Download This Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download This Article in PDF Format A&A 611, A34 (2018) https://doi.org/10.1051/0004-6361/201630134 Astronomy & © ESO 2018 Astrophysics A survey for low-mass stellar and substellar members of the Hyades open cluster Stanislav Melnikov1,2, and Jochen Eislöffel1 1 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] 2 Ulugh Beg Astronomical Institute, Astronomical str. 33, 700052 Tashkent, Uzbekistan Received 25 November 2016 / Accepted 11 November 2017 ABSTRACT Context. Unlike young open clusters (with ages < 250 Myr), the Hyades cluster (age ∼ 600 Myr) has a clear deficit of very low-mass stars (VLM) and brown dwarfs (BD). Since this open cluster has a low stellar density and covers several tens of square degrees on the sky, extended surveys are required to improve the statistics of the VLM/BD objects in the cluster. Aims. We search for new VLM stars and BD candidates in the Hyades cluster to improve the present-day cluster mass function down to substellar masses. Methods. An imaging survey of the Hyades with a completeness limit of 21m: 5 in the R band and 20m: 5 in the I band was carried out with the 2k × 2k CCD Schmidt camera at the 2 m Alfred Jensch Telescope in Tautenburg. We performed a photometric selection of the cluster member candidates by combining results of our survey with 2MASS JHKs photometry. Results. We present a photometric and proper motion survey covering 23.4 deg2 in the Hyades cluster core region. Using optical/IR colour-magnitude diagrams, we identify 66 photometric cluster member candidates in the magnitude range 14m: 7 < I < 20m: 5. The proper motion measurements are based on several all-sky surveys with an epoch difference of 60–70 yr for the bright objects. The proper motions allowed us to discriminate the cluster members from field objects and resulted in 14 proper motion members of the Hyades. We rediscover Hy 6 as a proper motion member and classify it as a substellar object candidate (BD) based on the comparison of the observed colour-magnitude diagram with theoretical model isochrones. Conclusions. With our results, the mass function of the Hyades continues to be shallow below ∼0:15 M indicating that the Hyades have probably lost their lowest mass members by means of dynamical evolution. We conclude that the Hyades core represents the “VLM/BD desert” and that most of the substeller objects may have already left the volume of the cluster. Key words. stars: low-mass – open clusters and associations: individual: Hyades – brown dwarfs – stars: luminosity function, mass function 1. Introduction evolution the lowest mass members may escape from a cluster core (“evaporate” from the cluster) due to dynamical encoun- The accurate initial mass function (MF) of Galactic open clusters ters and mix-up with the field objects (Terlevich 1987; Kroupa allows us to build up a picture of the initial conditions of cluster 1995; de La Fuente Marcos & de La Fuente Marcos 2000). formation and to investigate their further evolution. The bright Therefore, detection of these objects will be more complicated. end of the mass function has been analysed in many detailed De La Fuente Marcos & de La Fuente Marcos(2000) suggested studies of bright clusters. In the last decades, on the other hand, that this effect can already be noticeable in the clusters with ages deep photometric surveys of open clusters were focused on the of ≥200 Myr. The first surveys of the intermediate-age clusters, faint MF end reaching out to the lowest mass members. The which covered only a small percent of the cluster core areas, nearby open clusters are very convenient targets for this goal. did not find any significant population of low-mass members, In the solar neighbourhood there are a number of open clus- similar to what was found for the Pleiades. The first studies of ters including the Pleiades, the Hyades, Praesepe (M44), and the the Coma open cluster (age ∼ 500 Myr) showed that this clus- Coma Berenices open cluster (Melotte 111). Extensive deep sur- ter has a deficit of low-mass stars in comparison to the younger veys of the Pleiades (age ∼ 120 Myr) have led to the discovery of clusters (Deluca & Weis 1981; Odenkirchen et al. 1998). The a large population of very low-mass stars (VLM) and substellar recent and deeper surveys of this cluster covered a larger field members known as brown dwarfs (BDs) (Stauffer et al. 2007; and were reaching into the substellar domain. They confirmed Lodieu et al. 2012a; Zapatero Osorio et al. 2014; Bouy et al. that this deficit seems to be intrinsic and this finding (Casewell 2015). A considerable low-mass population has also been discov- et al. 2006; Melnikov & Eislöffel 2012) supports the idea that ered in some other younger stellar clusters (α Per: Lodieu et al. the depletion is caused by dynamical evolution. Recent studies 2012b; σ Ori: Peña Ramírez et al. 2012). These surveys showed of Praesepe (∼600 Myr), another open cluster of similar age, that the initial conditions of star formation in stellar clusters were based on the analysis of all-sky surveys UKIDSS (Boudreault effective in creating low-mass members. et al. 2012) and 2MASS, PPMXL, Pan-STARRS (Wang et al. However, the proximity of a cluster also has the disad- 2014) found conflicting results. Boudreault et al.(2012) found vantage of a large extension on the sky, which renders sur- that the Praesepe MF is consistent with that of the Galactic veys for cluster membership difficult. Moreover, with cluster disk population down to 0:07 M , whereas Wang et al.(2014) Article published by EDP Sciences A34, page 1 of 14 A&A 611, A34 (2018) concluded that the cluster MF shows a deficit of members below 0:3 M . Therefore, deep wide-field surveys of intermediate- aged open clusters (with ages of 450–600 Myr) are required to improve the comparison of their mass functions with those of the younger clusters and construct a more reliable scenario of how open clusters evolve with age. The Hyades open cluster (d = 46 pc) with age ∼ 600 Myr (age = 625 Myr, Perryman et al. 1998), which has a Pleiades- like stellar population, is one of the most studied open clusters located in the solar neighbourhood. The earliest wide-field search for Hyades members covering ∼110 deg2 discovered a deficit of M-type dwarfs in this cluster (Reid 1992, 1993) with respect to the solar neighbourhood mix. From these observations Reid(1992) derived a gravitational binding radius of ∼10.5 pc and a total cluster mass of 410–480 M . Deeper imaging sur- veys, which covered only small areas to reach fainter members did not lead to a discovery of any significant population of such objects (Reid & Hawley 1999; Reid & Mahoney 2000; Gizis et al. 1999). A survey covering 10.5 deg2 by Dobbie et al.(2002) also failed to find any new low-mass members and recovered only the known stellar member RHy 29 (Reid 1993). A wide-field study of the Hyades based on the recent proper motion cata- logue PPMXL, 2MASS, and Carlsberg Meridian Catalogue 14 (CMC14)1 photometry has enabled a full census of the kine- matic cluster members down to masses of ∼0.2 M in a region up to 30 pc from the cluster centre (Röser et al. 2011). Com- bining these three surveys, Röser et al.(2011) carried out a three-dimensional analysis of the cluster population and found Fig. 1. Area of the Hyades cluster mapped by our TLS imaging sur- that the Hyades have a tidal radius of ∼9 pc with clear out- vey. The total size of the surveyed area is ∼23.4 deg2. Star symbols are ward mass segregation. Using the PPMXL and Pan-STARRS1 photometrically selected Hyades member candidates, which are listed sky surveys Goldman et al.(2013) analysed the same area of the in Table A.1. Hyades and pushed the census of its members down to 0:09 M . Based on the deepest survey over 16 deg2 of the Hyades core, Bouvier et al.(2008) reported the discovery of the first two 2. TLS photometric survey and basic CCD BDs and confirmed membership of 19 low-mass stellar mem- reduction bers. Analysing the statistically significant number of Hyades We have carried out a new wide and deep imaging survey of members found in the previous studies, Bouvier et al.(2008) the Hyades open cluster (RA = 4h26m Dec = +15◦ 00) in the RI concluded that the present-day mass function of the Hyades is bands using the 2k × 2k CCD camera in the Schmidt focus of the clearly deficient in the VLM/BD domain compared to the initial 2 m Alfred Jensch Telescope in Tautenburg. A short description MF of the Pleiades, which have a similar population structure, of the RI photometric system of the CCD camera can be found but are much younger than the Hyades. Another study based on in Melnikov & Eislöffel(2012). The Hyades are a very close the all-sky surveys UKIDSS and 2MASS (Hogan et al. 2008) and open cluster and its core area (r ∼ 2:8 pc; Perryman et al. 1998) following spectroscopic analysis (Casewell et al. 2014; Lodieu extends over a very large sky area of ∼50 deg2. Our photometric et al. 2014) added several BDs to the substellar domain of the survey obtained in October–November 2006 covers 23.4 deg2 in cluster. Nevertheless, the updated MF still shows the apparent its central area, i.e. about 47% of the cluster core (see Fig.1). deficit of the lowest mass members (Lodieu et al. 2014). The total exposure time per filter (one frame) was 600 s, and In this paper, we present the results of a new deep imaging for this exposure time the limiting magnitude of the frames was survey of the Hyades open cluster obtained with the wide- estimated to be 22:5 in the I band.
Recommended publications
  • Improving Point Cloud Quality for Mobile Laser Scanning
    School of Engineering and Science Dissertation for a Ph.D. in Computer Science Improving Point Cloud Quality for Mobile Laser Scanning Jan Elseberg November 2013 Supervisor: Prof. Dr. Andreas Nüchter Second Reviewer: Prof. Dr. Andreas Birk Third Reviewer: Prof. Dr. Joachim Hertzberg Fourth Reviewer: Prof. Dr. Rolf Lakämper Date of Defense: 13th of September 2013 Abstract This thesis deals with mobile laser scanning and the complex challenges that it poses to data processing, calibration and registration. New approaches to storing, searching and displaying point cloud data as well as algorithms for calibrating mobile laser scanners and registering laser scans are presented and discussed. Novel methods are tested on state of the art mobile laser scanning systems and are examined in detail. Irma3D, an autonomous mobile laser scanning platform has been developed for the purpose of experimentation. This work is the result of several years of research in robotics and laser scanning. It is the accumulation of many journal articles and conference papers that have been reviewed by peers in the field of computer science, robotics, artificial intelligence and surveying. Danksagung The work that goes into finishing a work like this is long and arduous, yet it can at times be pleasing, exciting and even fun. I would like to thank my advisor Prof. Dr. Andreas Nüchter for providing such joy during my experiences as a Ph.D. student. His infectious eagerness for the subject and his ability to teach are without equal. Prof. Dr. Joachim Hertzberg deserves many thanks for introducing me to robotics and for being such an insightful teacher of interesting subjects.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • Open Jhdebesthesis.Pdf
    The Pennsylvania State University The Graduate School Department of Astronomy and Astrophysics DIGGING FOR SUBSTELLAR OBJECTS IN THE STELLAR GRAVEYARD A Thesis in Astronomy and Astrophysics by John H. Debes, IV c 2005 John H. Debes, IV Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2005 We approve* the thesis of John H. Debes, IV. Steinn Sigurdsson Associate Professor of Astronomy and Astrophysics Thesis Adviser Co-Chair of Committee Michael Eracleous Associate Professor of Astronomy and Astrophysics Co-Chair of Committee James Kasting Professor of Geosciences Alexander Wolszczan Evan Pugh Professor of Astronomy and Astrophysics Lawrence Ramsey Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics *Signatures are on file in the Graduate School iii Abstract White dwarfs, the endpoint of stellar evolution for stars with with mass < 8 M , possess several attributes favorable for studying planet and brown dwarf formation around stars with primordial masses > 1 M . This thesis explores the consequences of post-main-sequence evolution on the dynamics of a planetary system and the observa- tional signatures that arise from such evolution. These signatures are then specifically tested with a direct imaging survey of nearby white dwarfs. Finally, new techniques for high contrast imaging are discussed and placed in the context of further searches for planets and brown dwarfs in the stellar graveyard. While planets closer than 5 AU will most likely not survive the post-main ∼ sequence evolution of its parent star, any planet with semimajor axis > 5 AU will survive, and its semimajor axis will increase as the central star loses mass.
    [Show full text]
  • Issue 36, June 2008
    June2008 June2008 In This Issue: 7 Supernova Birth Seen in Real Time Alicia Soderberg & Edo Berger 23 Arp299 With LGS AO Damien Gratadour & Jean-René Roy 46 Aspen Instrument Update Joseph Jensen On the Cover: NGC 2770, home to Supernova 2008D (see story starting on page 7 Engaging Our Host of this issue, and image 52 above showing location Communities of supernova). Image Stephen J. O’Meara, Janice Harvey, was obtained with the Gemini Multi-Object & Maria Antonieta García Spectrograph (GMOS) on Gemini North. 2 Gemini Observatory www.gemini.edu GeminiFocus Director’s Message 4 Doug Simons 11 Intermediate-Mass Black Hole in Gemini South at moonset, April 2008 Omega Centauri Eva Noyola Collisions of 15 Planetary Embryos Earthquake Readiness Joseph Rhee 49 Workshop Michael Sheehan 19 Taking the Measure of a Black Hole 58 Polly Roth Andrea Prestwich Staff Profile Peter Michaud 28 To Coldly Go Where No Brown Dwarf 62 Rodrigo Carrasco Has Gone Before Staff Profile Étienne Artigau & Philippe Delorme David Tytell Recent 31 66 Photo Journal Science Highlights North & South Jean-René Roy & R. Scott Fisher Photographs by Gemini Staff: • Étienne Artigau NICI Update • Kirk Pu‘uohau-Pummill 37 Tom Hayward GNIRS Update 39 Joseph Jensen & Scot Kleinman FLAMINGOS-2 Update Managing Editor, Peter Michaud 42 Stephen Eikenberry Science Editor, R. Scott Fisher MCAO System Status Associate Editor, Carolyn Collins Petersen 44 Maxime Boccas & François Rigaut Designer, Kirk Pu‘uohau-Pummill 3 Gemini Observatory www.gemini.edu June2008 by Doug Simons Director, Gemini Observatory Director’s Message Figure 1. any organizations (Gemini Observatory 100 The year-end task included) have extremely dedicated and hard- completion statistics 90 working staff members striving to achieve a across the entire M 80 0-49% Done observatory are worthwhile goal.
    [Show full text]
  • Discovery of a Substellar Companion to the K2 III Giant É© Draconis
    The Astrophysical Journal, 576:478–484, 2002 September 1 E # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1 DISCOVERY OF A SUBSTELLAR COMPANION TO THE K2 III GIANT i DRACONIS Sabine Frink, David S. Mitchell, and Andreas Quirrenbach Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424; [email protected], [email protected], [email protected] Debra A. Fischer and Geoffrey W. Marcy Department of Astronomy, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411; fi[email protected], [email protected] and R. Paul Butler Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305; [email protected] Received 2002 March 21; accepted 2002 May 8 ABSTRACT We report precise radial velocity measurements of the K giant i Dra (HD 137759, HR 5744, HIP 75458), carried out at Lick Observatory, which reveal the presence of a substellar companion orbiting the primary star. A Keplerian fit to the data yields an orbital period of about 536 days and an eccentricity of 0.70. Assum­ ing a mass of 1.05 M8 for i Dra, the mass function implies a minimum companion mass m2 sin i of 8.9 MJ, making it a planet candidate. The corresponding semimajor axis is 1.3 AU. The nondetection of the orbital motion by Hipparcos allows us to place an upper limit of 45 MJ on the companion mass, establishing the sub- stellar nature of the object.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The science of the stars in Danzig from Rheticus to Hevelius / Permalink https://escholarship.org/uc/item/7n41x7fd Author Jensen, Derek Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO THE SCIENCE OF THE STARS IN DANZIG FROM RHETICUS TO HEVELIUS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Derek Jensen Committee in charge: Professor Robert S. Westman, Chair Professor Luce Giard Professor John Marino Professor Naomi Oreskes Professor Donald Rutherford 2006 The dissertation of Derek Jensen is approved, and it is acceptable in quality and form for publication on microfilm: _________________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ Chair University of California, San Diego 2006 iii FOR SARA iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication ................................................................................................................. iv Table of Contents ...................................................................................................... v List of Figures ..........................................................................................................
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Hadley's Octant (A. D. 1731)
    HADLEY’S OCTANT (A. D. 1731). On the occasion of the second centenary of the invention of reflecting instruments and in accordance with the usual custom of reproducing in the Hydrographic Review documents of particular interest connected with the history of nautical and hydrographic science, the communication made by John Hadley to the Royal Society of London on 13th May, 1731, is repro­ duced hereafter in facsimile. This communication was published in N° 420 of the Philosophical Transactions. It appears that the oldest document in which allusion is made to the principle of reflection by plane mirrors, as applied to the measurement of angles, is the History of the Royal Society of London by B ir c h . In this book, under the date of 22nd August, 1666, it is stated “ Mr. H o o k mentionned a new astronomical instrument for making observations of distances by reflection”. In another place it may be read that on the 29th August of the same year, H o o k spoke of this instrument again, it being then under construction, to the members of the Society. They invited him to submit it as soon as possible and this was done on 12th September of that year. The instrument submitted by H o o k differed in important details from the modern sextant; it was provided with but one mirror and thus was a single reflecting instrument. This was the fundamental defect which made it impos­ sible for H o o k ’s invention to be a success. However, the idea of using reflection from a plane mirror for the measu­ rement of angles was not forgotten and, in spite of H o o k ’s want of success the principle was taken up by others who sought to correct the disadvantages of the instrument as first invented.
    [Show full text]
  • Brown Dwarfs: at Last Filling the Gap Between Stars and Planets
    Perspective Brown dwarfs: At last filling the gap between stars and planets Ben Zuckerman* Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 Until the mid-1990s a person could not point to any celestial object and say with assurance known (refs. 5–9), the vast majority of that ‘‘here is a brown dwarf.’’ Now dozens are known, and the study of brown dwarfs has brown dwarfs are freely floating among come of age, touching upon major issues in astrophysics, including the nature of dark the stars (2–4). Indeed, the contrast be- matter, the properties of substellar objects, and the origin of binary stars and planetary tween the scarcity of companion brown systems. dwarfs and the plentitude of free floaters was totally unexpected; this dichotomy Stars, Brown Dwarfs, and Dark Matter superplanet from a brown dwarf, such as now constitutes a major unsolved problem in stellar physics (see below). lanets (Greek ‘‘wanderers’’) and stars how they formed, so that the dividing line Surveys for free floaters, both within have been known for millennia, but need not necessarily fall at 13 Jovian P ϳ100 light years of the Sun and in (more the physics underlying their differences masses. distant) clusters such as the Pleiades (The became understood only during the 20th Low-mass stars spend a lot of time, tens Seven Sisters), are still in their early century. Stars fuse protons into helium of billions to trillions of years, fusing pro- stages. But the picture is becoming clear. nuclei in their hot interiors and planets do tons into helium on the so-called ‘‘main Currently, it is estimated that there are not.
    [Show full text]
  • Public Naming of Exoplanets and Their Stars: Implementation and Outcomes of the IAU100
    Public Naming of Exoplanets and Their Stars: Implementation and Outcomes of the IAU100 Best Practice Best NameExoWorlds Global Project Eric Mamajek Debra Meloy Elmegreen Alain Lecavelier des Etangs Jet Propulsion Laboratory, California Vassar College Institut d’Astrophysique de Paris Institute of Technology [email protected] [email protected] [email protected] Eduardo Monfardini Penteado Lars Lindberg Christensen [email protected] NSF’s NOIRLab [email protected] Gareth Williams [email protected] Hitoshi Yamaoka National Astronomical Observatory of Guillem Anglada-Escudé Japan (NAOJ) Institute for Space Science (ICE/CSIC), [email protected] Queen Mary University of London Keywords [email protected] exoplanets, IAU nomenclature The IAU100 NameExoWorlds public naming campaign was a core project during the International Astronomical Union’s 100th anniversary (IAU100) in 2019, giving the opportunity to everyone, everywhere, to propose official names for exoplanets and their host stars. With IAU100 NameExoWorlds the IAU encouraged all peoples of Earth to consider themselves as “Citizens of the Universe”, united “under one sky”. The 113 national campaigns involved hundreds of thousands of people in a global effort to bring the public closer to science by allowing them to participate in the process of naming stars and planets, and learning more about astronomy in the process. The campaign resulted in nearly 425 000 votes, and 113 new IAU-recognised proper names for exoplanets and 113 new names for their stars. The IAU now officially recognises the chosen proper names in addition to their previous scientific designations, and they appear in popular databases. Introduction wished to contribute to the fraternity of all through international cooperation, the IAU people with a significant token of global is the authority responsible for assigning Over the past three decades, astronomers identity.
    [Show full text]
  • Lunar Distances Final
    A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem.
    [Show full text]
  • An Evolving Astrobiology Glossary
    Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines.
    [Show full text]