz/85g; 111 yd/100m balls 3 (4, 4) Balls (C) • Lion Brand Crochet Hook Size H8 (5 mm) • Lion Brand Split Ring Stitch Markers • Additional Materials • Size 8 [5 mm] 24" [60 cm] circular needles • Size 8 [5 mm] 40" [100 cm] circular needles or size needed to obtain gauge • Size 6 [4 mm] 16" [40 cm] circular needles GAUGE: 14 sts + 23 rnds = 4" [10 cm] in Stockinette st (knit every rnd) on larger needle. -
Tiny Fossil Sheds Light on Miniaturization of Birds
Retraction Tiny fossil sheds light on miniaturization of birds Roger B. J. Benson Nature 579, 199–200 (2020) In view of the fact that the authors of ‘Hummingbird-sized dinosaur from the Cretaceous period of Myanmar‘ (L. Xing et al. Nature 579, 245–249; 2020) are retracting their report, I wish to retract this News & Views article, which dealt with this study and was based on the accuracy and reproducibility of their data. Nature | 22 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. drives the assembly of DNA-PK and stimulates regulation of protein synthesis. And, although 3. Dragon, F. et al. Nature 417, 967–970 (2002). its catalytic activity in vitro, although does so further studies are required, we might have 4. Adelmant, G. et al. Mol. Cell. Proteom. 11, 411–421 (2012). much less efficiently than can DNA. taken a step closer to deciphering the 5. Britton, S., Coates, J. & Jackson, S. P. J. Cell Biol. 202, Taken together, these observations suggest mysterious ribosomopathies. 579–595 (2013). a model in which KU recruits DNA-PKcs to the 6. Barandun, J. et al. Nature Struct. Mol. Biol. 24, 944–953 (2017). small-subunit processome. In the case of Alan J. Warren is at the Cambridge Institute 7. Ma, Y. et al. Cell 108, 781–794 (2002). kinase-defective DNA-PK, the mutant enzyme’s for Medical Research, Hills Road, Cambridge 8. Yin, X. et al. Cell Res. 27, 1341–1350 (2017). inability to regulate its own activity gives the CB2 OXY, UK. 9. Sharif, H. et al. -
Black-Flies and Leucocytozoon Spp. As Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada
Black-flies and Leucocytozoon spp. as Causes of Mortality in Juvenile Great Horned Owls in the Yukon, Canada D. Bruce Hunter1, Christoph Rohner2, and Doug C. Currie3 ABSTRACT.—Black fly feeding and infection with the blood parasite Leucocytozoon spp. caused mortality in juvenile Great Horned Owls (Bubo virginianus) in the Yukon, Canada during 1989-1990. The mortality occurred during a year of food shortage corresponding with the crash in snowshoe hare (Lepus americanus) populations. We postulate that the occurrence of disease was mediated by reduced food availability. Rohner (1994) evaluated the numerical re- black flies identified from Alaska, USA and the sponse of Great Horned Owls (Bubo virginianus) Yukon Territory, Canada, 36 percent are orni- to the snowshoe hare (Lepus americanus) cycle thophilic, 39 percent mammalophilic and 25 from 1988 to 1993 in the Kluane Lake area of percent autogenous (Currie 1997). Numerous southwestern Yukon, Canada. The survival of female black flies were obtained from the car- juvenile owls was very high during 1989 and casses of the juvenile owls, but only 45 of these 1990, both years of abundant hare populations. were sufficiently well preserved for identifica- Survival decreased in 1991, the first year of the tion. They belonged to four taxa as follows: snowshoe hare population decline (Rohner and Helodon (Distosimulium) pleuralis (Malloch), 1; Hunter 1996). Monitoring of nest sites Helodon (Parahelodon) decemarticulatus combined with tracking of individuals by radio- (Twinn), 3; Simulium (Eusimulium) aureum Fries telemetry provided us with carcasses of 28 ju- complex, 3; and Simulium (Eusimulium) venile owls found dead during 1990 and 1991 canonicolum (Dyar and Shannon) complex, 38 (Rohner and Doyle 1992). -
OBSERVATIONS on a GREAT EGRET Ardea Alba and NANKEEN NIGHT HERON Nycticorax Caledonicus COLONY at the PERTH ZOO, WESTERN AUSTRALIA
Corella, 2004, 28(3): 82-86 OBSERVATIONS ON A GREAT EGRET Ardea alba AND NANKEEN NIGHT HERON Nycticorax caledonicus COLONY AT THE PERTH ZOO, WESTERN AUSTRALIA ROBYN L. PHILLIMORE' and HARRY F. RECHER2 'School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia, Australia 6027 email: [email protected]: [email protected] 'Corresponding author. Present address: P.O. Box 154, Brooklyn, New South Wales, Australia 2083 Received: I I Augusr 2003 A colony of Great Egrets Ardea alba and Nankeen Night Herons Nycticorax caledonicus has existed at the Perth Zoo, Western Australia for over 25 years. The colony of egrets is one of very few in the region and hence is significant for the conservation and management of Great Egrets in Western Australia. From 1996 to 1998, surveys were conducted to determine the number of breeding pairs, clutch size, breeding success, and nest site selection of birds in the colony. Most observations were ground based, but a 30-metre cherry picker was used to inspect nests and determine clutch size. One hundred and thirty night heron and 49 egret nests were found in 1996; 92 night heron and 41 egret nests in 1997; and, 153 night heron and 36 egret nests in 1998. Nesting commenced in September, with peak numbers in early November. Both species nested in tall trees well above zoo visitors and animals. Egrets nested only in pines, whereas night herons nested mainly in figs. Great Egrets had an average clutch size of 2.6-2.7 by early November compared with a clutch of 1.6-1.8 for Nankeen Night Herons. -
John Ball Zoo Exhibit Animals (Revised 3/15/19)
John Ball Zoo Exhibit Animals (revised 3/15/19) Every effort will be made to update this list on a seasonal basis. List subject to change without notice due to ongoing Zoo improvements or animal care. North American Wetlands: Muted Swans Mallard Duck Wild Turkey (off Exhibit) Egyptian Goose American White pelican (located in flamingo exhibit during winter months) Bald Eagle Wild Way Trail: (seasonal) Red-necked wallaby Prehensile tail porcupine Ring-tailed lemur Howler Monkey Sulphur-crested Cockatoo Red’s Hobby Farm: Domestic goats Domestic sheep Chickens Pied Crow Common Barn Owl Budgerigar (seasonal) Bali Mynah (seasonal) Crested Wood Partridge (seasonal) Nicobar Pigeon (seasonal) John Ball Zoo www.jbzoo.org Frogs: Smokey Jungle frogs Chacoan Horned frog Tiger-legged monkey frog Vietnamese Mossy frog Mission Golden-eyed Tree frog Golden Poison dart frog American bullfrog Multiple species of poison dart frog North America: Golden Eagle North American River Otter Painted turtle Blanding’s turtle Common Map turtle Eastern Box turtle Red-eared slider Snapping turtle Canada Lynx Brown Bear Mountain Lion/Cougar Snow Leopard South America: South American tapir Crested screamer Maned Wolf Chilean Flamingo Fulvous Whistling Duck Chiloe Wigeon Ringed Teal Toco Toucan (opening in late May) White-faced Saki monkey John Ball Zoo www.jbzoo.org Africa: Chimpanzee Lion African ground hornbill Egyptian Geese Eastern Bongo Warthog Cape Porcupine (off exhibit) Von der Decken’s hornbill (off exhibit) Forest Realm: Amur Tigers Red Panda -
Cortinarius Caperatus (Pers.) Fr., a New Record for Turkish Mycobiota
Kastamonu Üni., Orman Fakültesi Dergisi, 2015, 15 (1): 86-89 Kastamonu Univ., Journal of Forestry Faculty Cortinarius caperatus (Pers.) Fr., A New Record For Turkish Mycobiota *Ilgaz AKATA1, Şanlı KABAKTEPE2, Hasan AKGÜL3 Ankara University, Faculty of Science, Department of Biology, 06100, Tandoğan, Ankara Turkey İnönü University, Battalgazi Vocational School, TR-44210 Battalgazi, Malatya, Turkey Gaziantep University, Department of Biology, Faculty of Science and Arts, 27310 Gaziantep, Turkey *Correspending author: [email protected] Received date: 03.02.2015 Abstract In this study, Cortinarius caperatus (Pers.) Fr. belonging to the family Cortinariaceae was recorded for the first time from Turkey. A short description, ecology, distribution and photographs related to macro and micromorphologies of the species are provided and discussed briefly. Keywords: Cortinarius caperatus, mycobiota, new record, Turkey Cortinarius caperatus (Pers.) Fr., Türkiye Mikobiyotası İçin Yeni Bir Kayıt Özet Bu çalışmada, Cortinariaceae familyasına mensup Cortinarius caperatus (Pers.) Fr. Türkiye’den ilk kez kaydedilmiştir. Türün kısa deskripsiyonu, ekolojisi, yayılışı ve makro ve mikro morfolojilerine ait fotoğrafları verilmiş ve kısaca tartışılmıştır. Anahtar Kelimeler: Cortinarius caperatus, Mikobiyota, Yeni kayıt, Türkiye Introduction lamellae edges (Arora, 1986; Hansen and Cortinarius is a large and complex genus Knudsen, 1992; Orton, 1984; Uzun et al., of family Cortinariaceae within the order 2013). Agaricales, The genus contains According to the literature (Sesli and approximately 2 000 species recognised Denchev, 2008, Uzun et al, 2013; Akata et worldwide. The most common features al; 2014), 98 species in the genus Cortinarius among the members of the genus are the have so far been recorded from Turkey but presence of cortina between the pileus and there is not any record of Cortinarius the stipe and cinnamon brown to rusty brown caperatus (Pers.) Fr. -
A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.