Interfering with the Actin Network and Its Effect on Long-Term Potentiation and Synaptic Tagging in Hippocampal CA1 Neurons in Slices in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Interfering with the Actin Network and Its Effect on Long-Term Potentiation and Synaptic Tagging in Hippocampal CA1 Neurons in Slices in Vitro The Journal of Neuroscience, September 30, 2009 • 29(39):12167–12173 • 12167 Cellular/Molecular Interfering with the Actin Network and Its Effect on Long-Term Potentiation and Synaptic Tagging in Hippocampal CA1 Neurons in Slices In Vitro Binu Ramachandran and Julietta U. Frey Department of Neurophysiology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany Long-termpotentiation(LTP)isacellularcorrelateformemoryformation,whichrequiresthedynamicchangesoftheactincytoskeleton. As shown by others, the polymerization of the actin network is important for early stages of LTP. Here, we investigated the role of actin dynamics in synaptic tagging and particularly in the induction of protein synthesis-dependent late-LTP in the CA1 region in hippocampal slices in vitro. We found that the inhibition of actin polymerization affects protein synthesis-independent early-LTP, prevents late-LTP, and interferes with synaptic tagging in apical dendrites of hippocampal CA1. The transformation of early-LTP into late-LTP was blocked by the application of the structurally different actin polymerization inhibitors latrunculin A or cytochalasin D. We suggest that the actin network is required for early “housekeeping” processes to induce and maintain early-LTP. Furthermore, inhibition of actin dynamics negatively interacts with the setting of the synaptic tagging complex. We propose actin as a further tag-specific molecule in apical CA1 dendrites where it is directly involved in the tagging/capturing machinery. Consequently, inhibition of the actin network prevents the interaction of tagging complexes with plasticity-related proteins. This results in the prevention of late-LTP by inhibition of the actin network during LTP induction. Introduction The actin network plays an important, multifunctional role in Changes in synaptic efficacy are considered as basic processes of synaptic function as well as during plasticity and, specifically, in information storage in the brain. Currently, there are only two hippocampal LTP. Actin depolymerization blocks both functional cellular phenomena which could underlie such prolonged as well as structural plasticity (Krucker et al., 2000; Fukazawa et al., changes called long-term potentiation (LTP) and long-term de- 2003; Lisman, 2003; Matsuzaki et al., 2004; Okamoto et al., 2004; pression (LTD) (Matthies et al., 1990; Bear and Malenka, 1994; Chen et al., 2007; Tanaka et al., 2008). The actin network is asso- Frey and Frey, 2008). Both, LTP and LTD show distinct temporal ciated with a rapid and persistent reorganization of the spine stages such as a protein synthesis-independent early phase (early- cytoskeleton (Fischer et al., 1998; Okamoto et al., 2004; Lin et al., LTP, early-LTD) and a protein synthesis-dependent late phase 2005). Furthermore, an increase in F-actin content and structural (late-LTP, late-LTD). LTP/LTD maintenance requires the syn- changes within dendritic spines during LTP induction were de- thesis of plasticity-related proteins (PRPs) (Krug et al., 1984; scribed previously (Moshkov and Petrovskaia, 1983; Fifkova´, 1985; Frey et al., 1988; Otani et al., 1989; Nguyen and Kandel, 1996; Pak et al., 2001; Fukazawa et al., 2003; Lisman, 2003; Okamoto et Manahan-Vaughan et al., 2000). How PRPs interact only with al., 2004, 2007; Chen et al., 2007), and it was shown that the actin activated (“tagged”) synapses expressing LTP or LTD is funda- cytoskeleton mediates exocytosis and endocytosis of AMPA- mental to synapse-specificity of the process and can be explained receptors at postsynaptic sites (Malinow et al., 2000; Sheng and by the “synaptic tagging” hypothesis (Frey and Morris, 1997, Lee, 2001). Actin polymerization is also involved in the regula- 1998a,b). Specific stimulation transiently sets a “tag” at activated tion of the synthesis of protein kinase Mzeta (PKMzeta), which synapses and induces PRP synthesis. If both tags and PRPs are enhances synaptic efficacy during late-LTP by recruiting more available within a specific time window, they can interact, thus postsynaptic AMPA receptors (Serrano et al., 2005; Ling et al., transforming a normally transient early-LTP (E-LTP) into late- 2006). PKMzeta has been identified as a PRP required for late- LTP (L-LTP) (Frey and Morris, 1998a; Frey and Frey, 2008). LTP in the apical CA1 dendrites (Sajikumar et al., 2005b). Be- cause the actin network is directly involved in local protein trafficking within the dendritic spine (Kaech et al., 1996; Langford Received April 30, 2009; revised July 31, 2009; accepted Aug. 24, 2009. This work was supported by Deutsche Forschungsgemeinschaft Grant 1034-7 and Sonderforschungsbereich and Molyneaux, 1998), it could also exert its action during the Grant 779-B4 to J.U.F. We are grateful to Dr. Jeffrey Vernon for his very helpful input on this manuscript and to Dr. capture of PRPs at the tagged synapse. Here, we further investi- Sajikumar Sreedharan for his help to train B.R. in in vitro slice techniques, as well as for his technical support and gate the possible specific action of actin network function on discussions. We are also very grateful to Diana Koch for her excellent technical assistance. processes required for late-LTP in the hippocampal CA1 in vitro. CorrespondenceshouldbeaddressedtoDr.JuliettaU.Frey,DepartmentofNeurophysiology,LeibnizInstitutefor Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany. E-mail: [email protected]. We suggest that the actin network interacts with late-LTP and DOI:10.1523/JNEUROSCI.2045-09.2009 specifically with the PRP-capturing process at synaptic tags (Frey Copyright © 2009 Society for Neuroscience 0270-6474/09/2912167-07$15.00/0 and Morris, 1998a; Martin and Kosik, 2002). By using structur- 12168 • J. Neurosci., September 30, 2009 • 29(39):12167–12173 Ramachandran and Frey • Actin and Processes of Late-LTP ally different actin assembly inhibitors, latrunculin A or cytochalasin D, we show that actin function is involved in early-LTP, and it is essential for late- LTP by interacting with the synaptic tagging machinery. Materials and Methods All experiments were performed in accordance with the European Community Council Direc- tive of 24 November 1986 (86/609/EEC). We also certify that formal approval to conduct the experiments has been obtained from the ani- mal subject review board of our institution/ local government which can be provided upon request. All efforts were made to minimize the number of animals used and their suffering. Slice preparation and electrophysiology. Trans- verse hippocampal slices (112; 400 ␮m) were prepared from 112 7-week-old male Wistar rats as described previously (Frey et al., 1988; Sajikumar et al., 2005a). The rats were killed rapidly by a single blow to the back of the neck using a metallic rod (cervical dislocation) and immediately decapitated. Slices were incu- Figure 1. The role of the actin network in long-term potentiation, i.e., late-LTP (time courses of field EPSP recordings). bated in an interface chamber at 32°C, and the A, Schematic representation of a transversal rat hippocampal slice with electrode locations to stimulate two separate synaptic incubation medium [artificial cerebrospinal inputsS1andS2instratumradiatumoftheCA1region.ThelocationofrecordingelectrodesforthePSaswellasthefieldEPSPfrom a single, stimulated neuronal population are provided. The analog traces are representative examples of recorded potentials. B, fluid (ACSF)] contained (in mM) 124 NaCl, 4.9 KCl, 1.2 KH PO , 2.0 MgSO , 2.0 CaCl , 24.6 The time course of the slope of the field EPSP after induction of late-LTP in S1 by STET (filled circles; tetanization are symbolized as 2 4 4 2 arrows) is shown. Open circles represent recordings from the control synaptic pathway S2 (n ϭ 7). C, Induction of late-LTP in the NaHCO3, 10.0 D-glucose. The carbogen con- sumption was 32 L/h, and the flow rate of ACSF presenceoftheactinpolymerizationinhibitorlatrunculinA(boxLatA).LatrunculinAwasapplied30minbeforeSTET(3arrows)of ϭ was 0.7 ml/min (the entire procedure from kill- S1(filledcircles;wash-outofthedrug:30minafterthefirsttetanization;opencirclescontrolinput;n 7).D,Inductionoflate-LTP ϭ ing the animal after placing the slices into the of synaptic input S1 (filled circles) in the presence of actin polymerization inhibitor cytochalasin D (n 7). Cytochalasin D (box Cyt recording chamber took ϳ3–5 min). In all D)wasapplied30minbeforeSTET,anditwaswashed-out30minafterthefirsttetanization(opencircles:controlinputS2).Analog experiments, two monopolar lacquer-coated, traces represent typical field EPSPs 30 min before the normal time point of tetanization (dashed line); 30 min (solid line), and 6 h stainless-steel electrodes (5M⍀; AM-Systems) (dotted line) after tetanization of input S1. The analog traces for S2 were recorded at the same time points, however, without were positioned within the stratum radiatum tetanization. Calibration: 2 mV, 5 ms. Arrows indicate the time point of tetanization of synaptic input S1 (STET are symbolized as 3 of the CA1 region for stimulating two separate arrows). Filled boxes represent drug application. Lat A, latrunculin A; Cyt D, cytochalasin D. independent synaptic inputs, S1 and S2. For recording the field EPSP (measured as its slope function) and the popu- structurally different actin polymerization inhibitor, cytochalasin D lation spike (PS) amplitude, two electrodes (resistance, 5 M⍀; AM- (Calbiochem) was used at a concentration of 0.1 ␮M. Cytochalasin D was Systems) were placed in the CA1 apical dendritic and cell body layer,
Recommended publications
  • Author's Accepted Manuscript
    Author’s Accepted Manuscript Synapse-specific stabilization of plasticity processes: The synaptic tagging and capture hypothesis revisited ten years later Angel Barco, Mikel Lopez de Armentia, Juan M. Alarcon PII: S0149-7634(08)00008-0 DOI: doi:10.1016/j.neubiorev.2008.01.002 Reference: NBR 1021 www.elsevier.com/locate/neubiorev To appear in: Neuroscience and Biobehavioral Reviews Received date: 30 October 2007 Revised date: 28 December 2007 Accepted date: 7 January 2008 Cite this article as: Angel Barco, Mikel Lopez de Armentia and Juan M. Alarcon, Synapse-specific stabilization of plasticity processes: The synaptic tagging and capture hypothesis revisited ten years later, Neuroscience and Biobehavioral Reviews (2008), doi:10.1016/j.neubiorev.2008.01.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The STC hypothesis revisited Synapse-specific stabilization of plasticity processes: The synaptic tagging and capture hypothesis revisited ten years later Angel Barco1*, Mikel Lopez de Armentia1 and Juan M. Alarcon2 1Instituto de Neurociencias de Alicante. (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Campus de Sant Joan. Apt. 18. Sant Joan d’Alacant. 03550. Alicante, Spain. 2SUNY Downstate Medical Center. 450 Clarkson Ave., Box 25, Brooklyn, NY 11203.
    [Show full text]
  • Systematic Identification of Genes Regulating Synaptic Remodeling In
    Genes Genet. Syst. (2020) 95, p. 101–110 Genes required for synaptic remodeling 101 Systematic identification of genes regulating synaptic remodeling in the Drosophila visual system Tomohiro Araki, Jiro Osaka, Yuya Kato, Mai Shimozono, Hinata Kawamura, Riku Iwanaga, Satoko Hakeda-Suzuki and Takashi Suzuki* Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan (Received 17 December 2019, accepted 21 January 2020; J-STAGE Advance published date: 4 June 2020) In many animals, neural activity contributes to the adaptive refinement of synaptic properties, such as firing frequency and the number of synapses, for learning, memorizing and adapting for survival. However, the molecular mech- anisms underlying such activity-dependent synaptic remodeling remain largely unknown. In the synapses of Drosophila melanogaster, the presynaptic active zone (AZ) forms a T-shaped presynaptic density comprising AZ proteins, including Bruchpilot (Brp). In a previous study, we found that the signal from a fusion pro- tein molecular marker consisting of Brp and mCherry becomes diffuse under con- tinuous light over three days (LL), reflecting disassembly of the AZ, while remaining punctate under continuous darkness. To identify the molecular players control- ling this synaptic remodeling, we used the fusion protein molecular marker and performed RNAi screening against 208 neuron-related transmembrane genes that are highly expressed in the Drosophila visual system. Second analyses using the STaR (synaptic tagging with recombination) technique, which showed a decrease in synapse number under the LL condition, and subsequent mutant and overexpres- sion analysis confirmed that five genes are involved in the activity-dependent AZ disassembly.
    [Show full text]
  • Functionally Diverse Dendritic Mrnas Rapidly Associate with Ribosomes Following a Novel Experience
    ARTICLE Received 19 Feb 2014 | Accepted 24 Jun 2014 | Published 29 Jul 2014 DOI: 10.1038/ncomms5510 Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience Joshua A. Ainsley1, Laurel Drane1, Jonathan Jacobs1, Kara A. Kittelberger1,w & Leon G. Reijmers1 The subcellular localization and translation of messenger RNA (mRNA) supports functional differentiation between cellular compartments. In neuronal dendrites, local translation of mRNA provides a rapid and specific mechanism for synaptic plasticity and memory forma- tion, and might be involved in the pathophysiology of certain brain disorders. Despite the importance of dendritic mRNA translation, little is known about which mRNAs can be translated in dendrites in vivo and when their translation occurs. Here we collect ribosome- bound mRNA from the dendrites of CA1 pyramidal neurons in the adult mouse hippocampus. We find that dendritic mRNA rapidly associates with ribosomes following a novel experience consisting of a contextual fear conditioning trial. High throughput RNA sequencing followed by machine learning classification reveals an unexpected breadth of ribosome-bound den- dritic mRNAs, including mRNAs expected to be entirely somatic. Our findings are in agree- ment with a mechanism of synaptic plasticity that engages the acute local translation of functionally diverse dendritic mRNAs. 1 Department of Neuroscience, Tufts University, Boston, Massachusetts 02111, USA. w Present address: Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA. Correspondence and requests for materials should be addressed to L.R. (email: [email protected]). NATURE COMMUNICATIONS | 5:4510 | DOI: 10.1038/ncomms5510 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder
    International Journal of Molecular Sciences Review Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder Yuyoung Joo * and David R. Benavides Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-410-706-5799 Abstract: Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the under- lying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD. Keywords: local translation; RNA processing; RNA binding protein; synaptic protein; neuronal plasticity; autism Citation: Joo, Y.; Benavides, D.R. Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int. J. Mol. 1. Introduction Sci. 2021, 22, 2811. https://doi.org/ Autism spectrum disorder (ASD) represents a group of neurodevelopmental disorders 10.3390/ijms22062811 characterized by impairments in communication and social behavior.
    [Show full text]
  • Nanoscale Imaging Reveals Mirna-Mediated Control of Functional States of Dendritic Spines
    Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines Ikbum Parka,1, Hyun Jin Kimb,1, Youngkyu Kimc,2, Hye Sung Hwangb, Haruo Kasaid, Joung-Hun Kimb,3, and Joon Won Parka,c,3 aDivision of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Nam-Gu, 37673 Pohang, Korea; bDepartment of Life Sciences, Pohang University of Science and Technology, Nam-Gu, 37673 Pohang, Korea; cDepartment of Chemistry, Pohang University of Science and Technology, Nam-Gu, 37673 Pohang, Korea; and dLaboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 28, 2019 (received for review November 13, 2018) Dendritic spines are major loci of excitatory inputs and undergo in synaptic structures, largely due to resolution limits imposed by activity-dependent structural changes that contribute to synaptic conventional miRNA detection methods including in situ hybrid- plasticity and memory formation. Despite the existence of various ization (18–20) and fluorophore-labeled probes (14, 15, 18–23). classification types of spines, how they arise and which molecular Atomic force microscopy (AFM) enables multiparametric components trigger their structural plasticity remain elusive. nanoscale imaging for topography and stiffness, even under microRNAs (miRNAs) have emerged as critical regulators of synapse physiological conditions (24–27). In particular, AFM tips com- development and plasticity via their control of gene expression. prise molecular probes that bind to specific targets, thereby Brain-specific miR-134s likely regulate the morphological maturation of generating specific adhesion signals characterized by force- spines, but their subcellular distributions and functional impacts have distance curves (28–30).
    [Show full text]
  • Dynamic Spatio-Temporal Control of Neuronal Gene Expression 437
    Author's personal copy ! Dendritic RNA Transport: Dynamic Spatio-Temporal Control of Neuronal Gene Expression 437 Dendritic, RNA Transport: Dynamic Spatio-Temporal Control of , Neuronal, Gene Expression , J B Dictenberg, , Hunter College, New York, NY, USA response to neuronal stimulation, an idea that currently R H Singer, , Albert Einstein College of Medicine, Bronx, has enormous support and has led to breakthroughs NY, USA, in visualizing specific transcript motility in living cells. , ã 2009 Elsevier, Ltd. All rights reserved. , Structure and Composition of Dendritic , Transport mRNPs , mRNAs are transported into dendrites in the form of Introduction, , large, electron-dense RNA- and protein-containing Dendrites, are master integrators of information flow granules. Since these transport granules are distinct , in the brai, n and the sites of postsynaptic structural from stress granules, they will be referred to as trans- modificati, ons that regulate the plasticity of synapse port messenger ribonucleoproteins (mRNPs). Neu- strength ,in response to neurotransmission. Recent ronal cytoplasmic transport mRNPs appear quite data sugg,est that dendrites are also an important site heterogeneous in size and have been estimated , for the dyn, amic regulation of localized gene expression by ultrastructural methods to be between 200 and in the nervo, us system, with subsets of synapses possess- 600 mm in diameter and greater in mass than polyri- ing the ab,ility to independently alter synapse strength bosome complexes (>500 S). They are formed initi- , through th, e local synthesis of proteins. An important ally when nucleocytoplasmic shuttling RNA-binding componen, t to this regulation is the active transport of a proteins (RBPs) associate with nascent transcripts in select grou, p of messenger RNAs (mRNAs) from the the nucleus to prevent premature ribosomal loading , cell body ,into dendrites and targeting of these mRNAs and translation and to aid in nuclear export of to specific, translation sites.
    [Show full text]
  • Relevance of Synaptic Tagging and Capture to the Persistence of Long-Term Potentiation and Everyday Spatial Memory
    Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory Szu-Han Wang, Roger L. Redondo, and Richard G. M. Morris1 Centre for Cognitive and Neural Systems, Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom Edited* by Richard D. Palmiter, University of Washington, Seattle, WA, and approved September 21, 2010 (received for review June 22, 2010) Memory for inconsequential events fades, unless these happen generally forgotten each day. This is a closer analogy to everyday before or after other novel or surprising events. However, our memory in humans than many current behavioral tasks studied in understanding of the neurobiological mechanisms of novelty- animals, and is likely subserved by temporary engrams mediated by enhanced memory persistence is mainly restricted to aversive or distributed associative potentiation in the hippocampus. fear-associated memories. We now outline an “everyday appetitive” Interestingly, unrelated novelty or surprise may stabilize the behavioral model to examine whether and how unrelated novelty persistence of memories, even for inconsequential events that facilitates the persistence of spatial memory coupled to parallel elec- are normally forgotten. An example of this is the curious halo of “fl ” trophysiological studies of the persistence of long-term potentiation incidental memories surrounding ashbulb memories (10, 11), (LTP). Across successive days, rats were given one trial per day to find such as what happened to us on the occasion of momentous food in different places and later had to recall that day’s location. events such as the terrorist attacks in 2001 in the 9/11 tragedy. It This task is both hippocampus and NMDA receptor dependent.
    [Show full text]
  • Synaptic Plasticity and Translation Initiation Eric Klann,1,2,3 Marcia D
    Downloaded from learnmem.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Review Synaptic Plasticity and Translation Initiation Eric Klann,1,2,3 Marcia D. Antion,2 Jessica L. Banko,1 and Lingfei Hou1 1Departments of Molecular Physiology and Biophysics and 2Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is likely to be intimately involved in modulating synaptic strength. Our understanding of the translation-initiation process has expanded greatly in recent years. In this review, we discuss various aspects of translation initiation, as well as signaling pathways that might be involved in coupling neurotransmitter and neurotrophin receptors to the translation machinery during various forms of synaptic plasticity. It is thought that the cellular changes that underlie various forms 2000, 2001). In hippocampal area CA1, mGluR-dependent LTD of short-term synaptic plasticity involve covalent modifications can be blocked by translation inhibitors and, similar to BDNF- of pre-existing proteins and are protein-synthesis independent. induced potentiation, persists even when cell bodies are ex- In contrast, it is clear that long-lasting forms of synaptic plastic- cised from their dendrites (Huber et al. 2000). Thus, the protein ity require macromolecular synthesis. For example, long-lasting, synthetic machinery and the mRNA(s) necessary for the induc- late phase long-term potentiation (L-LTP) in the hippocampus tion of mGluR-dependent LTD are present in postsynaptic den- requires new protein synthesis (Frey and Morris 1997; Nguyen et drites.
    [Show full text]
  • Loss of Synaptic Tagging in the Anterior Cingulate Cortex After Tail Amputation in Adult Mice
    8060 • The Journal of Neuroscience, September 12, 2018 • 38(37):8060–8070 Cellular/Molecular Loss of Synaptic Tagging in the Anterior Cingulate Cortex after Tail Amputation in Adult Mice Ming-Gang Liu,1,2,3* Qian Song,1,2* and XMin Zhuo1,2 1Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China, 2Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and 3Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China Anterior cingulate cortex (ACC) is known to play important roles in key brain functions such as pain perception, cognition, and emotion. Different forms of homosynaptic plasticity such as long-term potentiation (LTP) and long-term depression have been studied in ACC synapses. However, heterosynaptic plasticity such as synaptic tagging has not been reported. Here, we demonstrate synaptic tagging in the ACC of adult male mice by using a 64-channel multielectrode array recording system. Weak theta burst stimulation (TBS), normally inducing early-phase LTP or No-LTP in most of the activated channels, produced late phase-LTP (L-LTP) in a majority of channels when a strong TBS was applied earlier to a separate input within a certain time window. Similar to hippocampus, synaptic tagging in the ACC depends on the synthesis of new proteins. Tail amputation-induced peripheral injury caused a loss of this heterosynaptic L-LTP and occluded strong TBS-evoked L-LTP as well. Together, we provide the first report of the synaptic tagging-like phenomenon in the ACC of adult mice, and the loss of synaptic tagging to amputation may contribute to injury-related cognitive changes and phantom limb sensation and pain.
    [Show full text]
  • Loss of Synaptic Tagging in the Anterior Cingulate Cortex After Tail Amputation in Adult Mice
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Cellular/Molecular Loss of synaptic tagging in the anterior cingulate cortex after tail amputation in adult mice Ming-Gang Liu1,2,3, Qian Song1,2 and Min Zhuo1,2 1Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China 2Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada 3Department of Anatomy and Physiology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China DOI: 10.1523/JNEUROSCI.0444-18.2018 Received: 19 February 2018 Revised: 21 July 2018 Accepted: 24 July 2018 Published: 27 July 2018 Author contributions: M.-G.L. and Q.S. performed research; M.-G.L. and Q.S. wrote the first draft of the paper; M.-G.L. and M.Z. wrote the paper; Q.S. analyzed data; M.Z. designed research; M.Z. edited the paper. Conflict of Interest: The authors declare no competing financial interests. This work is supported by grants from the EJLB-CIHR Michael Smith Chair in Neurosciences and Mental Health, Canada Research Chair, CIHR Operating Grant (MOP-124807) and Project Grant (PJT-148648), the Azrieli Neurodevelopmental Research Program and Brain Canada to M.Z. M.G.L is supported by the National Natural Science Foundation of China (Grants 31500834 and 31771157). Correspondence: Min Zhuo at Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada., [email protected] Cite as: J.
    [Show full text]
  • A Statistical Theory of Synaptic Tagging and Capture
    Network: Computation in Neural Systems September 2014; 25(3): 97–115 Original Article The penumbra of learning: A statistical theory of synaptic tagging and capture SAMUEL J. GERSHMAN Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA (Received 28 August 2013; revised 15 October 2013; accepted 2 November 2013) Abstract Learning in humans and animals is accompanied by a penumbra: Learning one task benefits from learning an unrelated task shortly before or after. At the cellular level, the penumbra of For personal use only. learning appears when weak potentiation of one synapse is amplified by strong potentiation of another synapse on the same neuron during a critical time window. Weak potentiation sets a molecular tag that enables the synapse to capture plasticity-related proteins synthesized in response to strong potentiation at another synapse. This paper describes a computational model which formalizes synaptic tagging and capture in terms of statistical learning mech- anisms. According to this model, synaptic strength encodes a probabilistic inference about the dynamically changing association between pre- and post-synaptic firing rates. The rate of change is itself inferred, coupling together different synapses on the same neuron. When the inputs to one synapse change rapidly, the inferred rate of change increases, amplifying learning at other synapses. Network Downloaded from informahealthcare.com by MIT Libraries on 08/27/14 Keywords: Synaptic plasticity, synaptic tagging and capture, Kalman filter The individual synapse has long served as a microcosm for studying the cellular basis of memory formation. In particular, memory formation is commonly believed to rely on long-term potentiation (LTP), the sustained increase in synaptic strength induced by repeated high-frequency stimulation of a neuron (Martin et al., 2000).
    [Show full text]
  • Synaptic Tagging and Capture
    Synaptic Tagging and Capture Sreedharan Sajikumar Editor Synaptic Tagging and Capture From Synapses to Behavior Editor Sreedharan Sajikumar Yong Loo Lin School of Medicine Department of Physiology National University of Singapore Singapore , Singapore ISBN 978-1-4939-1760-0 ISBN 978-1-4939-1761-7 (eBook) DOI 10.1007/978-1-4939-1761-7 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014951217 © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]