Towards Defining the Lymphoma Methylome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 4D Nucleome Project
The 4D nucleome project The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Dekker, Job et al. “The 4D Nucleome Project.” Nature 549, no. 7671 (September 2017): 219–226 © 2017 Macmillan Publishers Limited, part of Springer Nature As Published http://dx.doi.org/10.1038/NATURE23884 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114838 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 September 27. Published in final edited form as: Nature. 2017 September 13; 549(7671): 219–226. doi:10.1038/nature23884. The 4D Nucleome Project Job Dekker1, Andrew S. Belmont2, Mitchell Guttman3, Victor O. Leshyk4, John T. Lis5, Stavros Lomvardas6, Leonid A. Mirny7, Clodagh C. O’Shea8, Peter J. Park9, Bing Ren10, Joan C. Ritland Politz11, Jay Shendure12, Sheng Zhong4, and the 4D Nucleome Network13 1Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Howard Hughes Medical Institute, Worcester, MA 01605 2Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 3Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 4Department -
The International Human Epigenome Consortium (IHEC): a Blueprint for Scientific Collaboration and Discovery
The International Human Epigenome Consortium (IHEC): A Blueprint for Scientific Collaboration and Discovery Hendrik G. Stunnenberg1#, Martin Hirst2,3,# 1Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, The Netherlands 2Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4. 3Canada’s Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, Canada V5Z 4S6 #Corresponding authors [email protected] [email protected] Abstract The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalogue of high-resolution reference epigenomes of major primary human cell types. The studies now presented (cell.com/XXXXXXX) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic data sets to gain insights in the epigenetic control of cell states relevant for human health and disease. One of the great mysteries in developmental biology is how the same genome can be read by cellular machinery to generate the plethora of different cell types required for eukaryotic life. As appreciation grew for the central roles of transcriptional and epigenetic mechanisms in specification of cellular fates and functions, researchers around the world encouraged scientific funding agencies to develop an organized and standardized effort to exploit epigenomic assays to shed additional light on this process (Beck, Olek et al. 1999, Jones and Martienssen 2005, American Association for Cancer Research Human Epigenome Task and European Union 2008). In March 2009, leading scientists and international health research funding agency representatives were invited to a meeting in Bethesda (MD, USA) to gauge the level of interest in an international epigenomics project and to identify potential areas of focus. -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Pharmacogene Regulatory Elements: from Discovery to Applications
Smith et al. Genome Medicine 2012, 4:45 http://genomemedicine.com/content/4/5/45 REVIEW Pharmacogene regulatory elements: from discovery to applications Robin P Smith1,2†, Ernest T Lam2,3†, Svetlana Markova1, Sook Wah Yee1* and Nadav Ahituv1,2* Pharmacogenomics and gene regulatory elements: Abstract an emerging picture Regulatory elements play an important role in the Most pharmacogenomics studies to date have focused on variability of individual responses to drug treatment. coding variants of pharmacologically important proteins. This has been established through studies on three However, well-supported examples of variants in regu la- classes of elements that regulate RNA and protein tory elements of genes involved in drug response, such as abundance: promoters, enhancers and microRNAs. drug metabolizing enzymes and transporters (see review Each of these elements, and genetic variants within by Georgitsi et al. [1]), show that variants in noncoding them, are being characterized at an exponential pace regulatory sequences are also likely to be important by next-generation sequencing (NGS) technologies. In (Table 1). Th ree classes of regulatory elements have been this review, we outline examples of how each class of studied in this context: promoters, enhancers and element aff ects drug response via regulation of drug microRNAs (miRNAs). Each of these has a direct impact targets, transporters and enzymes. We also discuss on the abundance of messenger RNA (mRNA) (in the case the impact of NGS technologies such as chromatin of promoters and enhancers) and protein (in the case of immunoprecipitation sequencing (ChIP-Seq) and RNA miRNAs). Genetic variation within each of these elements sequencing (RNA-Seq), and the ramifi cations of new has been linked to human disease as well as interindividual techniques such as high-throughput chromosome diff erences in drug response. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
The Database of Chromosome Imbalance Regions and Genes
Lo et al. BMC Cancer 2012, 12:235 http://www.biomedcentral.com/1471-2407/12/235 RESEARCH ARTICLE Open Access The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization Fang-Yi Lo1, Jer-Wei Chang1, I-Shou Chang2, Yann-Jang Chen3, Han-Shui Hsu4, Shiu-Feng Kathy Huang5, Fang-Yu Tsai2, Shih Sheng Jiang2, Rajani Kanteti6, Suvobroto Nandi6, Ravi Salgia6 and Yi-Ching Wang1* Abstract Background: Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods: Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results: We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. -
Integrative Functional Genomics Identifies an Enhancer Looping to the SOX9 Gene Disrupted by the 17Q24.3 Prostate Cancer Risk Locus
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus Xiaoyang Zhang,1,4 Richard Cowper-SalÁlari,1,2,4 Swneke D. Bailey,3 Jason H. Moore,1,2 and Mathieu Lupien1,3,5 1Department of Genetics and Institute for Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA; 2Computational Genetics Laboratory and Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA; 3Ontario Cancer Institute, Princess Margaret Hospital– University Health Network, and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada Genome-wide association studies (GWAS) are identifying genetic predisposition to various diseases. The 17q24.3 locus harbors the single nucleotide polymorphism (SNP) rs1859962 that is statistically associated with prostate cancer (PCa). It defines a 130-kb linkage disequilibrium (LD) block that lies in an ~2-Mb gene desert area. The functional biology driving the risk associated with this LD block is unknown. Here, we integrate genome-wide chromatin landscape data sets, namely, epigenomes and chromatin openness from diverse cell types. This identifies a PCa-specific enhancer within the rs1859962 risk LD block that establishes a 1-Mb chromatin loop with the SOX9 gene. The rs8072254 and rs1859961 SNPs mapping to this enhancer impose allele-specific gene expression. The variant allele of rs8072254 facilitates androgen receptor (AR) binding driving increased enhancer activity. The variant allele of rs1859961 decreases FOXA1 binding while increasing AP-1 binding. -
'Omics' Approaches to Assess the Effects of Phytochemicals in Human
Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2008), 99, E-Suppl. 1, ES127–ES134 doi:10.1017/S0007114508965818 q The Authors 2008 High throughput ‘omics’ approaches to assess the effects of phytochemicals . IP address: in human health studies 170.106.40.219 Jaroslava Ovesna´1*, Ondrˇej Slaby´2, Olivier Toussaint3, Milan Kodı´cˇek4, Petr Marsˇ´ık5, Vladimı´ra Pouchova´1 and Toma´sˇ Vaneˇk5 1Crop Research Institute, Drnovska´ 507, 161 06 Prague 6, Ruzyne, Czech Republic , on 2Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic 01 Oct 2021 at 22:26:40 3Department of Biology, Unit of Cellular Biochemistry and Biology, University of Namur (FUNDP), 5000 Namur, Belgium 4Institute of Chemical Technology, Technicka´ 3, Praha 6, 160 00 Prague 6, Czech Republic 5Institute of Experimental Botany, Suchodol, 161 06 Prague 6, Czech Republic , subject to the Cambridge Core terms of use, available at Human health is affected by many factors. Diet and inherited genes play an important role. Food constituents, including secondary metabolites of fruits and vegetables, may interact directly with DNA via methylation and changes in expression profiles (mRNA, proteins) which results in metabolite content changes. Many studies have shown that food constituents may affect human health and the exact knowledge of genotypes and food constituent interactions with both genes and proteins may delay or prevent the onset of diseases. Many high throughput methods have been employed to get some insight into the whole process and several examples of successful research, namely in the field of genomics and transcriptomics, exist. Studies on epigenetics and RNome significance have been launched. -
Haemophilus Influenzae Genome Evolution During Persistence in The
Haemophilus influenzae genome evolution during PNAS PLUS persistence in the human airways in chronic obstructive pulmonary disease Melinda M. Pettigrewa, Christian P. Ahearnb,c, Janneane F. Gentd, Yong Konge,f,g, Mary C. Gallob,c, James B. Munroh,i, Adonis D’Melloh,i, Sanjay Sethic,j,k, Hervé Tettelinh,i,1, and Timothy F. Murphyb,c,l,1,2 aDepartment of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510; bDepartment of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203; cClinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203; dDepartment of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510; eDepartment of Biostatistics, Yale School of Public Health, New Haven, CT 06510; fDepartment of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510; gW.M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510; hInstitute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201; iDepartment of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; jDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203; kDepartment of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215; and lDivision of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203 Edited by Rino Rappuoli, GSK Vaccines, Siena, Italy, and approved February 27, 2018 (received for review November 10, 2017) Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and adaptation cannot be accurately studied in vitro or in animal infect humans and are critical to the pathogenesis of chronic obstruc- models as a result of the unique physiological and immunological tive pulmonary disease (COPD). -
The Promise of Omics Studies in Pediatric Exercise Research
Bridging the Gaps: The Promise of Omics Studies in Pediatric Exercise Research Shlomit Radom-Aizik and Dan M. Cooper University of California, Irvine In this review, we highlight promising new discoveries that may generate useful and clinically relevant insights into the mechanisms that link exercise with growth during critical periods of development. Growth in childhood and adolescence is unique among mammals and is a dynamic process regulated by an evolution of hormonal and inflammatory mediators, age-dependent progression of gene expression, and environmentally modulated epigenetic mechanisms. Many of these same processes likely affect molecular transducers of physical activity. How the molecular signaling associated with growth is synchronized with signaling associated with exercise is poorly understood. Recent advances in “omics”—namely genomics and epigenetics, metabolomics, and proteomics—now provide exciting approaches and tools that can be used for the first time to address this gap. A biologic definition of “healthy” exercise that links the metabolic transducers of physical activity with parallel processes that regulate growth will transform health policy and guidelines that promote optimal use of physical activity. Keywords: physical activity, genomics, epigenetics, proteomics, metabolomics Children, like most mammals during growth and Growth and Exercise: Finding development, are naturally physically active. Develop- mental biologists, pediatricians, and other child health Biomarker Clues in Circulating care specialists have -
SNP@ Evolution: a Hierarchical Database of Positive Selection On
BMC Evolutionary Biology BioMed Central Database Open Access SNP@Evolution: a hierarchical database of positive selection on the human genome Feng Cheng1,2, Wei Chen1,2, Elliott Richards3,4, Libin Deng1,5 and Changqing Zeng*1,5 Address: 1Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China, 2Graduate School of the Chinese Academy of Sciences, Beijing, PR China, 3Department of Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA, 4Current address: Baylor College of Medicine, Houston, TX, USA and 5Current address: Medical College of Nanchang University, Nanchang, Jiangxi, PR China Email: Feng Cheng - [email protected]; Wei Chen - [email protected]; Elliott Richards - [email protected]; Libin Deng - [email protected]; Changqing Zeng* - [email protected] * Corresponding author Published: 5 September 2009 Received: 25 November 2008 Accepted: 5 September 2009 BMC Evolutionary Biology 2009, 9:221 doi:10.1186/1471-2148-9-221 This article is available from: http://www.biomedcentral.com/1471-2148/9/221 © 2009 Cheng et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Positive selection is a driving force that has shaped the modern human. Recent developments in high throughput technologies and corresponding statistics tools have made it possible to conduct whole genome surveys at a population scale, and a variety of measurements, such as heterozygosity (HET), FST, and Tajima's D, have been applied to multiple datasets to identify signals of positive selection.