Development of Genetic Tools to Detect Three New Zealand Indigenous Freshwater Mussels in Environmental DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods .............................................................................................................................................. -
Guiding Species Recovery Through Assessment of Spatial And
Guiding Species Recovery through Assessment of Spatial and Temporal Population Genetic Structure of Two Critically Endangered Freshwater Mussel Species (Bivalvia: Unionidae) Jess Walter Jones ( [email protected] ) United States Fish and Wildlife Service Timothy W. Lane Virginia Department of Game and Inland Fisheries N J Eric M. Hallerman Virginia Tech: Virginia Polytechnic Institute and State University Research Article Keywords: Freshwater mussels, Epioblasma brevidens, E. capsaeformis, endangered species, spatial and temporal genetic variation, effective population size, species recovery planning, conservation genetics Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-282423/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/28 Abstract The Cumberlandian Combshell (Epioblasma brevidens) and Oyster Mussel (E. capsaeformis) are critically endangered freshwater mussel species native to the Tennessee and Cumberland River drainages, major tributaries of the Ohio River in the eastern United States. The Clinch River in northeastern Tennessee (TN) and southwestern Virginia (VA) harbors the only remaining stronghold population for either species, containing tens of thousands of individuals per species; however, a few smaller populations are still extant in other rivers. We collected and analyzed genetic data to assist with population restoration and recovery planning for both species. We used an 888 base-pair sequence of the mitochondrial NADH dehydrogenase 1 (ND1) gene and ten nuclear DNA microsatellite loci to assess patterns of genetic differentiation and diversity in populations at small and large spatial scales, and at a 9-year (2004 to 2013) temporal scale, which showed how quickly these populations can diverge from each other in a short time period. -
Margaritanopsis (Unionidae) from Notes on Solenaia
XI DESCRIPTION OF A NEW SPECIES OF MARGARITANOPSIS (UNIONIDAE) FROM THE SOUTHERN SHAN STATES, WITH NOTES ON SOLENAIA SOLENIFORMIS By LT.-COL. H. a. GODWIN-AuSTEN, F.R.S. (With Plate XV.) . Feddon and Theobald \"ere the first to visit and collect mollusca in the, Shan country in 1864, but they did not penetrate to the neighbourhood of the Inle Lake which is not) as far as I can remember, mentioned in their Geological Reports. It was not until Colonel R. Woodthorpe, R.E., visited Fort Stedman in 1894 on his way to survey the Siam frontier that he obtained any shells from this piece of water or its neighbourhood. Among them is the remarkable large bivalve, which I have named after him, but never as yet had an opportunity of publishing. The animal has not yet been seen nor has that been described of its possible ally Solenaia solenilormis, Bs. of Cachar.l I append the description of U nio laosensis, to which the Shan species comes nearest. Genus Margaritanopsist Haas, 1912. Haas in Martini u. Chemnitz, S)'st. Conch. Cabinet, Bd. IX (ii) 2, pp. 121-122. pI. xii, figs. 1 .. 2 (1912). Laos Mountains, Cambodia., Siam. Mons. ].\t1ouhot. Diam. O'g, length I '2, breadth 3 inches. C, Torrey Simpson, Des. Cat. Na£ades, p. 520 (1914), Sowerby, Conch. Icon., XVI, pI. xlvii, f. 256 (1866). Type, U nio laosensis, Lea. It is thus described. "Shell elongated, arcnate, rather solid, not inflated, inequilateral; beaks slightly elevated, not full, thin sculpture consisting of ridges that nearly follow the growth lines, posterior ridge high. -
Conservation Status Assessment and a New Method for Establishing Conservation Priorities for Freshwater Mussels
Received: 8 March 2018 Revised: 9 November 2019 Accepted: 17 December 2019 DOI: 10.1002/aqc.3298 RESEARCH ARTICLE Conservation status assessment and a new method for establishing conservation priorities for freshwater mussels (Bivalvia: Unionida) in the middle and lower reaches of the Yangtze River drainage Xiongjun Liu1,2 | Xue Yang3 | David T. Zanatta4 | Manuel Lopes-Lima5 | Arthur E. Bogan6 | Alexandra Zieritz7,8 | Shan Ouyang3 | Xiaoping Wu1,2,3 1Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Abstract Environmental and Chemical Engineering, 1. The freshwater mussel (Unionida) fauna of the Yangtze River is among the most Nanchang University, Nanchang, People's Republic of China diverse on Earth. In recent decades, human activities have caused habitat degra- 2School of Resources Environmental & dation in the river, and previous studies estimated that up to 80% of the mussel Chemical Engineering, Nanchang University, species in the Yangtze River are Threatened or Near Threatened with extinction. Nanchang, People's Republic of China 3School of Life Sciences, Nanchang University, However, a comprehensive and systematic evaluation of the conservation status Nanchang, People's Republic of China of this fauna has yet to be completed. 4 Central Michigan University, Institute for 2. This study evaluated the conservation status of the 69 recognized freshwater Great Lakes Research, Mount Pleasant, MI mussel species in the middle and lower reaches of the Yangtze River, using the 5CIBIO/InBIO – Research Center -
Scaleshell Mussel Recovery Plan
U.S. Fish and Wildlife Service Scaleshell Mussel Recovery Plan (Leptodea leptodon) February 2010 Department of the Interior United States Fish and Wildlife Service Great Lakes – Big Rivers Region (Region 3) Fort Snelling, MN Cover photo: Female scaleshell mussel (Leptodea leptodon), taken by Dr. M.C. Barnhart, Missouri State University Disclaimer This is the final scaleshell mussel (Leptodea leptodon) recovery plan. Recovery plans delineate reasonable actions believed required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service and sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after being signed by the Regional Director. Approved recovery plans are subject to modifications as dictated by new findings, changes in species status, and the completion of recovery actions. The plan will be revised as necessary, when more information on the species, its life history ecology, and management requirements are obtained. Literature citation: U.S. Fish and Wildlife Service. 2010. Scaleshell Mussel Recovery Plan (Leptodea leptodon). U.S. Fish and Wildlife Service, Fort Snelling, Minnesota. 118 pp. Recovery plans can be downloaded from the FWS website: http://endangered.fws.gov i ACKNOWLEDGMENTS Many individuals and organizations have contributed to our knowledge of the scaleshell mussel and work cooperatively to recover the species. -
Full Report [PDF]
How to Assess Potential Biological Effects of Subaqueous Disposal of Mine Tailings – Literature Review and Recommended Tools and Methodologies MEND Report 2.19.1 This work was done on behalf of the Mine Environment Neutral Drainage (MEND) Program and sponsored by: The Mining Association of Canada (MAC) and MEND November 2018 How to Assess Potential Biological Effects of Subaqueous Disposal of Mine Tailings – Literature Review and Recommended Tools and Methodologies Report prepared for: MEND Secretariat Natural Resources Canada 555 Booth Street Report prepared by: Peter G.C. Campbell, PGCC Environnement Inc., 2891 rue de la Providence, Quebec City, QC G1W 2C1 William A. Price, Natural Resources Canada, 3793 Alfred Avenue, Bag 5000, 1st Floor, Room: 5000, Smithers, BC V0J 2N0 Table of Contents Figures ............................................................................................................................................. vi Tables ............................................................................................................................................. vi Glossary ............................................................................................................................................ vii Acknowledgements .............................................................................................................................. ix Executive summary ............................................................................................................................... x Sommaire -
The Complete Maternally and Paternally Inherited Mitochondrial Genomes of the Endangered Freshwater Mussel Solenaia Carinatus
The Complete Maternally and Paternally Inherited Mitochondrial Genomes of the Endangered Freshwater Mussel Solenaia carinatus (Bivalvia: Unionidae) and Implications for Unionidae Taxonomy Xiao-Chen Huang1,2, Jun Rong1, Yong Liu2, Ming-Hua Zhang2, Yuan Wan1,2, Shan Ouyang2, Chun-Hua Zhou1,2*, Xiao-Ping Wu1,2* 1 Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, P. R. China, 2 School of Life Sciences and Food Engineering, Nanchang University, Nanchang, P. R. China Abstract Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. -
Xerces Society's
Conserving the Gems of Our Waters Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black CONSERVING THE GEMS OF OUR WATERS Best Management Practices for Protecting Native Western Freshwater Mussels During Aquatic and Riparian Restoration, Construction, and Land Management Projects and Activities Emilie Blevins Laura McMullen Sarina Jepsen Michele Blackburn Aimée Code Scott Hoffman Black The Xerces Society for Invertebrate Conservation www.xerces.org The Xerces® Society for Invertebrate Conservation is a nonprot organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citizens to implement conservation programs worldwide. The Society uses advocacy, education, and applied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional oces from coast to coast. The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Oce © 2018 by The Xerces Society for Invertebrate Conservation Primary Authors and Contributors The Xerces Society for Invertebrate Conservation: Emilie Blevins, Laura McMullen, Sarina Jepsen, Michele Blackburn, Aimée Code, and Scott Homan Black. Acknowledgements Funding for this report was provided by the Oregon Watershed Enhancement Board, The Nature Conservancy and Portland General Electric Salmon Habitat Fund, the Charlotte Martin Foundation, Meyer Memorial Trust, and Xerces Society members and supporters. -
A New Species of Solenaia from Thailand (Bivalvia: Unionidae: Ambleminae)
The Natural History Journal of Chulalongkorn University 3(2): 53-58, October 2003 ©2003 by Chulalongkorn University A new Species of Solenaia from Thailand (Bivalvia: Unionidae: Ambleminae) GRIDSADA DEEIN 1, YONGYUTH UNAKORNSAWAT 1, PARINDA RATTANADAENG 1 CHIRASAK SUTCHARIT 2, BANG-ON KONG-IM 2 AND SOMSAK PANHA 2* 1 Phitsanulok Inland Fisheries Research and Development Center, Inland Fisheries Research and Development Bureau, Department of Fisheries, Ministry of Agriculture and Cooperatives, Naraesuan Dam area, Prompiram District, Phitsanulok 65150, THAILAND 2 Mollusc Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, THAILAND ABSTRACT.–Solenaia khwaenoiensis n. sp. (Bivalvia: Unionidae) is described from The Khwae Noi River, Phitsanulok, Thailand. Solenaia khwaenoiensis n. sp. has long razor-shell like shells similar to a former described Solenaia emarginatus (Lea, 1860) from “Siam”. The new species possesses an elongate linguiform shell but the narrow anterior and wide posterior confers a unique razor shell shape. The umbo is located towards the anterior near the adductor muscle scar. Solenaia khwaenoiensis exhibits distinct intrageneric differentiation in the diploid chromosome number (2n=37) but is uniform in haploid number (n=19), with 3 metacentric 15 submetacentric and 1 subtelocentric chromosomes. KEY WORDS: Solenaia khwaenoiensis; Unionidae; Khwae Noi River; Phitsanulok; Thailand. Solenaia khwaenoiensis was found in April INTRODUCTION 2003, in deep waters of the Khwae Noi River, Phitsanulok, Thailand (Fig. 1). Comparisons of Classification at the species level for shell and soft part morphology and karyotypes Southeast Asian unionid mussels is in urgent revealed that these specimens differ from all need of revision. On the basis of characters recognized 5 subfamilies of Thai Amblemidae such as a semi-oval glochidial shell shape and i.e. -
Towards a Global Phylogeny of Freshwater Mussels
Molecular Phylogenetics and Evolution 130 (2019) 45–59 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Towards a global phylogeny of freshwater mussels (Bivalvia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and T diversification patterns Xiao-Chen Huanga,b,1, Jin-Hui Sua,1, Jie-Xiu Ouyangc, Shan Ouyanga, Chun-Hua Zhoua, ⁎ Xiao-Ping Wua, a School of Life Sciences, Nanchang University, Nanchang 330031, China b Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany c Medical Laboratory Education Center, Nanchang University, Nanchang 330031, China ARTICLE INFO ABSTRACT Keywords: The Yangtze River Basin in China is one of the global hotspots of freshwater mussel (order Unionida) diversity DNA barcoding with 68 nominal species. Few studies have tested the validity of these nominal species. Some taxa from the Unionidae Yangtze unionid fauna have not been adequately examined using molecular data and well-positioned phylo- Yangtze River genetically with respect to the global Unionida. We evaluated species boundaries of Chinese freshwater mussels, DUI and disentangled their phylogenetic relationships within the context of the global freshwater mussels based on BAMM the multi-locus data and complete mitochondrial genomes. Moreover, we produced the time-calibrated phylo- Host-attraction geny of Unionida and explored patterns of diversification. COI barcode data suggested the existence of 41 phylogenetic distinct species from our sampled 40 nominal taxa inhabiting the middle and lower reaches of the Yangtze River. Maximum likelihood and Bayesian inference analyses on three loci (COI, 16S, and 28S) and complete mitochondrial genomes showed that the subfamily Unioninae sensu stricto was paraphyletic, and the subfamily Anodontinae should be subsumed under Unioninae. -
A New Genus of Ultra-Elongate Freshwater Mussels from Vietnam and Eastern China (Bivalvia: Unionidae)
Ecologica Montenegrina 39: 1-6 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.39.1 https://zoobank.org/urn:lsid:zoobank.org:pub:DDA69FE1-8F86-483D-B824-E2D109A41936 A new genus of ultra-elongate freshwater mussels from Vietnam and eastern China (Bivalvia: Unionidae) IVAN N. BOLOTOV1, ALEXANDER V. KONDAKOV1, EKATERINA S. KONOPLEVA1,* & ILYA V. VIKHREV1 1N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia *Corresponding author. E-mail: [email protected] Received: 10 December 2020│ Accepted by V. Pešić: 30 December 2020 │ Published online: 4 January 2021. Taxa with an ultra-elongate shell are widespread among marine and freshwater bivalves, being an iconic illustration of convergent evolution, e.g. Solen Linnaeus, 1758 (Solenidae), Mycetopoda d’Orbigny, 1835 (Mycetopodidae), and Lanceolaria Conrad, 1853 (Unionidae) (Anderson 2014). The genus Solenaia Conrad, 1869 (Unionidae: Gonideinae) was considered a compact group of freshwater mussels having an elongate shell and ranging from the Mekong Basin in Thailand through northern Vietnam and eastern China to South Korea (Haas 1969; Graf & Cummings 2007; Zieritz et al. 2018). However, a growing body of modern phylogenetic research revealed that this genus is not monophyletic despite the fact that its members are very similar conchologically (Huang et al. 2019; Pfeiffer et al. 2019, 2020; Lopes-Lima et al. 2020). Indeed, it is one more remarkable example of shell convergence in unionids together with the former genera Trapezoideus Simpson, 1900 sensu lato and Oxynaia Haas, 1911 sensu lato, each of which was found to be an amalgam of several phylogenetically distant but conchologically similar lineages (Konopleva et al. -
Alasmidonta Varicosa) Version 1.1.1
Species Status Assessment Report for the Brook Floater (Alasmidonta varicosa) Version 1.1.1 Molunkus Stream, Tributary of the Mattawamkeag River in Maine. Photo credit: Ethan Nedeau, Biodrawversity. Inset: Adult brook floaters. Photo credit: Jason Mays, USFWS. July 2018 U.S. Fish and Wildlife Service This document was prepared by Sandra Doran of the New York Ecological Services Field Office with assistance from the U.S. Fish and Wildlife Service Brook Floater Species Status Assessment (SSA) Team. The team members include Colleen Fahey, Project Manager (Species Assessment Team (SAT), Headquarters (HQ) and Rebecca Migala, Assistant Project Manager, (Region 1, Regional Office), Krishna Gifford (Region 5, Regional Office), Susan (Amanda) Bossie (Region 5 Solicitor's Office, Julie Devers (Region 5, Maryland Fish and Wildlife Conservation Office), Jason Mays (Region 4, Asheville Field Office), Rachel Mair (Region 5, Harrison Lake National Fish Hatchery), Robert Anderson and Brian Scofield (Region 5, Pennsylvania Field Office), Morgan Wolf (Region 4, Charleston, SC), Lindsay Stevenson (Region 5, Regional Office), Nicole Rankin (Region 4, Regional Office) and Sarah McRae (Region 4, Raleigh, NC Field Office). We also received assistance from David Smith of the U.S. Geological Survey, who served as our SSA Coach. Finally, we greatly appreciate our partners from Department of Fisheries and Oceans, Canada, the Brook Floater Working Group, and others working on brook floater conservation. Version 1.0 (June 2018) of this report was available for selected peer and partner review and comment. Version 1.1 incorporated comments received on V 1.0 and was used for the Recommendation Team meeting. This final version, (1.1.1), incorporates additional comments in addition to other minor editorial changes including clarifications.