A Monte-Carlo Study∗

Total Page:16

File Type:pdf, Size:1020Kb

A Monte-Carlo Study∗ Forecasting with VARs with Long- and Short-Run Restrictions: A Monte-Carlo Study∗ Farshid Vahid† Osmani Teixeira de Carvalho Guill´en School of Economics Banco Central do Brasil Australian National University and Crisp Building 026 Graduate School of Economics — EPGE ACT 0200 Brazil Australia [email protected] Jo˜ao Victor Issler Graduate School of Economics — EPGE Getulio Vargas Foundation Praia de Botafogo 190 s. 1111 Rio de Janeiro, RJ 22253-900 Brazil [email protected] Preliminary version: July, 2004 Abstract Despite the commonly held belief that aggregate data display short-run comove- ment, there has been little discussion about the econometric consequences of this feature of the data. We use exhaustive Monte-Carlo simulations to investigate the importance of restrictions implied by common-cyclical features for estimates and fore- casts based on cointegrated vector autoregressive models. First, we show that the “best” empirical model developed without common cycle restrictions need not nest the “best” model developed with those restrictions. This is due to possible differences in the lag-lengths chosen by model selection criteria for the two alternative models. Second, we show that the costs of ignoring common cyclical features in vector au- toregressive modelling can be high, both in terms of forecast accuracy Third, we find that the Hannan-Quinn and the Scwarz criteria perform well among model selection criteria in simultaneously selecting the lag-length and rank of cointegrated vector au- toregressions. Keywords: Reduced rank models, model selection criteria, forecasting, variance de- composition. JEL Classification: C32, C53. ∗Acknowledgments: PartsosthispaperwerewrittenwhileOsmaniT.Guill´en was visiting Monash University, which hospitality is gratefully acknowledged. Jo˜ao Victor Issler and Osmani T. Guill´en ac- knowledges the support of CNPq-Brazil and PRONEX, and CAPES, respectively. †Corresponding author. 1 1Introduction Although vector autoregressive (VAR) and vector error-correction (VEC) models have become the “working horses” of macroeconometric studies, one of their shortcomings is the excessive number of parameters relative to the average sample size one is usually forced to work with. For example, when dealing with post-war quarterly data, and a VAR with three variables and eight lags, there are seventy five mean parameters to be estimated from about two hundred data points on each variable. One possible way of reducing the parameter space is to impose restrictions usually coming from cointegration, i.e., Engle and Granger(1987), Johansen(1991), and from common cycles, i.e., Engle and Kozicki(1993), Vahid and Engle(1993, 1997) and Hecq, Palm and Urbain(2004). The former are restriction on the long-run behavior of economic data and the latter are restrictions on their short-run behavior. The effects of imposing them in VAR models can be quite different. For example, Engle and Yoo(1987) show that imposing cointegration restrictions helps VAR forecasting accuracy only in long horizons, while Vahid and Issler(2002) show that serial-correlation- common-feature (SCCF) restrictions improves forecasting accuracy at all horizons. A well known result in econometrics is that unbiased restricted models produce better forecasts. Although imposing valid restrictions can indeed improve forecasting accuracy, researchers are usually aware of the fact that there is always the risk of imposing false re- strictions, which calls for conservative behavior: it is presumably better to use a possibly inefficient model instead of risking using an inconsistent model in the search for parsi- mony. Recent Monte-Carlo results in Vahid and Issler challenge this view with respect to VAR models with common cycles. They argue that the cost of ignoring common-cycle re- strictions is more than just the efficiency loss. This happens because the usual practice in applied work of choosing lag length by information criteria will severely underparameterize in this case. While common cycles imply a reduced-rank structure for coefficient matrices it implies no restrictions on the number of lags of a VAR. In this case, standard criteria find too small a lag length for VARs with common-cycle restrictions simply because this is the only possible way available to achieve parsimony. As a results, full-rank models chosen by information criteria are frequently misspecified and for such misspecified models one cannot tell from theory what the consequences of incorporating rank restrictions will be. In this paper we argue that SCCF restrictions should be taken seriously in VAR mod- elling, especially when these models are used for forecasting purposes. Our suggestion is based on a wide-scale Monte-Carlo exercise where data is generated by VARs containing simultaneously short-run and long-run restrictions: SCCF and cointegration restrictions respectively. As will become clear in the next sections, the Monte-Carlo design is far from trivial in this case, due to the fact that these two types of rank restrictions have to hold in every data generating process. In our simulations we cover three important issues on model building, estimation, and forecasting. First, we examine the behavior of standard information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of fitted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Finally, as a by- product of the latter exercise, we propose a new estimation algorithm where short- and long-run restrictions interact to estimate jointly the cointegrating and the cofeature spaces respectively. This algorithm follows closely the idea of weak-form reduced-rank structure, 2 suggested by Hecq, Palm and Urbain, where the reduced-rank structure of the lagged coefficient matrices in the vector error-correction model (VECM) is different from that of the adjustment coefficient matrix. In the first pass of our algorithm, only weak-form SCCF restrictions are imposed without imposing a priori any restrictions in cointegrating rank. Based on first pass estimates, the long-run impact matrix is estimated and short- and long-run restrictions interact to yield final VECM estimates. At the end, it is possible to conduct inference on cointegrating rank for the system. The focus of the simulations is the accuracy of multi-step ahead out-of-sample forecasts. We design them so that the results would be relevant for an applied macroeconomist estimating a relatively large number of parameters using a limited number of data points. To that end, we consider a variety of Data Generating Processes (DGPs) and sample sizes, that are similar to the “typical” data sets that applied researchers encounter in practice. The current study extends the work of Vahid and Issler(2002) in two dimensions. First, the unrestricted model being considered here is a cointegrated VAR, i.e., a VECM, whereas in Vahid and Issler the unrestricted model was just a VAR with no cointegration restric- tions. As will become apparent below, selecting a large number data genrating processes (DGPs) for VARs with long- and short-run restrictions is far from trivial, and being able to do it makes the results of our Monte-Carlo exercise more robust. Morevover, consid- ering cointegration restrictions is also more realistic because cointegration is a common occurrence in macroeconomic models and data. Therefore, our current study not only adds to what is currently known about SCCF restrictions but it also adds relevant infor- mation which has a wider application. Second, we propose a new estimation algorithm, where short- and long-run restrictions interact to estimate jointly the cointegrating and the cofeature spaces respectively. because of its performance in small samples, we believe that it has the potential to form the basis of a future estimators for VECM coefficients in the presence of SCCF restrictions. The results of our simulation exercise and those of previous studies on SCCF restric- tions in VAR analysis call for a change in focus in the literature on forecasting with these models. While in the past there has been a considerable effort examining the importance of cointegration restrictions in VAR models — see, among others, Engle and Yoo(1987), Clements and Hendry(1995), and Lin and Tsay(1996) — there has been little work examin- ing the importance of common-cyclical features in VAR analysis. However, the simulation results in Vahid and Issler and the enriched environment considered here show a superior forecasting performance for models incorporating SCCF restrictions, which happens irre- spective of whether cointegration is or is not present in the data and of the forecasting horizon under study. The outline of the paper is as follows. Section 2 states the reduced-rank restrictions that common cyclical fluctuations impose on the parameters of cointegrated VAR models, and presents the model-selection criteria for reduced-rank models; see also the discussion in the Appendix on these issues. Section 3 describes our Monte-Carlo design; see also the discussion in the Appendix on DGP selection. Section 4 presents the simulation results. Section 5 presents the main conclusions of the paper, as well as a suggestion for further research. 3 2 Forecasting VECMs with SCCF restrictions As in most applied macroeconomic research, we assume that the objective is to build a time series model for the growth rate of a vector of n economic variables. We denote the levels of these variables at time t by Yt, their logarithms by yt, and their growth rates (i.e. the first difference of the logarithm of Yt)by∆yt. We make the reasonable assumption that ∆yt is stationary, add the simplifying assumption that ∆yt has mean zero (without any loss of generality), and start with the Wold representation of ∆yt,i.e. ∆yt = C (L) εt, (1) j where C (L)= j∞=0 CjL is a matrix polynomial in the lag operator and C0 = In.From the work of Beveridge and Nelson (1981) and Stock and Watson (1988), it is possible P to decompose the log-level series yt into common trends and cycles (we refer to this as the Beveridge-Nelson-Stock-Watson — or BNSW — decomposition).
Recommended publications
  • Design and Implementation of N-Of-1 Trials: a User's Guide
    Design and Implementation of N-of-1 Trials: A User’s Guide N of 1 The Agency for Healthcare Research and Quality’s (AHRQ) Effective Health Care Program conducts and supports research focused on the outcomes, effectiveness, comparative clinical effectiveness, and appropriateness of pharmaceuticals, devices, and health care services. More information on the Effective Health Care Program and electronic copies of this report can be found at www.effectivehealthcare.ahrq. gov. This report was produced under contract to AHRQ by the Brigham and Women’s Hospital DEcIDE (Developing Evidence to Inform Decisions about Effectiveness) Methods Center under Contract No. 290-2005-0016-I. The AHRQ Task Order Officer for this project was Parivash Nourjah, Ph.D. The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views ofAHRQ or the U.S. Department of Health and Human Services. Therefore, no statement in this report should be construed as an official position of AHRQ or the U.S. Department of Health and Human Services. Persons using assistive technology may not be able to fully access information in this report. For assistance contact [email protected]. The following investigators acknowledge financial support: Dr. Naihua Duan was supported in part by NIH grants 1 R01 NR013938 and 7 P30 MH090322, Dr. Heather Kaplan is part of the investigator team that designed and developed the MyIBD platform, and this work was supported in part by Cincinnati Children’s Hospital Medical Center. Dr. Richard Kravitz was supported in part by National Institute of Nursing Research Grant R01 NR01393801.
    [Show full text]
  • Generalized Linear Models for Aggregated Data
    Generalized Linear Models for Aggregated Data Avradeep Bhowmik Joydeep Ghosh Oluwasanmi Koyejo University of Texas at Austin University of Texas at Austin Stanford University [email protected] [email protected] [email protected] Abstract 1 Introduction Modern life is highly data driven. Datasets with Databases in domains such as healthcare are records at the individual level are generated every routinely released to the public in aggregated day in large volumes. This creates an opportunity form. Unfortunately, na¨ıve modeling with for researchers and policy-makers to analyze the data aggregated data may significantly diminish and examine individual level inferences. However, in the accuracy of inferences at the individ- many domains, individual records are difficult to ob- ual level. This paper addresses the scenario tain. This particularly true in the healthcare industry where features are provided at the individual where protecting the privacy of patients restricts pub- level, but the target variables are only avail- lic access to much of the sensitive data. Therefore, able as histogram aggregates or order statis- in many cases, multiple Statistical Disclosure Limita- tics. We consider a limiting case of gener- tion (SDL) techniques are applied [9]. Of these, data alized linear modeling when the target vari- aggregation is the most widely used technique [5]. ables are only known up to permutation, and explore how this relates to permutation test- It is common for agencies to report both individual ing; a standard technique for assessing statis- level information for non-sensitive attributes together tical dependency. Based on this relationship, with the aggregated information in the form of sample we propose a simple algorithm to estimate statistics.
    [Show full text]
  • Meta-Analysis Using Individual Participant Data: One-Stage and Two-Stage Approaches, and Why They May Differ Danielle L
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Keele Research Repository Tutorial in Biostatistics Received: 11 March 2016, Accepted: 13 September 2016 Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/sim.7141 Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ Danielle L. Burke*† Joie Ensor and Richard D. Riley Meta-analysis using individual participant data (IPD) obtains and synthesises the raw, participant-level data from a set of relevant studies. The IPD approach is becoming an increasingly popular tool as an alternative to traditional aggregate data meta-analysis, especially as it avoids reliance on published results and provides an opportunity to investigate individual-level interactions, such as treatment-effect modifiers. There are two statistical approaches for conducting an IPD meta-analysis: one-stage and two-stage. The one-stage approach analyses the IPD from all studies simultaneously, for example, in a hierarchical regression model with random effects. The two-stage approach derives aggregate data (such as effect estimates) in each study separately and then combines these in a traditional meta-analysis model. There have been numerous comparisons of the one-stage and two-stage approaches via theoretical consideration, simulation and empirical examples, yet there remains confusion regarding when each approach should be adopted, and indeed why they may differ. In this tutorial paper, we outline the key statistical methods for one-stage and two-stage IPD meta-analyses, and provide 10 key reasons why they may produce different summary results. We explain that most differences arise because of different modelling assumptions, rather than the choice of one-stage or two-stage itself.
    [Show full text]
  • Learning to Personalize Medicine from Aggregate Data
    medRxiv preprint doi: https://doi.org/10.1101/2020.07.07.20148205; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Learning to Personalize Medicine from Aggregate Data Rich Colbaugh Kristin Glass Volv Global Lausanne, Switzerland Abstract There is great interest in personalized medicine, in which treatment is tailored to the individual characteristics of pa- tients. Achieving the objectives of precision healthcare will require clinically-grounded, evidence-based approaches, which in turn demands rigorous, scalable predictive analytics. Standard strategies for deriving prediction models for medicine involve acquiring ‘training’ data for large numbers of patients, labeling each patient according to the out- come of interest, and then using the labeled examples to learn to predict the outcome for new patients. Unfortunate- ly, labeling individuals is time-consuming and expertise-intensive in medical applications and thus represents a ma- jor impediment to practical personalized medicine. We overcome this obstacle with a novel machine learning algo- rithm that enables individual-level prediction models to be induced from aggregate-level labeled data, which is read- ily-available in many health domains. The utility of the proposed learning methodology is demonstrated by: i.) lev- eraging US county-level mental health statistics to create a screening tool which detects individuals suffering from depression based upon their Twitter activity; ii.) designing a decision-support system that exploits aggregate clinical trials data on multiple sclerosis (MS) treatment to predict which therapy would work best for the presenting patient; iii.) employing group-level clinical trials data to induce a model able to find those MS patients likely to be helped by an experimental therapy.
    [Show full text]
  • Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy
    Review Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy Yuxi Zhao and Lifeng Lin * Department of Statistics, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews and meta-analyses have been increasingly used to pool research find- ings from multiple studies in medical sciences. The reliability of the synthesized evidence depends highly on the methodological quality of a systematic review and meta-analysis. In recent years, several tools have been developed to guide the reporting and evidence appraisal of systematic reviews and meta-analyses, and much statistical effort has been paid to improve their methodological quality. Nevertheless, many contemporary meta-analyses continue to employ conventional statis- tical methods, which may be suboptimal compared with several alternative methods available in the evidence synthesis literature. Based on a recent systematic review on COVID-19 in pregnancy, this article provides an overview of select good practices for performing meta-analyses from sta- tistical perspectives. Specifically, we suggest meta-analysts (1) providing sufficient information of included studies, (2) providing information for reproducibility of meta-analyses, (3) using appro- priate terminologies, (4) double-checking presented results, (5) considering alternative estimators of between-study variance, (6) considering alternative confidence intervals, (7) reporting predic- Citation: Zhao, Y.; Lin, L. Good tion intervals, (8) assessing small-study effects whenever possible, and (9) considering one-stage Statistical Practices for Contemporary methods. We use worked examples to illustrate these good practices. Relevant statistical code Meta-Analysis: Examples Based on a is also provided.
    [Show full text]
  • Reconciling Household Surveys and National Accounts Data Using a Cross Entropy Estimation Method
    TMD DISCUSSION PAPER NO. 50 RECONCILING HOUSEHOLD SURVEYS AND NATIONAL ACCOUNTS DATA USING A CROSS ENTROPY ESTIMATION METHOD Anne-Sophie Robilliard Sherman Robinson International Food Policy Research Institute Trade and Macroeconomics Division International Food Policy Research Institute 2033 K Street, N.W. Washington, D.C. 20006, U.S.A. November 1999 (Revised January 2001) TMD Discussion Papers contain preliminary material and research results, and are circulated prior to a full peer review in order to stimulate discussion and critical comment. It is expected that most Discussion Papers will eventually be published in some other form, and that their content may also be revised. This paper is available at http://www.cgiar.org/ifpri/divs/tmd/dp/papers/dp50.pdf Abstract This paper presents an approach to reconciling household surveys and national accounts data that starts from the assumption that the macro data represent control totals to which the household data must be reconciled, but the macro aggregates may be measured with error. The economic data gathered in the household survey are assumed to be accurate, or have been adjusted to be accurate. Given these assumptions, the problem is how to use the additional information provided by the national accounts data to re-estimate the household weights used in the survey so that the survey results are consistent with the aggregate data, while simultaneously estimating the errors in the aggregates. The estimation approach represents an efficient “information processing rule” using an estimation criterion based on an entropy measure of information. The survey household weights are treated as a prior. New weights are estimated that are close to the prior using a cross-entropy metric and that are also consistent with the additional information.
    [Show full text]
  • Supervised Learning by Training on Aggregate Outputs
    Supervised Learning by Training on Aggregate Outputs David R. Musicant, Janara M. Christensen, Jamie F. Olson Department of Computer Science Carleton College Northfield, MN [email protected], [email protected], [email protected] Abstract black carbon (BC) associated with an individual aerosol particle. While SPMS data provides detailed mass spectra Supervised learning is a classic data mining problem for individual aerosol particles, these spectra are not quanti- where one wishes to be be able to predict an output value tative enough to allow one to precisely identify the amount associated with a particular input vector. We present a new of BC present in a particle. On the other hand, filter-based twist on this classic problem where, instead of having the machines can collect quantitative BC data, but in aggregate training set contain an individual output value for each in- form. These devices allow one to determine how much put vector, the output values in the training set are only BC has been observed in aggregate over a particular time given in aggregate over a number of input vectors. This span, typically on the order of an hour. SPMS data, on the new problem arose from a particular need in learning on other hand, may be collected for individual particles (non- mass spectrometry data, but could easily apply to situations aggregate data) many times per minute. Our goal is to be when data has been aggregated in order to maintain pri- able to predict the quantity of BC present in an individual vacy. We provide a formal description of this new prob- aerosol particle.
    [Show full text]
  • Census Aggregate Data Workshop – 17 February 2015 • Ukdataservice.Ac.Uk/News-And-Events/Events
    2011 Census – aggregate data Richard Wiseman Justin Hayes Webinar January 2015 2011 Census – aggregate data The webinar will begin at 2pm • You now have a menu in the top right corner of your screen. • The red button with a white arrow allows you to expand and contract the webinar menu, in which you can write questions/comments. • We won’t have time to answer questions while we are presenting, but will answer them at the end • You will be on mute throughout – we can’t hear you. Welcome Some introductions… Richard Wiseman UK Data Service Mimas, Jisc Justin Hayes UK Data Service Mimas, Jisc Can you hear us? If you can’t hear us • Check your speakers/headset • Check your volume • Use the phone number in your invitation to call in • The webinar is being recorded - we’ll send a link Webinar structure • 30 minute presentation • 20 minutes for questions and answers • Finish by 2.50pm • Please use chat facility to ask questions or let us know of any problems • Some questions for the audience during presentation Presentation content • The UK Data Service • UK Data Service Census Support • Census background • Aggregate data • Geographies • InFuse • Demo • Data / geography model • Next release • Future plans The UK Data Service • Funded by the ESRC, integrating several previous resources • A single, comprehensive and integrated point of access to a wide range of social science data • Support, training and guidance • ukdataservice.ac.uk UK Data Service Census Support • A specialist unit of the UK Data Service • Access to, and support for use of data
    [Show full text]
  • Aggregation Effects in Generalized Linear Models: a Biochemical Engineering Application
    Iowa State University Capstones, Theses and Creative Components Dissertations Summer 2019 Aggregation Effects in Generalized Linear Models: A Biochemical Engineering Application Xiaojing Zhong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Engineering Commons Recommended Citation Zhong, Xiaojing, "Aggregation Effects in Generalized Linear Models: A Biochemical Engineering Application" (2019). Creative Components. 463. https://lib.dr.iastate.edu/creativecomponents/463 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Aggregation Effects in Generalized Linear Models: A Biochemical Engineering Application by Xiaojing Zhong Major: Statistics Program of Study Committee: Mark Kaiser, Major Professor Emily Berg Yumou Qiu Iowa State University Ames, Iowa 2019 ii TABLE OF CONTENTS Page TABLE OF CONTENTS .................................................................................................... ii LIST OF FIGURES ........................................................................................................... iii LIST OF TABLES .............................................................................................................. v CHAPTER
    [Show full text]
  • Effects of Data Aggregation on Time Series Analysis of Seasonal Infections
    International Journal of Environmental Research and Public Health Article Effects of Data Aggregation on Time Series Analysis of Seasonal Infections Tania M. Alarcon Falconi 1,*, Bertha Estrella 2, Fernando Sempértegui 2 and Elena N. Naumova 1 1 Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; [email protected] 2 Department of Immunology, Faculty of Medical Sciences, Central University, Quito 170136, Ecuador; [email protected] (B.E.); [email protected] (F.S.) * Correspondence: [email protected]; Tel.: +1-617-320-4306 Received: 30 June 2020; Accepted: 5 August 2020; Published: 13 August 2020 Abstract: Time series analysis in epidemiological studies is typically conducted on aggregated counts, although data tend to be collected at finer temporal resolutions. The decision to aggregate data is rarely discussed in epidemiological literature although it has been shown to impact model results. We present a critical thinking process for making decisions about data aggregation in time series analysis of seasonal infections. We systematically build a harmonic regression model to characterize peak timing and amplitude of three respiratory and enteric infections that have different seasonal patterns and incidence. We show that irregularities introduced when aggregating data must be controlled during modeling to prevent erroneous results. Aggregation irregularities had a minimal impact on the estimates of trend, amplitude, and peak timing for daily and weekly data regardless of the disease. However, estimates of peak timing of the more common infections changed by as much as 2.5 months when controlling for monthly data irregularities.
    [Show full text]
  • A Critique of Structural Vars Using Real Business Cycle Theory∗
    Federal Reserve Bank of Minneapolis Research Department A Critique of Structural VARs Using Real Business Cycle Theory∗ V. V. Chari, Patrick J. Kehoe, Ellen R. McGrattan Working Paper 631 Revised February 2005 ABSTRACT The main substantive finding of the recent structural vector autoregression literature with a differ- enced specification of hours (DSVAR) is that technology shocks lead to a fall in hours. Researchers have used these results to argue that standard business cycle models in which technology shocks leads to a rise in hours should be discarded. We evaluate the DSVAR approach by asking the following: Is the specification derived from this approach misspecified when the data is generated by the very model the literature is trying to discard, namely the standard business cycle model? We find that it is misspecified. Moreover, this misspecification is so great that it leads to mistaken inferences that are quantitatively large. We show that the other popular specification which uses the level of hours (LSVAR) is also misspecified with respect to the standard business cycle model. We argue that an alternative approach, the business cycle accounting approach, is a more fruitful technique for guiding the development of business cycle theory. ∗Chari, University of Minnesota and Federal Reserve Bank of Minneapolis; Kehoe, Federal Reserve Bank of Minneapolis and University of Minnesota; McGrattan, Federal Reserve Bank of Minneapolis and University of Minnesota. The authors thank the National Science Foundation for support. The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
    [Show full text]
  • Comparing the Forecasting Performance of Var, Bvar and U-Midas
    COMPARING THE FORECASTING PERFORMANCE OF VAR, BVAR AND U-MIDAS Submitted by Alessio Belloni A thesis submitted to the Department of Statistics in partial fulfillment of the requirements for a one-year Master degree in Statistics in the Faculty of Social Sciences Supervisors: Sebastian Ankargren & Mattias Nordin Spring, 2017 ABSTRACT This paper aims to compare the forecasting performance of the widely used VAR and Bayesian VAR model to the unrestricted MIDAS regression. The models are tested on a real-time macroeconomic data set ranging from 2000 to 2015. The variables are mixed frequency data, specifically, predictions are made for GDP, using economic tendency indicator, unemployment and inflation as predicting variables. The baseline model of this analysis is a simple VAR, while it has great flexibility, this model risks to overfit the data and as a consequence makes unreliable predictions. The Villani Bayesian VAR is meant to solve this problem by introducing long run beliefs about the data structure and the steady state unconditional means of each se- ries. When facing mixed frequency data, both these approached aggregate at the lower level by discarding useful information. In this scenario, the unrestricted MIDAS model addresses this problem without losing high frequency information. The results show how both BVAR and U-MIDAS outperform VAR at every horizon, while there is no absolute winner among BVAR and U-MIDAS. Evidence suggests that U-MIDAS is superior for short horizons, specifically up to the 5th step ahead, which corresponds to one year and a quarter. Contents 1 Introduction 3 2 Theory 4 2.1 VAR........................................4 2.2 Bayesian VAR .
    [Show full text]