C O N F E R E N C E 6 4 October 2017

Total Page:16

File Type:pdf, Size:1020Kb

C O N F E R E N C E 6 4 October 2017 Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2017-2018 C o n f e r e n c e 6 4 October 2017 CASE I: 3120125021 (JPC 4017935). Microscopic Description: Skin: In the dermis and subcutis, elevating the overlying Signalment: 1-year-old, Crested Guinea epidermis, is a densely cellular, poorly fowl, Guttera pucherani, avian. demarcated, non-encapsulated, infiltrative growing, monomorphic round cell History: A peri-orbital mass surrounded the neoplasm. Neoplastic cells are organized in left eye. Growth of the mass initially started poorly defined lobules of large solid sheets rostrally from the eye and slowly extended with scant intermingled fibrovascular to the nose and the upper eyelids. Initial connective tissue. Neoplastic cells are round treatment with enrofloxacin gave transient to oval with a small amount of pale improvement. A second treatment with the amphophilic cytoplasm and indistinct cell same antibiotic did not have effect. Bacterial borders. Nuclei are round and contain culture yielded Staphylococci susceptible to coarsely clumped chromatin and one or two doxycyclin. Treatment with doxycyclin was started but did not give improvement. A surgical biopsy was then taken and submitted for histopathology. Gross Pathology: Bilaterally there was a mass of approximately 1.5cm in diameter, involving the upper eyelids and extending into the subcutis of the nose. On cut surface the mass was solid, firm and marbled pale tan to black with multifocally softer tissue with cystic spaces containing viscous mucoid material. Laboratory results: Bacterial culture in the Feathered skin, guinea fowl. At subgross magnification, past: Staphylococci, not further specified. the dermis is expanded and largely effaced by sheets of neoplastic round cells. (HE, 5X) 1 moderately distinct nucleoli. Mitotic figures the Galliformes order but not including are 18 per 5 HPF and there is mild domestic fowl. anisocytosis and anisokaryosis. Small numbers of neoplastic cells multifocally Lymphomatous tumors are also relatively infiltrate the epidermis and feather follicle common in domestic fowl and turkeys. epithelium and there’s multifocal infiltration Common sites of occurrence are liver, and replacement of pre-existing muscle spleen, thymus and kidneys. Cutaneous and tissue and lacrimal glands (not present in all oropharyngeal lymphomas have been slides). Multifocally there are areas of reported in pheasants. The neoplasms were necrosis characterized by pyknosis, present in the skin around the eyes, around karyorrhexis, karyolysis, loss of cellular the external ear openings and involving the detail and amorphous, eosinophilic debris hard palate.4 Histologically, these tumors with associated infiltration of moderate were composed of a pleomorphic mixture of numbers of heterophils. Multifocally lymphoblasts and lymphocytes. 4 dispersed throughout the neoplasm there are small numbers of heterophils and A similar case of a guinea fowl presenting macrophages with an occasional with a periorbital lymphoma has been multinucleated giant cell. The overlying reported and was associated with visceral epidermis is multifocally ulcerated and lymphomas in the spleen, lungs, kidneys, covered with serocellular crusts (not present liver and ovary. 8 In our case, however, we in all slides). did not perform a full necropsy and information regarding the internal organs Contributor’s Morphologic Diagnosis: was not available. Skin: Lymphoma. Most information on ocular and periorbital Contributor’s Comment: Guinea fowl are tumors in animals is from dogs and cats. In terrestrial, ground-living birds that belong to these animals, ocular tumors are relatively the order Galliformes, family Numidae. rare. Ocular tumors can arise from the Some ornithologists consider them to be part eyelids and adnexa, the optic nerve and of the superfamily Phasanidae (including structures within the globe, and metastases Partridges and Pheasants). are generally infrequent. The most frequent neoplasms of the eyelid and conjunctiva in There are limited reports available on dogs are squamous cell carcinoma and lymphoid neoplasms and neoplasms in Meibomian adenoma. Less frequently general in guinea fowl. Pancreatic encountered are melanocytic neoplasms, adenocarcinomas and seminomas have been papillomas, vascular tumors, mast cell reported as rare spontaneous neoplasms in tumors and lymphomas. guinea fowl.3,1 Viral- induced pancreatic tumors and duodenal adenomas have been In dogs, cats and cattle, multicentric reported in guinea fowl in experimental lymphoma regularly involves the eye. In settings.9,2 In general, the most common dogs and cats, there is predominant naturally-occurring neoplasms in birds are involvement of the uvea, whereas in cattle lymphomas, fibromas and fibrosarcomas, retrobulbar (orbital) neoplasms are more and lipomas6; however these information are common. Only occasionally are lymphomas based upon a population including species of encountered in the tissues of the eyelids in these animals. Solitary lymphomas in the 2 conjunctiva and third eyelid have been leukosis virus (retrovirus) reported in cats and horses. • Reticuloendotheliosis, caused by reticuloendotheliosis virus In birds, squamous papillomas, squamous (retrovirus). cell carcinomas, malignant melanomas, basal cell tumors and adeno(carcino)mas of Of these entities, Marek’s disease can the lacrimal gland have been reported in the involve the skin.5 Marek’s disease is a skin and subcutis of the eyelids.7 Lymphoma disease that mainly affects chickens and is reported as a neoplasm arising in the orbit only occasionally affects pheasants, quail, as are infiltrative carcinomas, chondromas game fowl and turkeys. To the best and teratomas.7 An infectious etiology has knowledge of the author, Marek’s disease not been identified in the lymphomas has not been reported in guinea fowl. reported in pet birds or in the report of a periorbital lymphoma in a Guinea fowl.7,8 JPC Diagnosis: Feathered skin: Lymphoma, crested guinea fowl (Guttera Lymphocytic neoplasms in poultry are often pucherani), avian. categorized as infectious or non-infectious. Spontaneously occurring neoplasms often Conference Comment: There are three involve older birds whereas viral induced main viral neoplastic diseases in chickens neoplasms develop in relatively young which result in lymphoid tumors: Marek’s birds.5 The most important viral-induced disease (MD), avian leukosis, and neoplastic diseases in poultry are: reticuloendotheliosis.5 • Marek’s disease, caused by Gallid Marek’s disease is caused by an alpha herpesvirus type 2 herpesvirus (Gallid herpesvirus-2) and • Avian Leukosis caused by avian typically affects young chickens, and rarely quail, turkeys, pheasants, and jungle fowl. The herpesvirus that causes MD is classified into three serotypes. Serotype 1 is ubiquitous in chickens and varies in pathogenicity from very virulent (vv+) which is oncogenic to avirulent (mild). Feathered skin, guinea fowl. Neoplastic cells have distinct cell borders, a moderate amounts of finely Serotype 2 is also granular eosinophilic cytoplasm, irregularly round nuclei with coarsely stippled chromatin. Moderate common in numbers of heterophils and plasma cells are scattered throughout the neoplasm. (HE, 400X) chickens but is 3 non-oncogenic and serotype 3 is common in from LL. If female, these chickens will lay turkeys and also non-oncogenic. The virus is fewer eggs and shed the virus to their own spread through inhalation of virus- progeny further disseminating the infection. containing feather follicle dander of infected Clinical signs of ALV are non-specific and birds which can spread across long many birds simply appear emaciated and distances. Carrier birds can be silently lethargic. Tumors may be detected within infected and periodically shed the virus the bursa of Fabricius by insertion of the throughout their lives. There are four clinician’s finger into the cloaca. different types of lesions seen in MD: (1) Additionally, birds with skeletal peripheral nerve enlargement, (2) myelomatosis (subgroup J) may develop discoloration of the iris; (3) swelling of osteopetrosis of the shanks resulting in what feather follicles with skin reddening are colloquially known as “boot shanks”. (leukosis); (4) and visceral tumors often Avian retroviruses cause osteopetrosis by involving heart, spleen, liver, gonads, infecting osteoblasts and making them kidneys, and proventriculus. Of the four, constitutively active, while osteoclasts visceral tumors are most common and can remain unaffected.1,2 Microscopically, result in depressed, cachexic birds prior to neoplastic cells are uniformly lymphoblastic death with vague clinical signs. and positive for immunoglobulin M and B- Microscopically, lymphomas caused by MD cell markers since they originate in the contain pleomorphic T-lymphocytes that Bursa of Fabricius.5 carry a MD tumor-associated surface antigen (MATSA).5 In pet birds, Reticuloendotheliosis (RE) encompasses a epitheliotropic lymphoma that appears variety of conditions caused by retroviruses. similar to MD occurs but the etiology has Only two conditions caused by this non- not been identified.11 defective RE virus, runting syndrome and chronic lymphoma are of economic Avian leukosis (ALV) affects mature importance particularly in the southern U.S. chickens and is caused by alpha retroviruses Runting disease is induced by vaccination known as avian leukosis viruses which have with RE virus-contaminated biologics of been further classified
Recommended publications
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Rapid Evolution of the Human Gut Virome
    Rapid evolution of the human gut virome Samuel Minota, Alexandra Brysona, Christel Chehouda, Gary D. Wub, James D. Lewisb,c, and Frederic D. Bushmana,1 aDepartment of Microbiology, bDivision of Gastroenterology, and cCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved May 31, 2013 (received for review January 15, 2013) Humans are colonized by immense populations of viruses, which sequenced independently to allow estimation of within-time point metagenomic analysis shows are mostly unique to each individual. sample variation. Virus-like particles were extracted by sequential To investigate the origin and evolution of the human gut virome, filtration, Centricon ultrafiltration, nuclease treatment, and sol- we analyzed the viral community of one adult individual over 2.5 y vent extraction. Purified viral DNA was subjected to linear am- by extremely deep metagenomic sequencing (56 billion bases of plification using Φ29 DNA polymerase, after which quantitative purified viral sequence from 24 longitudinal fecal samples). After PCR showed that bacterial 16S sequences were reduced to less assembly, 478 well-determined contigs could be identified, which than 10 copies per nanogram of DNA, and human sequences were are inferred to correspond mostly to previously unstudied bacterio- reduced to below 0.1 copies per nanogram, the limit of detection. phage genomes. Fully 80% of these types persisted throughout the Paired-end reads then were acquired using Illumina HiSeq se- duration of the 2.5-y study, indicating long-term global stability.
    [Show full text]
  • Chirico Et Al. Supplementary Methods and Results
    !"#$#%&'()'*+,'-.//+(0(1)*$2'3()"&45'*14'6(5.+)5' ! 7*8+('-9,'"#$%!&$'()*!+,#-)$.!.-+.+-/(+%0!$%1!2$.0(1!1#02-(./(+%' ! Taxon Total Validated Species Genome length Overlap Capsid type Capsid Species Species with (ln) proportion flexible? overlap (ln) DNA viruses Acanthamoeba-polyphaga-mimivirus 1 0 Adenoviridae 44 12 12 10.47 -3.71 icosahedral no Anellovirus 5 1 1 8.26 -1.78 icosahedral no Ascoviridae 3 0 Asfarviridae 1 0 Bacillus-phage-GIL-sixteen-c 1 1 1 9.61 -3.05 no description ? Bacillus-virus-one 1 0 Baculoviridae 43 1 1 11.78 -4.79 rod shaped yesa Bicaudaviridae 2 0 Circoviridae 16 3 3 7.65 -1.78 icosahedral no Clostridium-phage-phiC-two 1 0 Corticovirus 1 1 1 9.22 -4.76 icosahedral no Fuselloviridae 5 3 3 9.69 -3.22 lemon-shaped yesb Geminiviridae 199 82 80 8.23 -1.54 icosahedral no Geobacillus-phage-GBSVone 1 1 1 10.45 -4.69 no description ? Globuloviridae 2 0 Gryllus-bimaculatus-nudivirus 1 0 Heliothis-zea-virus-one 1 0 Herpesviridae 47 26 26 11.97 -4.44 icosahedral no His-one-virus 1 0 His-two-virus 1 0 Inoviridae 25 18 17 8.88 -4.64 filamentous yes Iridoviridae 8 1 1 11.54 -5.31 icosahedral no Lipothrixviridae 8 2 2 10.62 -4.34 rod shaped yes Microviridae 55 13 12 8.56 -2.23 icosahedral no Myoviridae 71 35 35 11.37 -4.89 icosahedral no Nanoviridae 6 1 0 Nimaviridae 1 0 Papillomaviridae 66 13 13 8.97 -3.11 icosahedral no Parvoviridae 44 8 6 8.56 -2.14 icosahedral no Phycodnaviridae 8 1 1 12.72 -5.95 icosahedral no Plasmaviridae 1 1 1 9.39 -8.00 quasi-spherical yes Podoviridae 62 32 32 10.59 -3.58 icosahedral no Polydnaviridae
    [Show full text]
  • (Elaphe Carinata): the First Report in China
    bioRxiv preprint doi: https://doi.org/10.1101/629980; this version posted May 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Emergence and Genetic Analysis of Avian Gyrovirus 2 Variants-Related Gyrovirus 2 in Farmed King-ratsnakes (Elaphe carinata): the First Report in China 3 4 Qianqian Wu1, Qinxi Chen1, Wen Hu1, Xueyu Wang1, Jun Ji1,* 5 1Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes 6 Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, PR China 7 8 9 *Corresponding authors: 10 Jun Ji 11 Henan Provincial Engineering Laboratory of Insects Bio-reactor, Wolong Road 1638, 12 Nanyang Normal University, Nanyang, PR China 13 Tel: +8618537796628 14 Fax: +86(0) 37763525087 15 E-mail addresses: [email protected] 16 bioRxiv preprint doi: https://doi.org/10.1101/629980; this version posted May 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 17 ABSTRACT Avian gyrovirus 2 (AGV2), which is similar to chicken infectious anemia 18 virus, is a new member of the Circovirus genus. AGV2 has been detected not only in chicken 19 but also in human tissues and feces. In this study, a total of 91 samples (8 liver tissues and 83 20 faecal samples) collected from king-ratsnakes (Elaphe carinata) at 7 separate farms in Hubei 21 and Henan, China, were analyzed to detect AGV2 DNA via specific PCR.
    [Show full text]
  • The Consequence of a Single Nucleotide Substitution on The
    The Consequence of a Single Nucleotide Substitution on the Molecular Diagnosis of the Chicken Anemia Virus Davidson, I.,1* Raibshtein, I.,1 Al Tori, A.1 and Elrom, K.2 1 Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan P.O. Box 12, Israel 50250. 2 Private Poultry Veterinarian, Kiryat Tivon, Israel 79330. * Corresponding Author: Dr. Irit Davidson, Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, P.O.Box 12, Israel 50250. Email: [email protected] ABSTRACT While genomic variations, including single nucleotide polymorphism (SNP) are expected and common for RNA viruses, their occurrence is anticipated at a fairy low frequency for Chicken Anemia Virus (CAV), as it contains a conserved DNA genome. The present report demonstrate that in 4/80 CAV field isolates one nucleotide substitution, from G to A, located in the middle of the real-time probe was responsible for false- negative real-time PCR amplification results. This finding emphasizes the need of awareness to harmful mismatches that occur even in conserved genomes, and the need for periodical verification of amplification primers and probes according to the clinical picture in the field. Keywords: Chickens; Chicken Anemia Virus; Molecular Diagnosis; SNP INTRODUCTION and also at the carboxy-terminus of VP2 and VP3 (4). The Chicken anemia virus (CAV) is ubiquitous with a worldwide present phylogenetic classification of sequenced worldwide distribution having a considerable economic impact due to CAV isolates is not supported by any biological distinction; its ability to cause clinical morbidity, increased mortality, therefore, the significance of the phylogenetic grouping is but also sub-clinical infections and immune-suppression still rather vague (5).
    [Show full text]
  • Torque Teno Virus the Cause of PAS?
    1 Characterization of Torque Teno Virus by In Vitro Infection of Gnotobiotic Pigs: Torque Teno Virus the Cause of PAS? A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with research distinction in the undergraduate colleges of The Ohio State University By: Ryan Jackwood The Ohio State University June 2011 Project Advisor: Dr. Steven Krakowka, Department of Veterinary Biosciences, College of Veterinary Medicine 2 Table of Contents Abstract……………………………………………………………………………………………………………..3 Background………………………………………………………………………………………………………..4 Chapter 1 – Isolating and sequencing TTV discovered in porcine alveolar cells Section: 1.1 – Overview………………………………………………………………………………………12 Section: 1.2 – Procedure/Results………………………………………………………………………..13 Section: 1.3 – Discussion …………………………………………………………………………………….16 Chapter 2 – Using a cell line positive for g1- and g2-TTV to infect gnotobiotic pigs Section: 2.1 – Overview………………………………………………………………………………………23 Section: 2.2 – Procedure ………………………………………………….………………………………..24 Section: 2.3 – Results………………………………………………………………………………………….25 Section: 2.3 – Discussion……………………………………………………………………………………..27 Sources Cited.........................................................................................................33 Acknowledgements…………………………………………………………………………………………….35 3 Abstract Viruses are important disease causing agents prevalent in all animal species. Understanding their characteristics and pathogenicity are crucial to control and prevent disease. Piglet Anemia Syndrome (PAS)
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces
    microorganisms Article Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces Enik˝oFehér 1, Eszter Mihalov-Kovács 1, Eszter Kaszab 1, Yashpal S. Malik 2 , Szilvia Marton 1 and Krisztián Bányai 1,3,* 1 Veterinary Medical Research Institute, Hungária Krt 21, H-1143 Budapest, Hungary; [email protected] (E.F.); [email protected] (E.M.-K.); [email protected] (E.K.); [email protected] (S.M.) 2 College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India; [email protected] 3 Department of Pharmacology and Toxicology, University of Veterinary Medical Research, István Utca. 2, H-1078 Budapest, Hungary * Correspondence: [email protected] Abstract: Replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses are a diverse group of viruses, and their persistence in the environment has been studied for over a decade. However, the persistence of CRESS DNA viruses in herds of domestic animals has, in some cases, serious economic consequence. In this study, we describe the diversity of CRESS DNA viruses identified during the metagenomics analysis of fecal samples collected from a single swine herd with apparently healthy animals. A total of nine genome sequences were assembled and classified into two different groups (CRESSV1 and CRESSV2) of the Cirlivirales order (Cressdnaviricota phylum). The novel CRESS DNA viral sequences shared 85.8–96.8% and 38.1–94.3% amino acid sequence identities Citation: Fehér, E.; Mihalov-Kovács, for the Rep and putative capsid protein sequences compared to their respective counterparts with E.; Kaszab, E.; Malik, Y.S.; Marton, S.; extant GenBank record.
    [Show full text]
  • Understanding the Pathogenesis of Porcine Circovirus Type 2 (PCV2)-Associated Diseases Tanja Ilse Opriessnig Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Understanding the pathogenesis of porcine circovirus type 2 (PCV2)-associated diseases Tanja Ilse Opriessnig Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons, and the Veterinary Pathology and Pathobiology Commons Recommended Citation Opriessnig, Tanja Ilse, "Understanding the pathogenesis of porcine circovirus type 2 (PCV2)-associated diseases " (2006). Retrospective Theses and Dissertations. 1481. https://lib.dr.iastate.edu/rtd/1481 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the pathogenesis of porcine circovirus type 2 (PCV2)-associated diseases by Tanja Ilse Opriessnig A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Pathology Program of Study Committee: Patrick G. Halbur, Major Professor Bruce H. Janke Mark R. Ackermann Richard B. Evans Eileen L. Thacker Iowa State University Ames, Iowa 2006 Copyright © Tanja Ilse Opriessnig, 2006. All rights reserved. UMI Number: 3218983 UMI Microform 3218983 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii Graduate College Iowa State University NOTE: Electronic theses will not contain the signed thesis approval page here.
    [Show full text]
  • Since January 2020 Elsevier Has Created a COVID-19 Resource Centre with Free Information in English and Mandarin on the Novel Coronavirus COVID- 19
    Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Review Molecular Bases and Role of Viruses in the Human Microbiome Shira R. Abeles 1 and David T. Pride 1,2 1 - Department of Medicine, University of California, San Diego, CA 92093, USA 2 - Department of Pathology, University of California, San Diego, CA 92093, USA Correspondence to David T. Pride: Department of Pathology, University of California, San Diego, CA 92093, USA. [email protected] http://dx.doi.org/10.1016/j.jmb.2014.07.002 Edited by J. L. Sonnenburg Abstract Viruses are dependent biological entities that interact with the genetic material of most cells on the planet, including the trillions within the human microbiome. Their tremendous diversity renders analysis of human viral communities (“viromes”) to be highly complex. Because many of the viruses in humans are bacteriophage, their dynamic interactions with their cellular hosts add greatly to the complexities observed in examining human microbial ecosystems.
    [Show full text]
  • Viruses Infecting Reptiles
    Viruses 2011, 3, 2087-2126; doi:10.3390/v3112087 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Viruses Infecting Reptiles Rachel E. Marschang Institut für Umwelt und Tierhygiene, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; E-Mail: [email protected]; Tel.: +49-711-459-22468; Fax: +49-711-459-22431 Received: 2 September 2011; in revised form: 19 October 2011 / Accepted: 21 October 2011 / Published: 1 November 2011 Abstract: A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. Keywords: reptile; taxonomy; iridovirus; herpesvirus; adenovirus; paramyxovirus 1. Introduction Reptile virology is a relatively young field that has undergone rapid development over the past few decades.
    [Show full text]