Program Overview
Total Page:16
File Type:pdf, Size:1020Kb
Program Overview Sunday 3 15:00 - 17:00 Meeting 1 BS EX . 3 Monday 3 08:30 - 9:30 Registration . 3 09:30 - 10:15 Opening Ceremony . 3 10:45 - 11:45 Wald Lecture 1 . 3 11:45 - 12:45 Tukey Lecture . 3 12:30 - 18:00 PS 1 Poster Session . 3 12:45 - 14:45 Meeting 2 BS CM . 4 12:45 - 17:45 Meeting 3 IMS EX . 4 14:00 - 15:45 IS 1 Advances in Statistical Computing and Graphics . 5 IS 7 Graphical Modeling . 5 IS 14 Probability Problems from Genetics . 5 IS 15 Quantitative Risk Management . 6 CS 1 Finance 1 . 6 CS 2 Inference for Stochastic Processes . 6 CS 3 Earthquake Modeling . 7 CS 4 Statistical Education . 8 CS 5 Estimation . 8 CS 6 Mixtures . 8 CS 7 Errors in Variable . 9 v 16:00- 17:00 Meeting 4 BS 1 . 9 16:15- 18:00 IS 24 Statistics in Genomics . 9 IS 27 Stochastic Control in Finance . 10 IS 30 Stochastic Models with Spatial Effects . 10 IS 34 Uncertainty in Computer Models . 10 CS 8 ARCH and GARCH Processes . 11 CS 9 Statistical Genetics 1 . 11 CS 10 Probability Theory 1 . 12 CS 11 Bayesian Analysis 1 . 12 CS 12 Reliability Theory . 13 CS 13 Queuing Theory 1 . 13 CS 14 Statistics in Meteorology . 14 19:00 - 20:00 IMS Presidential Address . 14 20:00 - 22:00 Welcome Reception . 14 Tuesday 15 09:00 - 10:00 BS-IMS Lecture 1 . 15 10:00 - 11:00 BS-IMS Lecture 2 . 15 11:30 - 12:30 Medallion Lecture 1 . 15 Panel Discussion 1 . 15 CS 15 Symbolic and Algebraic Statistics . 15 CS 16 Time Series Analysis 1 . 16 12:30 - 18:00 Meeting 5 IMS CM 1 . 16 12:30 - 18:00 PS 2 Poster Session . 16 14:00 - 15:30 Meeting 6 BS 2 . 17 14:00 - 15:45 IS 5 Gaussian Processes with Applications . 18 IS 9 Machine Learning and Data Mining . 18 IS 10 Markov Chain Monte Carlo . 18 IS 12 Multiple Tests and Selective Inference . 18 IS 18 Random Trees and Planar Maps . 19 CS 17 Goodness of Fit . 19 CS 18 Nonparametric Statistics 1 . 19 vi CS 19 Bayesian Analysis 2 . 20 CS 20 Stochastic Processes 1 . 20 CS 21 Statistical Genetics 2 . 21 CS 22 Optimal Design . 22 CS 23 Statistical Inference . 22 16:00 - 18:00 Meeting 7 BS ED . 23 16:15 - 18:00 IS 2 Algebraic Statistics . 23 IS 11 Model Choice for High Dimensional Data . 23 IS 22 Statistical Inverse Problems . 23 IS 29 Stochastic Loewner Evolution . 24 CS 24 Finance 2 . 24 CS 25 Asymptotic Approximation . 24 CS 26 Penalised Estimation . 25 CS 27 Stochastic Processes 2 . 25 CS 28 Survival Analysis . 26 CS 29 Queuing Theory 2 . 26 CS 30 Time Series Analysis 1 . 27 18:30 - 20:30 Special Reception . 27 Wednesday 28 09:00 - 10:00 Bernoulli Lecture . 28 10:00 - 11:00 Wald Lecture 2 . 28 11:00 - 12:30 Meeting 8 BS 3 . 28 11:30 - 12:30 Medallion Lecture 2 . 28 Panel Discussion 2 . 28 CS 31 Empirical Bayes Methods . 28 12:30 - 13:30 Meeting 9 IMS ED . 29 12:30 - 18:00 PS 3 Poster Session . 29 14:00 - 15:30 Meeting 10 BS 4 . 30 14:00 - 15:45 IS 6 Geophysical Models: Inference, Prediction and Interpretation . 30 IS 13 Probabilistic Analysis of Algorithms . 30 IS 17 Random Processes with Interactions . 30 vii IS 21 Statistical Challenges in the Study of Infectious Diseases . 31 CS 32 Stochastic Processes 3 . 31 CS 33 Finance 3 . 32 CS 34 Hypothesis Testing . 32 CS 35 Generalized Linear Mixed Models . 32 CS 36 Semiparametric Regression . 33 CS 37 Limit Theorems 1 . 33 CS 38 Information Theory . 34 CS 39 Time Series Analysis 2 . 34 16:15 - 18:00 IS 19 Semiparametric Models . 35 IS 23 Statistical Learning Theory . 35 IS 26 Statistics for Understanding Numerical Models of Climate Change 35 IS 28 Stochastic PDE and Interacting Stochastic Systems . 36 IS 32 Stochastic Neuronal Models . 36 CS 40 Machine Learning 1 . 36 CS 41 Distribution Theory 1 . 37 CS 42 Bayesian Analysis 3 . 37 CS 43 Design of Experiments 1 . 38 CS 44 Stochastic Processes 4 . 39 CS 45 Incomplete Data . 39 17:15 - 18:00 Meeting 11 IMS BM . 40 18:30 - 19:30 Public Lecture . 40 Thursday 41 09:00 - 10:00 Neyman Lecture 1 . 41 10:00 - 11:00 Kolmogorov Lecture . 41 10:30 - 13:30 Meeting 12 IMS CM 2 . 41 11:30 - 13:00 Meeting 13 ERC . 41 11:30 - 12:30 Memorial Session . 41 CS 46 Model Selection 1 . 41 CS 47 Statistics in Neural Science . 42 CS 48 Statistical Analysis of Climate and Pollution . 42 CS 49 Kernel Smoothing . 42 CS 50 Large Deviations . 43 CS 51 Game Theory . 43 CS 52 Statistical Quality Control . ..