E S P C R B U L L E T

Total Page:16

File Type:pdf, Size:1020Kb

E S P C R B U L L E T E S P C R B U L L E T I N N° 54 April 2006 PUBLISHED BY THE EUROPEAN SOCIETY FOR PIGMENT CELL RESEARCH EDITOR: G. GHANEM (Brussels) INTERNATIONAL F. BEERMANN (Lausanne), J. BOROVANSKY (Prague), M. d’ISCHIA (Naples), JC GARCIA-BORRON (Murcia), , A. NAPOLITANO (Naples), M. PICARDO (Rome), N. SMIT (Leiden). EDITORIAL BOARD: R. MORANDINI (Brussels) Ed Ph In La stitu bor one ito 7. 3. 5. 2. 4. 8. 1. Review oftheliterature communications, ... Discussion, Letterstotheeditor,Reviews,Short CONTENTS Announcements andrelatedactivities 9. Melanomaexperime 6. ria at : t J.Bo 32 ory of Genetics, molecularand Neur Photobiology MSH, MCH,ot Melanosomes Tyrosinase, TRPs,otherenzymes l (DrA.Napolitano) Biology ofpigmentcells Chemistr Office (Dr M.Picardo) (Dr F.Beermann) (Prof JC.Garcia-Borron) - 2 - rdet, Ru 5 Onc 41 omel : .3 G. G o 2. l o 9 e Hég gy a 6 h y ofM a ani F n e n a e m d x: r-Bo Experi (Ed n (DrN.S 3 (Pro s 2 rd (ProfM.d'Ischia) - her hor ito 2 e et 1,B–10 - 5 r) me l a 41 , f J.Bo nt ni C. Meunier .3 al ntal 3. ns andot S 4 m mones u 9 rg 00 developmentalbiology , cellcult it) ery ro and pigmentarydisorders Bru , R. M ( van E-M L s sels, . O (DrR.Morandini) BULLETI R P S E her o .C a r sky i a . Belg l E : ndini g .) pi g ur , h ) ium. Uni a ( e gments n P e versi m ro @ duc u t é l t b Li i on Te . N° 54-April2006 a bre de c. be N a m B ) , r uxe l l e s, LETTER TO THE EDITOR DISCUSSION, REVIEW, SHORT COMMUNICATION, ... MEETING REPORT 19th IPCC - Sep 18-22, 2005 Reston, Virginia Plenary Symposium 1 – Advancing the Frontiers Plenary Symposium 2 – Hot Topics Symposium Plenary Symposium 3 – Developmental Biology 1, Melanoblast/RPE - Specification, Development, Survival and Apoptosis (Waardenburg syndrome, Tietz syndrome) Plenary Symposium 4 – Evolution and Development of the Pigmentary System Plenary Symposium 5 – "Developmental Biology 2" Concurrent Session 1 – Genetics of Pigmentation Concurrent Session 2 – Biochemistry of Melanogenesis Concurrent Session 3 – Intracellular Signaling Concurrent Session 4 – Innovative Technology Concurrent Session 5 – Melanosome Structure and Function Workshop – Genetics and Developmental Biology Sunrise Session 2 – Differentiated Functions of Melanocytes Plenary Symposium 6 – Differentiated Functions 1; Differentiated Functions of Melanocytes / Melanophores (Oculocutaneous albinism). Plenary Session 8 - Regulation of Pigmentation - Regulation of Melanocyte/Melanophore Function (constitutive pigmentation/environmental responses) Concurrent Session 6 – Comparative Biology Concurrent Session 7 – Chemistry and Physics of Melanins Concurrent Session 8 – Photobiology Sunrise Session 3 – Pigmentary Disorders #2 Plenary Symposium 10 – Pigmentary Disorders #2, Disorders of Hyperpigmentation (Congenital and Acquired Hypermelanoses Concurrent Symposium 10 – Photobiology, Photoprotection/Photocarcinogenesis) Concurrent Symposium 11 – Extracutaneous Pigment, Neuromelanin (Oculocutaneous albinism, Parkinson’s disease) Concurrent Session 12 – Developmental biology Sunrise Session 4 – Malignant Transformation Plenary Symposium 11 – Melanoma 1, Senescence, Immortalization and Progression (Nevi, Melanoma) Plenary Symposium 12 – The Malignant Phenotype Plenary Symposium 13 – Melanoma 2 Genetics, Susceptibility, Epidemiology, Etiology and Therapy (Melanoma) Concurrent Session 13 – Melanoma Basic Research Concurrent Session 14 – Hypo- and Hyper Pigmentation Concurrent Session 15 – Immunology Concurrent Session 16 – Extracuetneous Pigmentation Report on the 19th IPCC Satellite Symposium on Vitiligo 1463 Sunday, September 18, 2005 Plenary Symposium 1 - “Advancing the Frontiers” by John Pawelek Keynote Lecture 1: “Genomics and Disorders of Human Pigmentation”, Dr. FS Collins, National Human Genome Research Institute Dr. Francis Collins summarized some of the major achievements of the Human Genome Project with the completion of its original goals in 2003. Some 30 mammalian genomes have now been sequenced. One of the most striking findings is the well-known remarkable similarity (98.9%) of the DNA sequences between humans and chimpanzees. There are now many services and gene libraries available to scientists. Currently in the public repository are more than 22, 000 human loci and 23, 000 mouse loci. The Knock-Out Mouse Project has the goal of establishing knock-outs for all mouse genes. The ENCODE project is an encyclopedia of human DNA elements. The Molecular Libraries Roadmap has screening centers that can screen 100,000 small molecules for activity in enzymatic assays of your design. These molecules can be accessed in the new PubChem database. The Human Cancer Genome Project will sequence the genomes of 250 representative tumors from each of 50 tissue types. The International HapMap Project (www.hapmap.org) is designed to better characterize the single nucleotide polymorphisms (SNP’s) in the human genome. Keynote Lecture 2: Telomeres, Telomerase, Senescence and Cancer”, Dr. EH Blackburn, University of California, San Francisco Dr. Blackburn summarized the role of telomerase in maintaining telomere length and lifespan extension in human cancer cells. One surprising finding was that net telomere lengthening and lifespan extension can be uncoupled, supporting the conclusion that telomerase plays roles in addition to the net lengthening of telomeric DNA. This came from an unexpected finding that a hairpin siRNA targeting human telomerase RNA rapidly inhibited growth of cancer cells without bulk telomere shortening and induced a novel gene expression that included suppression of genes implicated in angiogenesis and metastasis. The findings uncovered functions of telomerase in tumor growth and progression in addition to telomere maintenance. Keynote Lecture 3: “Frontiers in fluorescent Protein Imaging of Living Cells”, Dr. J. Lippincott- Schwartz, National Institute of child Health and Human Development. Dr. Lippincott-Schwartz detailed the use of fluorescent proteins such as green fluorescent protein (GFP) as molecular tags for following complex biological processes in living cells. Modified GFP’s have been used as markers to track and quantify individual or multiple protein species, as probes to monitor protein-protein interactions, and as photochemically-modulatable proteins to highlight and follow the fate of specific protein populations within the cell. She focused on methods of kinetic microscopy involving photobleaching and photoactivation that are being used to monitor the appearance, location, movement, and degradation of GFP fusion proteins. Plenary Symposium 2 – “Hot Topics Symposium” by Shosuke Ito, Stan Pavel, and Vincent J. Hearing Plenary Symposium 2 was co-chaired by the Organizers of the current and the two previous IPCCs: Shosuke Ito, Stan Pavel, and Vincent J. Hearing. The tradition of holding the “Hot Topics Symposium” was introduced during the 17th IPCC held in Nagoya six years ago. The idea was to put together the best abstracts submitted with highly innovative contents that would be selected from all abstracts accepted for oral presentation in the various Symposia. It was an enjoyable yet (tough) 1464 uneasy job to anonymously choose the 5 best abstracts from the 15 already selected as #1 for each of the 15 symposia. Stan, Vince, and I were pleased to select the following 5 abstracts that will certainly advance further our knowledge on pigmentation and pigment cells. We take special delight in noting that the 5 abstracts chosen were from 5 widely divergent areas and that there was an excellent distribution of speakers internationally which shows the high quality of science being performed around the world. The first presentation was given by Dr. Victor A. Canfield (Hershey, USA) who talked about the identification and characterization of zebrafish golden gene. This newly identified gene encodes a potassium-dependent sodium, calcium exchanger. Surprisingly, the human orthologue is involved in the regulation of constitutive pigmentation. It was shown that 30% variation in human pigmentation may be attributable to one of the alleles of the golden gene. In the next presentation, Dr. Emi Nishimura (Hokkaido, Japan) discussed the mechanisms of hair graying which is everybody’s concern. She was able to demonstrate that hair graying is caused by defective self-maintenance of melanocyte stem/progenitor cells. In Bcl-deficient mice, hair turns gray with aging because melanocyte stem cells selectively die by apoptosis in the stem cell niche in dormant state. These processes are controlled by the melanocyte master transcription regulator Mitf. In the following talk, Dr. Mitsunori Fukuda (Wako, Japan) discussed the roles of Slp- and Slac2- family proteins in melanosome distribution and maintenance of elongated shape of melanocytes. Among others, knockdown of endogenous Slp-2a, the most abundant of the Slp family, by siRNA caused a dramatically reduced number of melanosomes in the cell periphery of melanocytes (“peripheral dilution”) and a morphological change to a round shape. These processes mimicked those seen in Griscelli syndrome. A happening took place at the beginning of the next talk by Dr. Guillaume Robert (Nice, France). A fire alarm went off, and everybody was forced to rush out of the building. After having watched fire engines arriving and firemen working, there was nothing to worry about. We returned to the room and resumed the symposium with a full audience. Dr. Robert discussed the roles of SPARC, Secreted Protein Acidic and Rich in Cysteine. SPARC expression is inversely correlated to E-cadherin
Recommended publications
  • Melanocytes and Their Diseases
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Melanocytes and Their Diseases Yuji Yamaguchi1 and Vincent J. Hearing2 1Medical, AbbVie GK, Mita, Tokyo 108-6302, Japan 2Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 Correspondence: [email protected] Human melanocytes are distributed not only in the epidermis and in hair follicles but also in mucosa, cochlea (ear), iris (eye), and mesencephalon (brain) among other tissues. Melano- cytes, which are derived from the neural crest, are unique in that they produce eu-/pheo- melanin pigments in unique membrane-bound organelles termed melanosomes, which can be divided into four stages depending on their degree of maturation. Pigmentation production is determined by three distinct elements: enzymes involved in melanin synthesis, proteins required for melanosome structure, and proteins required for their trafficking and distribution. Many genes are involved in regulating pigmentation at various levels, and mutations in many of them cause pigmentary disorders, which can be classified into three types: hyperpigmen- tation (including melasma), hypopigmentation (including oculocutaneous albinism [OCA]), and mixed hyper-/hypopigmentation (including dyschromatosis symmetrica hereditaria). We briefly review vitiligo as a representative of an acquired hypopigmentation disorder. igments that determine human skin colors somes can be divided into four stages depend- Pinclude melanin, hemoglobin (red), hemo- ing on their degree of maturation. Early mela- siderin (brown), carotene (yellow), and bilin nosomes, especially stage I melanosomes, are (yellow). Among those, melanins play key roles similar to lysosomes whereas late melanosomes in determining human skin (and hair) pigmen- contain a structured matrix and highly dense tation.
    [Show full text]
  • Expanding Phenotype of Hereditary Fibrosing Poikiloderma with Tendon
    CASE SERIES Expanding phenotype of hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis caused by FAM111B mutations: Report of an additional family raising the question of cancer predisposition and a short review of early-onset poikiloderma Rapha€elle Goussot, MD,a Megana Prasad, MD,b Corinne Stoetzel, MD,b Cedric Lenormand, MD, PhD,a Helene Dollfus, MD, PhD,b and Dan Lipsker, MD, PhDa Strasbourg, France Key words: FAM111B; inherited poikiloderma; pancreatic cancer. ereditary fibrosing poikiloderma with Abbreviations used: tendon contractures, myopathy, and pul- monary fibrosis (POIKTMP [MIM#615704]) IPMN: intraductal papillary mucinous H neoplasm is an extremely rare syndromic form of autosomal POIKTMP: hereditary fibrosing poikiloderma dominant poikiloderma. This genetic disorder was with tendon contractures, myopathy, first identified in a South African family in 2006.1 To and pulmonary fibrosis date, 3 families and 9 independent sporadic cases RTS: Rothmund-Thomson syndrome have been reported.2-4 Here we report an additional family of POIKTMP and expand the clinical spec- trum. We describe, for the first time to our knowl- early childhood. Clinical evaluation found a very edge, a pancreatic cancer in the clinical course in 1 severe case of poikiloderma, predominant in the patient. We also address the differential diagnosis of sun-exposed areas, resulting from the combination inherited poikiloderma and related disorders. of skin atrophy, mottled pigmentation with hyper- pigmented and hypopigmented lesions, and telan- CASE SERIES giectasia (Fig 1, A). He had a distinct intolerance for In 2007, at the Strasbourg University Hospital, the heat with marked hypohidrosis. Diffuse xerosis was department of medical genetics referred a family to combined with multiple depigmented macules on the dermatology department with a diverse clinical the trunk and limbs.
    [Show full text]
  • Pattern of Skin Diseases at University of Benin Teaching Hospital, Benin City, Edo State, South-South Nigeria: a 12 Month Prospective Study
    www.ccsenet.org/gjhs Global Journal of Health Science Vol. 4, No. 3; 2012 Pattern of Skin Diseases at University of Benin Teaching Hospital, Benin City, Edo State, South-South Nigeria: A 12 Month Prospective Study B. A. Ukonu1 & E. U. Eze2 1 University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria 2 University of Benin Teaching Hospital, Benin City, Edo State, Nigeria Correspondence: Ukonu, Agwu Bob (MBBS, FMCP), University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria. Tel: 234-805-791-5902, 234-702-675-1965. E-mail: [email protected] Received: January 4, 2012 Accepted: January 15, 2012 Online Published: May 1, 2012 doi:10.5539/gjhs.v4n3p148 URL: http://dx.doi.org/10.5539/gjhs.v4n3p148 Abstract Background and Objective: This study aims to look at the pattern and incidence of skin diseases seen in Dermatology/Venereology clinic at the University of Benin Teaching Hospital, Benin City, Edo State, South-South Zone, Nigeria and compare it with other zones of Nigeria. Materials and Methods: This was a prospective study on pattern and incidence of skin diseases in new patients presenting at the Dermatology/ Venereology outpatient clinic of the University of Benin Teaching Hospital, Benin City, Edo State, South-South, Nigeria, from September 2006 to August 2007. All patients were seen by the researchers. Diagnosis were made clinically and sometimes with the support of histopathology. Results: A total number of 4786 patients were seen during the study period and these comprised 2647 HIV/AIDS patients and 2112 pure Dermatological patients. Out of 4786 patients, 755 (15.8%) were new patients.
    [Show full text]
  • The Effectiveness of Topical Scar-Reducing Therapies Administered for Scarring Due to Burns and Other Causes: a Retrospective Pilot Clinical Research
    ORIGINAL ARTICLE Aksoy et al. / Gulhane Med J 2018;60: 139-144 139 The effectiveness of topical scar-reducing therapies administered for scarring due to burns and other causes: A retrospective pilot clinical research Hasan Mete Aksoy,1 Berna Aksoy,2 Aslı Tatlıparmak,2 Emel Çalıkoğlu3 (1) Bahçeşehir University, School of Medicine, Plastic and Reconstructive Surgery, Istanbul, Turkey (2) Bahçeşehir University, School of Medicine, Dermatology, Istanbul, Turkey (3) Aksaray University, Faculty of Medicine, Dermatology, Aksaray, Turkey Date submitted: ABSTRACT Oct 019, 2017 Aims: Multiple modalities are used to treat scarring; however, data on the efficacy of Date accepted: Aug 25, 2018 the topical scar-reducing treatments most frequently used by patients is insufficient. Online publication date: This study aimed to retrospectively determine the effectiveness of topical scar-reducing December 15, 2018 treatments and patients’ compliance. Methods: The medical records of patients adimitted for the treatment of scarring were retrospectively evaluated. Patient satisfaction with the treatment was assessed via telephone interviews. Each patient also sent recent photographs of their scars. Pre- and Corresponding Author: post-treatment photographs were scored according to the Manchester Scar Scale, and in Berna Aksoy terms of vascularity and scar surface area (modified MSS ). Bahcesehir University, School of Results: The study included 71 patients with a median scar age of 18 days at the time Medicine, Dermatology, Istanbul, treatment was initiated. Mean duration of follow-up was 41 months. The prescribed Turkey [email protected] treatments included onion extract, silicone gel or sheet, and a pressure garment. The patients reported that the treatments were effective, they were satisfied with the treatments, and the treatments were not excessively difficult to apply.
    [Show full text]
  • PIGMENT CELL & MELANOMA Research
    The official journal of INTERNATIONAL FEDERATION OF PIGMENT CELL SOCIETIES · SOCIETY FOR MELANOMA RESEARCH PIGMENT CELL & MELANOMA Research Hearing dysfunction in heterozygous Mitf Mi-wh/+ mice, a model for Waardenburg syndrome type 2 and Tietz syndrome Christina Ni, Deming Zhang, Lisa A. Beyer, Karin E. Halsey, Hideto Fukui, Yehoash Raphael, David F. Dolan and Thomas J. Hornyak DOI: 10.1111/pcmr.12030 Volume 26, Issue 1, Pages 78-87 If you wish to order reprints of this article, please see the guidelines here Supporting Information for this article is freely available here EMAIL ALERTS Receive free email alerts and stay up-to-date on what is published in Pigment Cell & Melanoma Research – click here Submit your next paper to PCMR online at http://mc.manuscriptcentral.com/pcmr Subscribe to PCMR and stay up-to-date with the only journal committed to publishing basic research in melanoma and pigment cell biology As a member of the IFPCS or the SMR you automatically get online access to PCMR. Sign up as a member today at www.ifpcs.org or at www.societymelanomaresarch.org To take out a personal subscription, please click here More information about Pigment Cell & Melanoma Research at www.pigment.org Pigment Cell Melanoma Res. 26; 78–87 ORIGINAL ARTICLE Hearing dysfunction in heterozygous Mitf Mi-wh/+ mice, a model for Waardenburg syndrome type 2 and Tietz syndrome Christina Ni1, Deming Zhang1, Lisa A. Beyer2, Karin E. Halsey2, Hideto Fukui2, Yehoash Raphael2, David F. Dolan2 and Thomas J. Hornyak1,3,4 1 Dermatology Branch, Center for Cancer
    [Show full text]
  • Assessment of Melanocyte-Specific Primary and Memory Autoimmune Responses in Vitiligo- Prone Smyth and Vitiligo-Susceptible, Non-Expressing Brown Line Chickens
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Assessment of Melanocyte-Specific rP imary and Memory Autoimmune Responses in Vitiligo-Prone Smyth and Vitiligo-Susceptible, Non-Expressing Brown Line Chickens Daniel Morales Falcon University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, and the Immunology of Infectious Disease Commons Recommended Citation Falcon, Daniel Morales, "Assessment of Melanocyte-Specific rP imary and Memory Autoimmune Responses in Vitiligo-Prone Smyth and Vitiligo-Susceptible, Non-Expressing Brown Line Chickens" (2018). Theses and Dissertations. 2912. https://scholarworks.uark.edu/etd/2912 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Assessment of Melanocyte-Specific Primary and Memory Autoimmune Responses in Vitiligo- Prone Smyth and Vitiligo-Susceptible, Non-Expressing Brown Line Chickens A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Daniel Morales Falcon University of California, Riverside Bachelor of Science in Biology, 2003 August 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________________ Gisela F. Erf, Ph.D. Dissertation Director ____________________________________ ___________________________________ Yuchun Du, Ph.D. David McNabb, Ph.D. Committee Member Committee Member ____________________________________ Suresh Thallapuranam, Ph.D. Committee Member Abstract Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin.
    [Show full text]
  • Cutaneous Manifestations of Newborns in Omdurman Maternity Hospital
    ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ Cutaneous Manifestations of Newborns in Omdurman Maternity Hospital A thesis submitted in the partial fulfillment of the degree of clinical MD in pediatrics and child health University of Khartoum By DR. AMNA ABDEL KHALIG MOHAMED ATTAR MBBS University of Khartoum Supervisor PROF. SALAH AHMED IBRAHIM MD, FRCP, FRCPCH Department of Pediatrics and Child Health University of Khartoum University of Khartoum The Graduate College Medical and Health Studies Board 2008 Dedication I dedicate my study to the Department of Pediatrics University of Khartoum hoping to be a true addition to neonatal care practice in Sudan. i Acknowledgment I would like to express my gratitude to my supervisor Prof. Salah Ahmed Ibrahim, Professor of Peadiatric and Child Health, who encouraged me throughout the study and provided me with advice and support. I am also grateful to Dr. Osman Suleiman Al-Khalifa, the Dermatologist for his support at the start of the study. Special thanks to the staff at Omdurman Maternity Hospital for their support. I am also grateful to all mothers and newborns without their participation and cooperation this study could not be possible. Love and appreciation to my family for their support, drive and kindness. ii Table of contents Dedication i Acknowledgement ii Table of contents iii English Abstract vii Arabic abstract ix List of abbreviations xi List of tables xiii List of figures xiv Chapter One: Introduction & Literature Review 1.1 The skin of NB 1 1.2 Traumatic lesions 5 1.3 Desquamation 8 1.4 Lanugo hair 9 1.5
    [Show full text]
  • COVID-19 Mrna Pfizer- Biontech Vaccine Analysis Print
    COVID-19 mRNA Pfizer- BioNTech Vaccine Analysis Print All UK spontaneous reports received between 9/12/20 and 22/09/21 for mRNA Pfizer/BioNTech vaccine. A report of a suspected ADR to the Yellow Card scheme does not necessarily mean that it was caused by the vaccine, only that the reporter has a suspicion it may have. Underlying or previously undiagnosed illness unrelated to vaccination can also be factors in such reports. The relative number and nature of reports should therefore not be used to compare the safety of the different vaccines. All reports are kept under continual review in order to identify possible new risks. Report Run Date: 24-Sep-2021, Page 1 Case Series Drug Analysis Print Name: COVID-19 mRNA Pfizer- BioNTech vaccine analysis print Report Run Date: 24-Sep-2021 Data Lock Date: 22-Sep-2021 18:30:09 MedDRA Version: MedDRA 24.0 Reaction Name Total Fatal Blood disorders Anaemia deficiencies Anaemia folate deficiency 1 0 Anaemia vitamin B12 deficiency 2 0 Deficiency anaemia 1 0 Iron deficiency anaemia 6 0 Anaemias NEC Anaemia 97 0 Anaemia macrocytic 1 0 Anaemia megaloblastic 1 0 Autoimmune anaemia 2 0 Blood loss anaemia 1 0 Microcytic anaemia 1 0 Anaemias haemolytic NEC Coombs negative haemolytic anaemia 1 0 Haemolytic anaemia 6 0 Anaemias haemolytic immune Autoimmune haemolytic anaemia 9 0 Anaemias haemolytic mechanical factor Microangiopathic haemolytic anaemia 1 0 Bleeding tendencies Haemorrhagic diathesis 1 0 Increased tendency to bruise 35 0 Spontaneous haematoma 2 0 Coagulation factor deficiencies Acquired haemophilia
    [Show full text]
  • Johnson, SL, Nguyen, AN, and Lister (2011) JA Mitfa Is Required At
    Developmental Biology 350 (2011) 405–413 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology mitfa is required at multiple stages of melanocyte differentiation but not to establish the melanocyte stem cell Stephen L. Johnson a, AnhThu N. Nguyen b, James A. Lister b,⁎ a Department of Genetics, Washington University, St. Louis, MO, USA b Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Sanger Hall 11-014, PO Box 980033, Richmond, VA 23298 USA article info abstract Article history: The mitfa gene encodes a zebrafish ortholog of the microphthalmia-associated transcription factor (Mitf) which, Received for publication 3 August 2010 like its counterparts in other species, is absolutely required for development of neural crest melanocytes. In order Revised 22 November 2010 to evaluate mitfa's role in different stages of melanocyte development, we have identified hypomorphic alleles of Accepted 2 December 2010 mitfa, including two alleles that are temperature-sensitive for melanocyte development. Molecular analysis Available online 10 December 2010 revealed that the mitffh53ts results from a single base pair change producing an asparagine to tyrosine amino acid substitution in the DNA-binding domain, and the mitfavc7 ts allele is a mutation in a splice donor site that reduces Keywords: vc7 Melanocyte the level of correctly-spliced transcripts. Splicing in the mitfa allele does not itself appear to be temperature- z25 MITF dependent. A third, hypomorphic allele, mitfa results in an isoleucine to phenylalanine substitution in the first Zebrafish helix domain of the protein. Temperature upshift experiments with mitfafh53ts show that mitfa is required at Neural crest several stages of melanocyte differentiation, including for expression of the early melanoblast marker dct,again for progression from dct expression to differentiation, and again for maintenance of dendritic form following differentiation.
    [Show full text]
  • Hearing Loss in Waardenburg Syndrome: a Systematic Review
    Clin Genet 2016: 89: 416–425 © 2015 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12631 Review Hearing loss in Waardenburg syndrome: a systematic review Song J., Feng Y., Acke F.R., Coucke P., Vleminckx K., Dhooge I.J. Hearing J. Songa,Y.Fenga, F.R. Ackeb, loss in Waardenburg syndrome: a systematic review. P. Couckec,K.Vleminckxc,d Clin Genet 2016: 89: 416–425. © John Wiley & Sons A/S. Published by and I.J. Dhoogeb John Wiley & Sons Ltd, 2015 aDepartment of Otolaryngology, Xiangya Waardenburg syndrome (WS) is a rare genetic disorder characterized by Hospital, Central South University, Changsha, People’s Republic of China, hearing loss (HL) and pigment disturbances of hair, skin and iris. b Classifications exist based on phenotype and genotype. The auditory Department of Otorhinolaryngology, cDepartment of Medical Genetics, Ghent phenotype is inconsistently reported among the different Waardenburg types University/Ghent University Hospital, and causal genes, urging the need for an up-to-date literature overview on Ghent, Belgium, and dDepartment for this particular topic. We performed a systematic review in search for articles Biomedical Molecular Biology, Ghent describing auditory features in WS patients along with the associated University, Ghent, Belgium genotype. Prevalences of HL were calculated and correlated with the different types and genes of WS. Seventy-three articles were included, describing 417 individual patients. HL was found in 71.0% and was Key words: genotype – hearing loss – predominantly bilateral and sensorineural. Prevalence of HL among the inner ear malformation – phenotype – different clinical types significantly differed (WS1: 52.3%, WS2: 91.6%, Waardenburg syndrome WS3: 57.1%, WS4: 83.5%).
    [Show full text]
  • Vitiligo: a Comprehensive Overview
    CONTINUING MEDICAL EDUCATION Vitiligo: A comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up Ali Alikhan, MD,a Lesley M. Felsten, MD,a Meaghan Daly, MD,b and Vesna Petronic-Rosic, MD, MScc Berwyn and Chicago, Illinois; and New York, New York Vitiligo is an acquired pigmentary disorder of unknown etiology that is clinically characterized by the development of white macules related to the selective loss of melanocytes. The prevalence of the disease is around 1% in the United States and in Europe, but ranges from less than 0.1% to greater than 8% worldwide. A recorded predominance of women may reflect their greater willingness to express concern about cosmetically relevant issues. Half of all patients develop the disease before 20 years of age. Onset at an advanced age occurs but is unusual, and should raise concerns about associated diseases, such as thyroid dysfunction, rheumatoid arthritis, diabetes mellitus, and alopecia areata. Generalized vitiligo is the most common clinical presentation and often involves the face and acral regions. The course of the disease is unpredictable and the response to treatment varies. Depigmentation may be the source of severe psychological distress, diminished quality of life, and increased risk of psychiatric morbidity. Part I of this two-part series describes the clinical presentation, histopathologic findings, and various hypotheses for the pathogenesis of vitiligo based on past and current research. ( J Am Acad Dermatol 2011;65:473-91.) 474 Alikhan et al JAM ACAD DERMATOL SEPTEMBER 2011 Key words: autoimmune; depigmentation; depigmented; hypopigmentation; hypopigmented; leukoderma; macule; melanocyte; melanosome; vitiligo.
    [Show full text]
  • SKIN HYPERPIGMENTATION DISORDERS and USE of HERBAL EXTRACTS: a REVIEW Priyam Goswami* and H
    Current Trends in Pharmaceutical Research 2020 Vol 7 Issue 2 © Dibrugarh University www.dibru.ac.in/ctpr ISSN: 2319-4820 (Print) 2582-4783 (Online) Mini Review SKIN HYPERPIGMENTATION DISORDERS AND USE OF HERBAL EXTRACTS: A REVIEW Priyam Goswami* and H. K. Sharma Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University Abstract Background: Problems pertaining to the skin pigmentation is one of the major concerns that affect the quality of life of human beings especially women. The disturbances in the melanin production mainly results in skin pigmentation disorders. For centuries natural ingredients have been used in the treatment of skin hyperpigmentation disorders. Since synthetic cosmetic ingredients can have potential side effects, emphasis has been given on the herbal products, which are considered to be mild and biodegradable, exhibiting low toxicity. Objective: The objective of this review is to provide a brief understanding about the skin hyperpigmentation disorders and the use of various herbal extracts as a notable approach for its treatment. Methods: A narrative literature review was conducted with the extraction of information, which was analyzed from various databases viz. Google scholar, Science Direct, PubMed, Wiley Online Library etc., Results and Discussions: The preferences of the people for the use of herbal skin- lightening agents over the synthetic ones have gained wide spread popularity. Potentially active compounds that have been extracted from the plants have been identified which provide scope for its use a novel depigmenting agent. The improvement in the efficacy of the herbal extracts is mainly due to synergism, and hence this property yields great results when used in cosmetic formulations.
    [Show full text]