Orgyia Leucostigma Express
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wildlife Review Cover Image: Hedgehog by Keith Kirk
Dumfries & Galloway Wildlife Review Cover Image: Hedgehog by Keith Kirk. Keith is a former Dumfries & Galloway Council ranger and now helps to run Nocturnal Wildlife Tours based in Castle Douglas. The tours use a specially prepared night tours vehicle, complete with external mounted thermal camera and internal viewing screens. Each participant also has their own state- of-the-art thermal imaging device to use for the duration of the tour. This allows participants to detect animals as small as rabbits at up to 300 metres away or get close enough to see Badgers and Roe Deer going about their nightly routine without them knowing you’re there. For further information visit www.wildlifetours.co.uk email [email protected] or telephone 07483 131791 Contributing photographers p2 Small White butterfly © Ian Findlay, p4 Colvend coast ©Mark Pollitt, p5 Bittersweet © northeastwildlife.co.uk, Wildflower grassland ©Mark Pollitt, p6 Oblong Woodsia planting © National Trust for Scotland, Oblong Woodsia © Chris Miles, p8 Birdwatching © castigatio/Shutterstock, p9 Hedgehog in grass © northeastwildlife.co.uk, Hedgehog in leaves © Mark Bridger/Shutterstock, Hedgehog dropping © northeastwildlife.co.uk, p10 Cetacean watch at Mull of Galloway © DGERC, p11 Common Carder Bee © Bob Fitzsimmons, p12 Black Grouse confrontation © Sergey Uryadnikov/Shutterstock, p13 Black Grouse male ©Sergey Uryadnikov/Shutterstock, Female Black Grouse in flight © northeastwildlife.co.uk, Common Pipistrelle bat © Steven Farhall/ Shutterstock, p14 White Ermine © Mark Pollitt, -
A New Subspecies of Orgyia Leucostigma (Lymantriidae) from Sable Island, Nova Scotia
Journal of the Lepidopterists' Society 33(4). 1979, 245-247 A NEW SUBSPECIES OF ORGYIA LEUCOSTIGMA (LYMANTRIIDAE) FROM SABLE ISLAND, NOVA SCOTIA KENNETH NEIL Dept. of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4Jl ABSTRACT. A new subspecies of Orgyia leucostigma 0. E. Smith) from Sable Island, Nova Scotia is figured and described. Sable Island is a small, sandy, crescent-shaped island located 150 mi due east of Halifax, Nova Scotia. Until 1975, the Lepidoptera fauna was poorly known with only 23 species (Noctuoidea) listed as occur ring on the island (Howden, 1970). Extensive collecting over the last three years by Barry Wright of the Nova Scotia Museum increased this number to 58 (Neil, 1977), adding much to the local knowledge of the Lepidoptera of the island. One of the more interesting captures taken during the course of this study was a small series of seemingly aberrant male Orgyia leu co stigma 0. E. Smith) collected in 1976. These specimens had most of the brownish-black ground color of O. leucostigma plagiata (Walker) replaced by a dull rusty brown and were very indistinctly marked. Since only a few specimens were available for study, no immediate work was done on them, and a concentrated effort to obtain wild specimens and egg masses for breeding purposes was made in 1977. Numerous specimens subsequently reared under laboratory condi tions were similar to the wild specimens collected on the island. It then became evident that this form is genetically different and rep resents an undescribed subspecies endemic to Sable Island, as men tioned by Ferguson (1978), who also illustrated a male of this sub species (1978: 85, pI. -
Check List of Noctuid Moths (Lepidoptera: Noctuidae And
Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately. -
Genetic and Phenotypic Differentiation As a Consequence of Host Plant Use by Lepidopteran Herbivores
ABSTRACT Title of dissertation: GENETIC AND PHENOTYPIC DIFFERENTIATION AS A CONSEQUENCE OF HOST PLANT USE BY LEPIDOPTERAN HERBIVORES J. Gwen Shlichta, Doctor in Philosophy, 2011 Dissertation directed by: Professor Pedro Barbosa, Department of Entomology In this dissertation, I focused on the role of plant hosts as a driving force leading to phenotypic and genotypic changes in insect herbivores. There are three main questions addressed: (1) Do generalist species’ populations have broad diet breadth or do they represent a mosaic of sub-populations, each having narrow diet breadths? (2) how does host plant affect the immune response of polyphagous herbivores, and (3) does host plant, or some aspect of host plant such as allelochemicals, alter the interaction between herbivore defense and parasitoid counter-defense? Do generalist species’ populations have broad diet breadth or do they represent a mosaic of sub-populations? In Chapter 1, I determined, using amplified fragment length polymorphisms (AFLPs), whether host plant-associated genetic differentiation (HAD) was exhibited by a suite of polyphagous tree feeding Lepidoptera. The objective of this research was to test HAD in a suite of polyphagous species that exhibit traits expected to be important in the formation of genetically divergent sub-populations. How does host plant affect the immune response of polyphagous species? In Chapter 2, the objective was to examine the effect of host plant species on the immune defenses of polyphagous lepidopteran herbivores, specifically the intensity of encapsulation measured as percent melanization, of three common forest Lepidoptera species. In Chapter 3, I discussed and assessed the potential role of immune responses in insect outbreaks. -
Developing Host Range Testing for Cotesia Urabae
1 Appendix 2 Appendix 2: Risks to non-target species from potential biological control agent Cotesia urabae against Uraba lugens in New Zealand L.A. Berndt, A. Sharpe, T.M. Withers, M. Kimberley, and B. Gresham Scion, Private Bag 3020, Rotorua 3046, New Zealand, [email protected] Introduction Biological control of insect pests is a sustainable approach to pest management that seeks to correct ecological imbalances that many new invaders create on arrival in a new country. This is done by introducing carefully selected natural enemies of the pest, usually from its native range. This method is the only means of establishing and maintaining self-sustaining control of pest insects and it is highly cost effective in the long term (Greathead, 1995). However there is considerable concern for the risk new biological control agents might pose to other species in the country of introduction, and most countries now have regulations to manage decisions on whether to allow biological control introductions (Sheppard et al., 2003). A key component of the research required to gain approval to release a new agent is host range testing, to determine what level of risk the agent might pose to native and valued species in the country of introduction. Although methods for this are well developed for weed biological control, protocols are less established for arthropod biological control, and the challenges in conducting tests are greater (Van Driesche and Murray, 2004; van Lenteren et al., 2006; Withers and Browne, 2004). This is because insect ecology and taxonomy are relatively poorly understood, and there are many more species that need to be considered. -
Mitteilungen Und Nachrichten Express-Risikoanalyse Zu Orgyia Leucostigma
Mitteilungen und Nachrichten Mitteilungen und Nachrichten erstellt dann nach einem einheitlichen Verfahren eine solche Express-PRA zu dem Schädling und dessen pflanzengesund- und Nachrichten Mitteilungen heitlichen Risiken, die auch eine erste Handlungsempfehlung Express-Risikoanalyse zu Orgyia leucostigma enthält. Da je nach Situation eine schnelle Rückmeldung erfol- gen muss (2-3 Tage oder bis zu 30 Tagen), kann in die Erstel- Mit der Neufassung der Pflanzenbeschauverordnung (PBVO) lung der Express-Risikoanalyse nur unmittelbar verfügbares im Jahre 2012 hat das Julius Kühn-Institut (JKI) ein neues Wissen einfließen, sie kann mit großer Unsicherheit behaftet Risikoanalyseverfahren entwickelt, das verbindlich anzuwen- sein. den ist. Findet ein Pflanzenschutzdienst im Rahmen von Ein- Die hier vorgestellte Express-PRA zu dem Trägspinner Orgyia fuhrkontrollen an einer Warensendung aus Nicht-EU-Staaten leucostigma wurde vom Pflanzenschutzdienst Niedersachsen oder aber im Freiland bzw. im geschützten Anbau einen neuen aufgrund eines Antrags auf eine Ausnahmegenehmigung der Organismus, der nicht in der EU-Pflanzenquarantäne-Richtlinie Verbringung und Verwendung des Organismus zu Forschungs- 2000/29/EG geregelt ist, ist von ihm folgendes zu überprüfen: und Züchtungszwecken angefordert. Die Analyse hat ergeben, 1) Besteht der Verdacht, dass es sich um einen Schädling von dass sich der Schädling in Deutschland und in anderen EU-Mit- Pflanzen handeln könnte? 2) Ist der Schädling bislang im gliedstaaten ansiedeln und nicht unerhebliche Schäden ver- Dienstgebiet noch nicht angesiedelt? ursachen kann und daher Maßnahmen zur Verhinderung der Werden beide Fragen mit „ja“ beantwortet, beantragt der Freisetzung dieses potentiellen Quarantäneschädlings entspre- Pflanzenschutzdienst eine Express-Risikoanalyse (Express-PRA) chend § 4a der PBVO getroffen werden sollten. beim Institut für nationale und internationale Angelegenheiten Anne WILSTERMANN, Gritta SCHRADER der Pflanzengesundheit des JKI. -
1 Modern Threats to the Lepidoptera Fauna in The
MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist. -
Impacts of Native and Non-Native Plants on Urban Insect Communities: Are Native Plants Better Than Non-Natives?
Impacts of Native and Non-native plants on Urban Insect Communities: Are Native Plants Better than Non-natives? by Carl Scott Clem A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2015 Key Words: native plants, non-native plants, caterpillars, natural enemies, associational interactions, congeneric plants Copyright 2015 by Carl Scott Clem Approved by David Held, Chair, Associate Professor: Department of Entomology and Plant Pathology Charles Ray, Research Fellow: Department of Entomology and Plant Pathology Debbie Folkerts, Assistant Professor: Department of Biological Sciences Robert Boyd, Professor: Department of Biological Sciences Abstract With continued suburban expansion in the southeastern United States, it is increasingly important to understand urbanization and its impacts on sustainability and natural ecosystems. Expansion of suburbia is often coupled with replacement of native plants by alien ornamental plants such as crepe myrtle, Bradford pear, and Japanese maple. Two projects were conducted for this thesis. The purpose of the first project (Chapter 2) was to conduct an analysis of existing larval Lepidoptera and Symphyta hostplant records in the southeastern United States, comparing their species richness on common native and alien woody plants. We found that, in most cases, native plants support more species of eruciform larvae compared to aliens. Alien congener plant species (those in the same genus as native species) supported more species of larvae than alien, non-congeners. Most of the larvae that feed on alien plants are generalist species. However, most of the specialist species feeding on alien plants use congeners of native plants, providing evidence of a spillover, or false spillover, effect. -
Tussock Moth Species Arriving on Imported Used Vehicles Determined by Dna Analysis
Biosecurity 16 TUSSOCK MOTH SPECIES ARRIVING ON IMPORTED USED VEHICLES DETERMINED BY DNA ANALYSIS K.F. ARMSTRONG1, P. McHUGH1, W. CHINN1, E.R. FRAMPTON2 and P.J. WALSH3 1Ecology and Entomology Group, PO Box 84, Lincoln University, Canterbury 2Critique Limited, RD5, Christchurch 3Galway-Mayo Institute of Technology, Galway, Ireland Corresponding author: [email protected] ABSTRACT Egg masses of tussock moths are frequently intercepted at the border, most commonly on imported used vehicles. These have been assumed to be of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). However, there are six other Lymantriid pest species with similar indiscriminate oviposition and overwintering behaviour that are considered to have the potential to reach New Zealand. Unfortunately there is no accurate record of what arrives, as early immature life stages of tussock moths cannot be reliably identified morphologically to the species level. A molecular diagnostic system was therefore adopted for the identification of all interceptions. During the period 2000–2002, 151 specimens were intercepted on used vehicles from Japan and one on a vehicle from the USA. Of these 82% were identified as gypsy moth, 2% were other high-risk species (nun moth, L. monacha, and white spotted tussock moth, Orgyia thyellina), 6% were unknown species and 10% had no detectable DNA. This information is interpreted with respect to the quarantine systems in place and the practical role of molecular tools for biosecurity. Keywords: biosecurity, quarantine, Lymantriidae, gypsy moth, PCR- RFLP. INTRODUCTION Around 30 species of tussock moths (Lepidoptera: Lymantriidae) are listed as unwanted organisms under the Biosecurity Act (MAF Biosecurity, Unwanted Organisms Register). -
Towards a Global Barcode Library for Lymantria (Lepidoptera: Lymantriinae) Tussock Moths of Biosecurity Concern
Towards a Global Barcode Library for Lymantria (Lepidoptera: Lymantriinae) Tussock Moths of Biosecurity Concern Jeremy R. deWaard1,2*, Andrew Mitchell3, Melody A. Keena4, David Gopurenko5, Laura M. Boykin6, Karen F. Armstrong6, Michael G. Pogue7, Joao Lima8, Robin Floyd8, Robert H. Hanner8, Leland M. Humble1,9 1 Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, 2 Entomology, Royal British Columbia Museum, Victoria, British Columbia, Canada, 3 Entomology, Australian Museum, Sydney, New South Wales, Australia, 4 Northern Research Station, United States Department of Agriculture, Hamden, Connecticut, United States of America, 5 Wagga Wagga Agricultural Institute, Industry & Investment NSW, Wagga Wagga, New South Wales, Australia, 6 Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand, 7 Systematic Entomology Laboratory, United States Department of Agriculture, Washington, D.C., United States of America, 8 Integrative Biology, University of Guelph, Guelph, Ontario, Canada, 9 Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada Abstract Background: Detecting and controlling the movements of invasive species, such as insect pests, relies upon rapid and accurate species identification in order to initiate containment procedures by the appropriate authorities. Many species in the tussock moth genus Lymantria are significant forestry pests, including the gypsy moth Lymantria dispar L., and consequently have been a focus for the development of molecular -
Lymantria Mathura*
Lymantria mathura* Scientific Name Lymantria mathura Moore Synonyms: Lymantria aurora Butler Lymantria aurora var. fusca Leech Liparis aurora Swinhoe Lymantria fusca Leech Lymantria mathura aurora Schintlmeister Figure 1. Lymantria mathura female (David Mohn, Critters *This document is largely Page (Creatures Great and Small), Bugwood.org). excerpted from the report: Davis, E.E., S. French, and R.C. Venette. 2005. Mini-Risk Assessment: Pink gypsy moth, Lymantria mathura Moore [Lepidoptera: Lymantriidae]. Available on-line at: http://www.aphis.usda.gov/plant_health/plan t_pest_info/pest_detection/downloads/pra/lm athurapra.pdf. Common Name Rosy moth, pink gypsy moth Type of Pest Moth Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Figure 2. Lymantria mathura male (David Mohn, Lymantridae* Critters Page (Creatures Great and Small), Bugwood.org). *Recent classifications lower Lymantriidae to the subfamily Lymantriinae under the family Erebidae. See Pogue and Schaefer (2007). Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List (2006 – 2013) Pest Description Eggs: “Egg masses are laid from ground-level up to about 18 m [approx. 60 ft.] of the trunk, but are most dense between the levels of 0.5 to 5 m [approx. 1½-16 ft]. They are flat, of an ovoid-elongate or other shape, with irregular edges, and vary 3 3 3 7 in extent from about 0.5 x 1 cm to 6 x 15 cm [approx. /16 x /8 in to 2 /8 x 5 /8 in]. From a distance the egg masses are visible as characteristic white, fluffy patches Last Update: July 26, 2016 1 against the dark-coloured bark. Each egg-mass contains about 50 to 1,200 or more eggs which are laid 2 to 4 layers deep directly on the bark. -
A Revision of the Japanese Lymantriidae (I)
Sap. J. M. Sc. & Biol., 9, 133-163, 1956 A REVISION OF THE JAPANESE LYMANTRIIDAE (I) HIROSHI INOUE1) Eiko-Gakuen, Funakoshi, Yokosuka2) (Received: July 11th, 1956) The Japanese Lymantriidae were mainly studied by Butler (1877-1885), Leech (1889; 1899), Swinhoe (1903; 1922; 1923), Wileman (1911; 1918), Nagano (1907-1919), Strand (1910; 1911), and Matsumura (1905-1933), but there still remain many problems on their scientific names and systematic relations of genera., species and subspecies. In this paper I will catalogue all the species, subspecies and forms known to occur in Japan, from Hokkaido to as far south as Yakushima, with descriptions of some novelties. Matsumura (1933) listed 51 species from Japan as defined above, but, according to my studies, there being some synonyms and misidentifications in his species, I can only accept 45 species. Little will be mentioned about the external characteristics and venations, as the original descriptions are in most cases easily accessible, and moreover there are many descriptions and illustrations, including •gSeitz•h, which will facilitate these points. However, a special attention is paid to the structure of the male genital organs, and their short descriptions and sketches will be given, since these organs are considered to be a very important factor to compare the phylogenic relations of genera and species, and besides there being no comparative study on these organs concerning the Japanese Lymantriidae. In writing this paper I have received kind assistance and valuable advices from Mr. C. L. Collenette, British Museum (Natural History), and Mr. Toshio Kumata, Hokkaido University, to whom I am much indebted.