Rapid Evolution of the Human Gut Virome

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Evolution of the Human Gut Virome Rapid evolution of the human gut virome Samuel Minota, Alexandra Brysona, Christel Chehouda, Gary D. Wub, James D. Lewisb,c, and Frederic D. Bushmana,1 aDepartment of Microbiology, bDivision of Gastroenterology, and cCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved May 31, 2013 (received for review January 15, 2013) Humans are colonized by immense populations of viruses, which sequenced independently to allow estimation of within-time point metagenomic analysis shows are mostly unique to each individual. sample variation. Virus-like particles were extracted by sequential To investigate the origin and evolution of the human gut virome, filtration, Centricon ultrafiltration, nuclease treatment, and sol- we analyzed the viral community of one adult individual over 2.5 y vent extraction. Purified viral DNA was subjected to linear am- by extremely deep metagenomic sequencing (56 billion bases of plification using Φ29 DNA polymerase, after which quantitative purified viral sequence from 24 longitudinal fecal samples). After PCR showed that bacterial 16S sequences were reduced to less assembly, 478 well-determined contigs could be identified, which than 10 copies per nanogram of DNA, and human sequences were are inferred to correspond mostly to previously unstudied bacterio- reduced to below 0.1 copies per nanogram, the limit of detection. phage genomes. Fully 80% of these types persisted throughout the Paired-end reads then were acquired using Illumina HiSeq se- duration of the 2.5-y study, indicating long-term global stability. quencing, yielding more than 573 million reads (Q ≥ 35; mean Mechanisms of base substitution, rates of accumulation, and the read length, 97.5 bp), with 15–39 million reads per sample (Table amount of variation varied among viral types. Temperate phages S1). No attempt was made to study gut RNA viruses, which also showed relatively lower mutation rates, consistent with replication are known to exist, although some samples were dominated by by accurate bacterial DNA polymerases in the integrated prophage abundant plant RNA viruses ingested with food (15). state. In contrast, Microviridae, which are lytic bacteriophages with Sequence reads from each sample were first assembled in- single-stranded circular DNA genomes, showed high substitution dividually using MetaIDBA (16). When reads were aligned back − rates (>10 5 per nucleotide each day), so that sequence divergence onto contigs generated within each sample, only 71% of reads over the 2.5-y period studied approached values sufficient to distin- could be aligned. Improved contigs then were generated using guish new viral species. Longitudinal changes also were associated a hybrid assembly method combining all samples, taking advan- MICROBIOLOGY with diversity-generating retroelements and virus-encoded Clus- tage of the fact that viruses that are rare at one time point may tered Regularly Interspaced Short Palindromic Repeats arrays. We be abundant at another. After this step, 97.6% of the reads could infer that the extreme interpersonal diversity of human gut viruses be aligned to contigs, allowing assessment of within-contig di- derives from two sources, persistence of a small portion of the versity. Rarefaction (collector’s curve) analysis showed that the global virome within the gut of each individual and rapid evolution detection of these contigs was saturated at <107 reads per sample of some long-term virome members. and at 7–10 samples (Fig. 1B), well below our sampling effort. After quality filtering and manual editing, 478 contigs showed metagenomics | microbiome | diversity generating retroelement | CRISPR >20-fold coverage (median, 82-fold); from the purification re- sults, we infer these contigs to be mostly or entirely DNA viruses here are an estimated 1031 viral particles on earth, and human (Fig. 1C). Sixty contigs assembled as closed circles (ranging in – Tfeces contain at least 109 virus-like particles per gram (1–3). size from 4 167 kb), an indication of probable completion of Many of these are identifiable as viruses that infect bacteria (bac- these genome sequences, providing an estimate of the viral pop- teriophages), but the great majority remains unidentified. Even ulation size and composition in unprecedented detail. One circular today, gut virome samples taken from different human individuals genome was sequenced independently using the Sanger method fi still yield mostly novel viruses (4–8), and only a small minority of and was con rmed to have the structure predicted from the Sol- viral ORFs resembles previously studied genes (7). exa/Illumina data (SI Methods). The abundance of each contig at Bacteriophages are of biomedical importance because of their each time point was measured by the proportion of reads that ability to transmit genes to their bacterial hosts, thereby con- aligned to it, normalized to the length of each contig. The corre- fi ferring increased pathogenicity, antibiotic resistance, and per- lation coef cient between replicate samples from the same time haps new metabolic capacity (4, 5, 9, 10). Despite their importance, point was at least 0.99, indicating a high degree of reproducibility the forces diversifying bacteriophage genomes in human hosts (Fig. S1). have not been studied in detail. Humans show considerable in- Viral Groups Detected. Taxonomic analysis of these contigs in- dividual variation in the bacterial lineages present in their guts dicated recovery of Microviridae, Podoviridae, Myoviridae, and (11–13); this variation likely is one reason for the differences in Siphoviridae, but contigs with taxonomic attributions were a mi- their phage predators (5–8, 14). The large differences in phage nority, only 13%, emphasizing the enormous sequence variation populations among individuals also may be influenced by within- present in bacteriophages. Microviridae (the group including individual viral evolution. To investigate the origin and nature of human viral populations, we carried out a detailed study of a single human gut viral com- Author contributions: S.M., A.B., G.D.W., J.D.L., and F.D.B. designed research; S.M. and munity. Ultra-deep longitudinal analysis of DNA sequences from A.B. performed research; S.M., A.B., C.C., and F.D.B. analyzed data; and S.M., A.B., and the viral community, combined with characterization of the host F.D.B. wrote the paper. bacteria, revealed rapid change over time and begins to specify The authors declare no conflict of interest. some of the mechanisms involved. This article is a PNAS Direct Submission. Results Data deposition: The sequences reported in this paper have been deposited in the National Center for Biotechnology (NCBI) database, www.ncbi.nlm.nih.gov (accession Sample Collection, Viral Purification, and DNA Sequencing. Stool no. SRP021107). samples (n = 24) were collected from a healthy male at 16 time 1To whom correspondence should be addressed. E-mail: [email protected]. points spread over 884 days (Fig. 1A). For eight of the time This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. points, two separate samples taken 1 cm apart were purified and 1073/pnas.1300833110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1300833110 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 A Day 0 180-184 851-855 879-883 Bacterial community membership and taxonomic proportions showed only modest variation over time. Longitudinal Base Substitution in Viral Contigs. Replicates 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 1 The depth of se- quence information available and the quality of the viral contigs 2 years 5 months allowed a detailed assessment of the rates of accumulation of base substitutions. For each viral contig at each time point, the BCCircular 750 1,000,000 Linear 100,000 A 500 10,000 0.95 950 Contigs 900 1,000 250 Fold coverage 850 0.90 Contigs 800 100 750 0 0 5 10152025 0.85 Samples 0e+00 1e+07 2e+07 3e+07 4e+07 4 4.5 5 10 10 10 Reads Contig Length (bp) 0.80 Jaccard Index Fig. 1. Longitudinal analysis of the human gut virome from a single in- dividual. (A) Timeline of sample collection. Note that at some time points, two 0.75 separate portions of the stool sample, taken approximately 1 cm apart, were processed and sequenced independently to assess reproducibility. (B)Rare- faction analysis of sampling depth by number of reads; detection of each 0.70 contig is scored as positive if 50% of the contig is covered by sequence reads. (Inset) Contig recovery. The x-axis is the number of samples included (black (shared membership between paired time points) line: 2 million reads; blue line: 15 million reads). (C) Contig spectrum, relating 1 10 100 850 the lengths of the contigs assembled in bas pairs (x-axis) to the depth of Interval between time points coverage (y-axis). Circular contigs are shown as blue and linear contigs as red. compared (days) ΦX174) predominated, but this predominance could be a con- B sequence of favored amplification by Φ29 polymerase of the Not temperate Temperate small circular genomes that characterize this group. 10-4.5 The most abundant contigs were mostly retained over the du- ration of the experiment. Because there are many possible pair- wise comparisons between time points, distances between time 10-5 points analyzed (Fig. 2A, x-axis) were compared with Jaccard index values (Fig. 2A, y-axis), which score shared membership, over all of the possible pairwise comparisons of time points. On average, more than 80% of contigs were found in common be- 10 -5.5 tween the time points separated by 850 d (points at the right side of the plot), the longest time intervals compared. No contigs corresponded to known viruses infecting eukaryotic 10-6 cells.
Recommended publications
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Microorganisms
    microorganisms Brief Report Temporal Variability of Virioplankton during a Gymnodinium catenatum Algal Bloom Xiao-Peng Du 1, Zhong-Hua Cai 1, Ping Zuo 2 , Fan-Xu Meng 3, Jian-Ming Zhu 1 and Jin Zhou 1,* 1 The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; [email protected] (X.-P.D.); [email protected] (Z.-H.C.); [email protected] (J.-M.Z.) 2 The School of Geography and Ocean Science, Nanjing University, Nanjing 210000, China; [email protected] 3 Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310000, China; [email protected] * Correspondence: [email protected] Received: 13 October 2019; Accepted: 10 January 2020; Published: 12 January 2020 Abstract: Viruses are key biogeochemical engines in the regulation of the dynamics of phytoplankton. However, there has been little research on viral communities in relation to algal blooms. Using the virMine tool, we analyzed viral information from metagenomic data of field dinoflagellate (Gymnodinium catenatum) blooms at different stages. Species identification indicated that phages were the main species. Unifrac analysis showed clear temporal patterns in virioplankton dynamics. The viral community was dominated by Siphoviridae, Podoviridae, and Myoviridae throughout the whole bloom cycle. However, some changes were observed at different phases of the bloom; the relatively abundant Siphoviridae and Myoviridae dominated at pre-bloom and peak bloom stages, while at the post-bloom stage, the members of Phycodnaviridae and Microviridae were more abundant. Temperature and nutrients were the main contributors to the dynamic structure of the viral community.
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Bdellovibrio Bacteriovorus Karie L
    JOURNAL OF BACTERIOLOGY, Feb. 2002, p. 1089–1094 Vol. 184, No. 4 0021-9193/02/$04.00ϩ0 DOI: 10.1128/JB.184.4.1089–1094.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Microviridae, a Family Divided: Isolation, Characterization, and Genome Sequence of ␾MH2K, a Bacteriophage of the Obligate Intracellular Parasitic Bacterium Bdellovibrio bacteriovorus Karie L. Brentlinger,1 Susan Hafenstein,1 Christopher R. Novak,1 Bentley A. Fane,1* Robert Borgon,2 Robert McKenna,2 and Mavis Agbandje-McKenna2 Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, Arizona,1 and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida2 Received 11 September 2001/Accepted 11 November 2001 Downloaded from A novel single-stranded DNA phage, ␾MH2K, of Bdellovibrio bacteriovorus was isolated, characterized, and sequenced. This phage is a member of the Microviridae, a family typified by bacteriophage ␾X174. Although B. bacteriovorus and Escherichia coli are both classified as proteobacteria, ␾MH2K is only distantly related to ␾X174. Instead, ␾MH2K exhibits an extremely close relationship to the Microviridae of Chlamydia in both genome orga- nization and encoded proteins. Unlike the double-stranded DNA bacteriophages, for which a wide spectrum of diversity has been observed, the single-stranded icosahedral bacteriophages appear to fall into two distinct jb.asm.org subfamilies. These observations suggest that the mechanisms driving single-stranded DNA bacteriophage evolution are inherently different from those driving the evolution of the double-stranded bacteriophages. at UNIVERSITY OF ARIZONA LIBRARY on December 8, 2009 Bacteriophages have been isolated and characterized from a proximately 20% or less (6), a typical value when comparing wide range of microorganisms for more than 80 years.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • The Virome Hunters Diversity Was—And Still Is to This Day— Mostly Uncharacterized
    NEWS FEATURE Virus images: colematt / iStock Getty Images Plus The virome hunters diversity was—and still is to this day— mostly uncharacterized. Scientists have since Ambitious efforts to catalog viruses across the globe may facilitate expanded their analyses into other many environments, as well as animal and human our understanding of viral communities and ecology, boost viromes. Indeed, a pure metagenomic analysis infectious disease diagnostics and surveillance, and spur new of human fecal samples revealed a previously unknown virus that represents a large part therapeutics. Charles Schmidt investigates. of the dark matter—as much as 90%—of the human gut virome. Dubbed the crAssphage by Robert Edwards and collaborators from In July, scientists from UC Davis and Columbia and our questions about the viral world are San Diego State because it was pieced together University announced they had isolated a new profound,” says Edward Holmes, a virologist by tool they invented called cross assembly species of the Ebola virus from bats roosting and professor at the University of Sydney in analysis (although its origin in stool seems to inside houses in Sierra Leone. Dubbed Bombali Australia. Along with new species, investigators have been in the minds of the researchers), it after the district where the bats were captured, are turning up vast stretches of what they call was called “one of the most striking feats of this new species is the first Ebola virus to have dark matter—viral sequences unlike any seen metagenomics at that time” by Eugene Koonin its initial identification in an animal host previously. They’re using sophisticated bioin- at US National Center for Biotechnology rather than from a sick person.
    [Show full text]
  • Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems
    fmars-08-698853 August 11, 2021 Time: 11:16 # 1 REVIEW published: 16 August 2021 doi: 10.3389/fmars.2021.698853 Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems Chloé Stévenne*†, Maud Micha*†, Jean-Christophe Plumier and Stéphane Roberty InBioS – Animal Physiology and Ecophysiology, Department of Biology, Ecology & Evolution, University of Liège, Liège, Belgium In the past 20 years, a new concept has slowly emerged and expanded to various domains of marine biology research: the holobiont. A holobiont describes the consortium formed by a eukaryotic host and its associated microorganisms including Edited by: bacteria, archaea, protists, microalgae, fungi, and viruses. From coral reefs to the Viola Liebich, deep-sea, symbiotic relationships and host–microbiome interactions are omnipresent Bremen Society for Natural Sciences, and central to the health of marine ecosystems. Studying marine organisms under Germany the light of the holobiont is a new paradigm that impacts many aspects of marine Reviewed by: Carlotta Nonnis Marzano, sciences. This approach is an innovative way of understanding the complex functioning University of Bari Aldo Moro, Italy of marine organisms, their evolution, their ecological roles within their ecosystems, and Maria Pia Miglietta, Texas A&M University at Galveston, their adaptation to face environmental changes. This review offers a broad insight into United States key concepts of holobiont studies and into the current knowledge of marine model *Correspondence: holobionts. Firstly, the history of the holobiont concept and the expansion of its use Chloé Stévenne from evolutionary sciences to other fields of marine biology will be discussed.
    [Show full text]
  • Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil
    viruses Article Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil Rafaela S. Fontenele 1,2, Cristiano Lacorte 2, Natalia S. Lamas 2, Kara Schmidlin 1, Arvind Varsani 1,3,* and Simone G. Ribeiro 2,* 1 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA 2 Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil 3 Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa * Correspondence: [email protected] (A.V.); [email protected] (S.G.R.); Tel.: +1-480-727-2093 (A.V.); +55-61-3448-4666/3448-4703 (S.G.R.) Received: 14 June 2019; Accepted: 31 July 2019; Published: 2 August 2019 Abstract: Capybaras (Hydrochoerus hydrochaeris), the world’s largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified.
    [Show full text]
  • Single-Stranded DNA Viruses in Antarctic Cryoconite Holes
    viruses Article Single-Stranded DNA Viruses in Antarctic Cryoconite Holes Pacifica Sommers 1,*, Rafaela S. Fontenele 2, Tayele Kringen 2, Simona Kraberger 2, Dorota L. Porazinska 3 , John L. Darcy 4, Steven K. Schmidt 1 and Arvind Varsani 2,5,* 1 Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA; [email protected] 2 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; [email protected] (R.S.F.); [email protected] (T.K.); [email protected] (S.K.) 3 Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; dorotalp@ufl.edu 4 Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] 5 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa * Correspondence: Pacifi[email protected] (P.S.); [email protected] (A.V.); Tel.: +1-801-647-4124 (P.S.); +1-480-727-2093 (A.V.) Received: 13 October 2019; Accepted: 31 October 2019; Published: 4 November 2019 Abstract: Antarctic cryoconite holes, or small melt-holes in the surfaces of glaciers, create habitable oases for isolated microbial communities with tightly linked microbial population structures. Viruses may influence the dynamics of polar microbial communities, but the viromes of the Antarctic cryoconite holes have yet to be characterized. We characterize single-stranded DNA (ssDNA) viruses from three cryoconite holes in the Taylor Valley, Antarctica, using metagenomics.
    [Show full text]
  • Chirico Et Al. Supplementary Methods and Results
    !"#$#%&'()'*+,'-.//+(0(1)*$2'3()"&45'*14'6(5.+)5' ! 7*8+('-9,'"#$%!&$'()*!+,#-)$.!.-+.+-/(+%0!$%1!2$.0(1!1#02-(./(+%' ! Taxon Total Validated Species Genome length Overlap Capsid type Capsid Species Species with (ln) proportion flexible? overlap (ln) DNA viruses Acanthamoeba-polyphaga-mimivirus 1 0 Adenoviridae 44 12 12 10.47 -3.71 icosahedral no Anellovirus 5 1 1 8.26 -1.78 icosahedral no Ascoviridae 3 0 Asfarviridae 1 0 Bacillus-phage-GIL-sixteen-c 1 1 1 9.61 -3.05 no description ? Bacillus-virus-one 1 0 Baculoviridae 43 1 1 11.78 -4.79 rod shaped yesa Bicaudaviridae 2 0 Circoviridae 16 3 3 7.65 -1.78 icosahedral no Clostridium-phage-phiC-two 1 0 Corticovirus 1 1 1 9.22 -4.76 icosahedral no Fuselloviridae 5 3 3 9.69 -3.22 lemon-shaped yesb Geminiviridae 199 82 80 8.23 -1.54 icosahedral no Geobacillus-phage-GBSVone 1 1 1 10.45 -4.69 no description ? Globuloviridae 2 0 Gryllus-bimaculatus-nudivirus 1 0 Heliothis-zea-virus-one 1 0 Herpesviridae 47 26 26 11.97 -4.44 icosahedral no His-one-virus 1 0 His-two-virus 1 0 Inoviridae 25 18 17 8.88 -4.64 filamentous yes Iridoviridae 8 1 1 11.54 -5.31 icosahedral no Lipothrixviridae 8 2 2 10.62 -4.34 rod shaped yes Microviridae 55 13 12 8.56 -2.23 icosahedral no Myoviridae 71 35 35 11.37 -4.89 icosahedral no Nanoviridae 6 1 0 Nimaviridae 1 0 Papillomaviridae 66 13 13 8.97 -3.11 icosahedral no Parvoviridae 44 8 6 8.56 -2.14 icosahedral no Phycodnaviridae 8 1 1 12.72 -5.95 icosahedral no Plasmaviridae 1 1 1 9.39 -8.00 quasi-spherical yes Podoviridae 62 32 32 10.59 -3.58 icosahedral no Polydnaviridae
    [Show full text]