Nanoscale Imaging Reveals Mirna-Mediated Control of Functional States of Dendritic Spines
Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines Ikbum Parka,1, Hyun Jin Kimb,1, Youngkyu Kimc,2, Hye Sung Hwangb, Haruo Kasaid, Joung-Hun Kimb,3, and Joon Won Parka,c,3 aDivision of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Nam-Gu, 37673 Pohang, Korea; bDepartment of Life Sciences, Pohang University of Science and Technology, Nam-Gu, 37673 Pohang, Korea; cDepartment of Chemistry, Pohang University of Science and Technology, Nam-Gu, 37673 Pohang, Korea; and dLaboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 28, 2019 (received for review November 13, 2018) Dendritic spines are major loci of excitatory inputs and undergo in synaptic structures, largely due to resolution limits imposed by activity-dependent structural changes that contribute to synaptic conventional miRNA detection methods including in situ hybrid- plasticity and memory formation. Despite the existence of various ization (18–20) and fluorophore-labeled probes (14, 15, 18–23). classification types of spines, how they arise and which molecular Atomic force microscopy (AFM) enables multiparametric components trigger their structural plasticity remain elusive. nanoscale imaging for topography and stiffness, even under microRNAs (miRNAs) have emerged as critical regulators of synapse physiological conditions (24–27). In particular, AFM tips com- development and plasticity via their control of gene expression. prise molecular probes that bind to specific targets, thereby Brain-specific miR-134s likely regulate the morphological maturation of generating specific adhesion signals characterized by force- spines, but their subcellular distributions and functional impacts have distance curves (28–30).
[Show full text]