Arfb Tree.Cdr

Total Page:16

File Type:pdf, Size:1020Kb

Arfb Tree.Cdr Supplementary figure 1. Maximum likelihood phylogenetic tree of the complete ScrollSaw dataset. The tree was inferred using IQ-TREE with LG+I+G4 model (the model selected by the program itself) with the ultrafast bootstrap algorithm and the SH-aLRT test (both 10000 replicates), as described under Materials and Methods. Dots at branches represent bootstrap values as indicated in the graphical legend (top right). Goniomonas avonlea Sar1b Tree scale: 0.1 SH-aLRT/UFboot Gloeochaete wittrockiana Sar1b >80/>95 Planomonas micra Sar1b >99/>99 Physarum polycephalum Sar1X Sar1L Bigelowiella natans SarL Raineriophrys erinaceoides Sar1b Gefionella okellyi Sar1b Goniomonas avonlea Sar1a Guillardia theta Sar1 Palpitomonas bilix Sar1 Cryptosporidium parvum Sar1 Symbiodinium minutum Sar1a Aplanochytrium kerguelense Sar1 Hyaloperonospora arabidopsidis Sar1 Nannochloropsis gaditana Sar1 Emiliania huxleyi Sar1a Pavlova sp. Sar1 Cyanophora paradoxa Sar1 Gloeochaete wittrockiana Sar1a1 Gloeochaete wittrockiana Sar1a2 Paratrimastix pyriformis Sar1 Chlamydomonas reinhardtii Sar1 Arabidopsis thaliana SarA1b Klebsormidium nitens Sar1 Planomonas micra Sar1a Capsaspora owczarzaki Sar1 Creolimax fragrantissima Sar1 Sar1 Sphaeroforma arctica Sar1 Acanthamoeba castellanii Sar1a Physarum polycephalum Sar1 Pygsuia biforma Sar1 Euglena gracilis Sar1 Thecamonas trahens Sar1 Gefionella okellyi Sar1a Andalucia godoyi Sar1 Adineta vaga Sar1a Drosophila melanogaster Sar1 Catenaria anguillulae Sar1 Aspergillus fumigatus Sar1 Coemansia reversa Sar1 Cryptococcus neoformans Sar1 Ustilago maydis Sar1 Spizellomyces punctatus Sar1 Basidiobolus meristosporus Sar1a Gonapodya prolifera Sar1 Monocercomonoides exilis Arl6 Paratrimastix pyriformis Arl6 Plasmodiophora brassicae Arl6 Amastigomonas sp. Arl6a Thecamonas trahens Arl6 Pygsuia biforma Arl6 Planomonas micra Arl6a Amastigomonas sp. Arl6b Andalucia godoyi Arl6 Gefionella okellyi Arl6 Malawimonas californiana Arl6 Emiliania huxleyi Arl6 Pavlova sp. Arl6 Palpitomonas bilix Arl6 Arl6 Phytophthora sojae Arl6 Vischeria sp. Arl6 Physarum polycephalum Arl6 Goniomonas avonlea Arl6 Guillardia theta Arl6 Cyanophora paradoxa Arl6 Gloeochaete wittrockiana Arl6 Batrachochytrium dendrobatidis Arl6 Spizellomyces punctatus Arl6 Mnemiopsis leidyi Arl6 Strongylocentrotus purpuratus Arl6 Nematostella vectensis Arl6 Trichoplax adhaerens Arl6 Gefionella okellyi Arfrp1 Malawimonas californiana Arfrp1 Goniomonas avonlea Arfrp1 Pygsuia biforma Arfrp1 Dictyostelium discoideum Arfrp1 Physarum polycephalum Arfrp1 Cyanophora paradoxa Arfrp1 Gloeochaete wittrockiana Arfrp1 Aurantiochytrium limacinum Arfrp1 Phytophthora sojae Arfrp1 Volvox carteri Arfrp1 Emiliania huxleyi Arfrp1 Pavlova sp. Arfrp1 Acanthamoeba castellanii Arfrp1 Euglena gracilis Arfrp1 Guillardia theta Arfrp1 Neovahlkampfia damariscottae Arfrp1 Arfrp1 Amastigomonas sp. Arfrp1 Thecamonas trahens Arfrp1 Palpitomonas bilix Arfrp1 Planomonas micra Arfrp1 Basidiobolus meristosporus Arfrp1 Phycomyces blakesleeanus Arfrp1 Batrachochytrium dendrobatidis Arfrp1 Spizellomyces punctatus Arfrp1 Trichoplax adhaerens Arfrp1 Nematostella vectensis Arfrp1 Strongylocentrotus purpuratus Arfrp1 Saccoglossus kowalevskii Arfrp1 Helobdella robusta Arfrp1 Ciona intestinalis Arfrp1 Homo sapiens Arfrp1 Paratrimastix pyriformis Arl13 Thecamonas trahens Arl13 Euglena gracilis Arl13 Euglena gracilis Arl13L3 Guillardia theta Arl13 Malawimonas californiana Arl13 Chlamydomonas reinhardtii Arl13 Volvox carteri Arl13 Physarum polycephalum Arl13 Naegleria gruberi Arl13 Goniomonas avonlea Arl13 Gefionella okellyi Arl13 Pygsuia biforma Arl13 Andalucia godoyi Arl13 Gloeochaete wittrockiana Arl13 Arl13 Planomonas micra Arl13 Cyanophora paradoxa Arl13 Homo sapiens Arl13b Takifugu rubripes Arl13b Ciona intestinalis Arl13 Capitella teleta Arl13 Saccoglossus kowalevskii Arl13 Palpitomonas bilix Arl13 Monocercomonoides exilis Arl13 Plasmodiophora brassicae Arl13 Pavlova sp. Arl13 Trichoplax adhaerens Arl13 Vischeria sp. Arl13 Euglena gracilis Arl16 Naegleria gruberi Arl16 Phytophthora sojae Arl16 Pavlova sp. Arl16 Micromonas commoda Arl16 Mastigamoeba balamuthi Arl16 Vischeria sp. Arl16 Andalucia godoyi Arl16 Gloeochaete wittrockiana Arl16 Cyanophora paradoxa Arl16 Arl16 Pygsuia biforma Arl16 Goniomonas avonlea Arl16 Physarum polycephalum Arl16 Gefionella okellyi Arl16 Malawimonas californiana Arl16 Paratrimastix pyriformis Arl16 Nematostella vectensis Arl16 Saccoglossus kowalevskii Arl16 Takifugu rubripes Arl16 Raineriophrys erinaceoides Arl18 Palpitomonas bilix Arl18 Paratrimastix pyriformis Arl18 Gefionella okellyi Arl18 Malawimonas californiana Arl18 Bodo saltans Arl18 Arl18 Perkinsela sp. Arl18 Planomonas micra Arl18 Ectocarpus siliculosus Arl18 Hyaloperonospora arabidopsidis Arl18 Spironucleus vortens Arl8 Paratrimastix pyriformis Arl8 Paramecium tetraurelia Arl8b Tetrahymena thermophila Arl8 Andalucia godoyi Arl8 Palpitomonas bilix Arl8 Gloeochaete wittrockiana Arl8 Reticulomyxa filosa Arl8b Cyanophora paradoxa Arl8 Goniomonas avonlea Arl8 Pavlova sp. Arl8 Raineriophrys erinaceoides Arl8a Coccomyxa subellipsoidea Arl8 Klebsormidium nitens Arl8 Physcomitrella patens Arl8b Neovahlkampfia damariscottae Arl8 Euglena gracilis Arl8 Arl8 Naegleria gruberi Arl8 Amastigomonas sp. Arl8 Thecamonas trahens Arl8 Planomonas micra Arl8 Acanthamoeba castellanii Arl8 Physarum polycephalum Arl8 Gefionella okellyi Arl8 Malawimonas californiana Arl8 Pygsuia biforma Arl8 Sphaeroforma arctica Arl8 Capsaspora owczarzaki Arl8 Homo sapiens Arl8a Batrachochytrium dendrobatidis Arl8 Basidiobolus meristosporus Arl8b Conidiobolus coronatus Arl8 Coemansia reversa Arl8 Physarum polycephalum Arl3 Gefionella okellyi Arl3a Malawimonas californiana Arl3 Pygsuia biforma Arl3 Planomonas micra Arl3 Andalucia godoyi Arl3 Goniomonas avonlea Arl3 Guillardia theta Arl3 Ectocarpus siliculosus Arl3 Vischeria sp. Arl3 Phytophthora sojae Arl3 Cyanophora paradoxa Arl3b Gloeochaete wittrockiana Arl3 Arl3 Paratrimastix pyriformis Arl3 Trichomonas vaginalis Arl3b Amastigomonas sp. Arl3 Thecamonas trahens Arl3 Pavlova sp. Arl3 Emiliania huxleyi Arl3a Emiliania huxleyi Arl3b Spizellomyces punctatus Arl3 Branchiostoma floridae Arl3 Takifugu rubripes Arl3a Capitella teleta Arl3 Saccoglossus kowalevskii Arl3 Andalucia godoyi Arl2 Ectocarpus siliculosus Arl2 Vischeria sp. Arl2 Symbiodinium minutum Arl2 Basidiobolus meristosporus Arl2 Phycomyces blakesleeanus Arl2 Catenaria anguillulae Arl2a Batrachochytrium dendrobatidis Arl2 Spizellomyces punctatus Arl2 Lottia gigantea Arl2 Capitella teleta Arl2 Saccoglossus kowalevskii Arl2 Takifugu rubripes Arl2 Hydra magnipapillata Arl2 Trichoplax adhaerens Arl2 Planomonas micra Arl2 Cyanophora paradoxa Arl2 Arl2 Gloeochaete wittrockiana Arl2 Aurantiochytrium limacinum Arl2 Amastigomonas sp. Arl2 Thecamonas trahens Arl2 Malawimonas californiana Arl2 Paratrimastix pyriformis Arl2 Emiliania huxleyi Arl2 Pavlova sp. Arl2 Goniomonas avonlea Arl2 Guillardia theta Arl2 Dictyostelium discoideum Arl2 Physarum polycephalum Arl2 Acanthamoeba castellanii Arl2 Amoebidium parasiticum Arl2 Pygsuia biforma Arl2 Giardia intestinalis Arf1 Spironucleus salmonicida Arf1 Arf1 Pygsuia biforma Arf6 Amoebidium parasiticum Arf6 Basidiobolus meristosporus Arf6a Andalucia godoyi Arf6 Arf6 Mastigamoeba balamuthi Arf6 Gefionella okellyi Arf6 Nannochloropsis gaditana Arf1 Ectocarpus siliculosus Arf1 Phytophthora sojae Arf1a Aurantiochytrium limacinum Arf1a Fonticula alba Arf1 Reticulomyxa filosa Arf1a Gefionella okellyi Arf1a Malawimonas californiana Arf1a Andalucia godoyi Arf1a Raineriophrys erinaceoides Arf1b Pygsuia biforma Arf1b Mastigamoeba balamuthi Arf1 Physarum polycephalum Arf1a Pygsuia biforma Arf1a Perkinsus marinus Arf1b Perkinsus marinus Arf1c Emiliania huxleyi Arf1a Pavlova sp. Arf1 Arf1 Amastigomonas sp. Arf1a Planomonas micra Arf1a Palpitomonas bilix Arf1 Basidiobolus meristosporus Arf1b Schizosaccharomyces pombe Arf1 Gonapodya prolifera Arf1a Spizellomyces punctatus Arf1 Spizellomyces punctatus Arf1b Gloeochaete wittrockiana Arf1 Selaginella moellendorffii ArfA1b Goniomonas avonlea Arf1a Amphimedon queenslandica Arf1a Nematostella vectensis Arf1b Coccomyxa subellipsoidea ArfA Klebsormidium nitens ArfA1 Oryza sativa ArfA1 Oryza sativa ArfA3a Neovahlkampfia damariscottae Arl5 Physarum polycephalum Arl5 Amastigomonas sp. Arl5 Thecamonas trahens Arl5 Spizellomyces punctatus Arl5 Basidiobolus meristosporus Arl5 Phycomyces blakesleeanus Arl5 Pygsuia biforma Arl5 Capsaspora owczarzaki Arl5 Adineta vaga Arl5b1 Drosophila melanogaster Arl5 Helobdella robusta Arl5 Goniomonas avonlea Arl5 Naegleria gruberi Arl5 Arl5 Raineriophrys erinaceoides Arl5 Klebsormidium nitens Arl5 Selaginella moellendorffii Arl5 Gloeochaete wittrockiana Arl5 Planomonas micra Arl5 Aurantiochytrium limacinum Arl5 Pavlova sp. Arl5 Palpitomonas bilix Arl5 Acanthamoeba castellanii Arl5 Malawimonas californiana Arl5 Gefionella okellyi Arl5 Euglena gracilis Arl5 Euglena gracilis Arl1 Neovahlkampfia damariscottae Arl1 Naegleria gruberi Arl1 Mastigamoeba balamuthi Arl1 Pygsuia biforma Arl1 Batrachochytrium dendrobatidis Arl1 Phycomyces blakesleeanus Arl1 Basidiobolus meristosporus Arl1b Catenaria anguillulae Arl1 Adineta vaga Arl1a Amoebidium parasiticum Arl1 Branchiostoma floridae Arl1 Sphaeroforma arctica rArl1 Guillardia theta Arl1 Cyanophora paradoxa Arl1 Gloeochaete wittrockiana Arl1 Emiliania huxleyi Arl1 Pavlova sp. Arl1 Arl1 Goniomonas avonlea Arl1 Aplanochytrium kerguelense Arl1 Vischeria sp. Arl1 Ostreococcus lucimarinus Arl1 Coccomyxa subellipsoidea Arl1 Volvox carteri Arl1 Acanthamoeba castellanii
Recommended publications
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns among distantly related mitochondrial genomes ................................................................................................ 11 Summary ................................................................................................................................ 11 2-1. Leucocryptos
    [Show full text]
  • Third Target of Rapamycin Complex Negatively Regulates Development of Quiescence in Trypanosoma Brucei
    Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei Antonio Barquillaa, Manuel Saldiviaa, Rosario Diaza, Jean-Mathieu Barta,b, Isabel Vidala, Enrique Calvoc, Michael N. Halld, and Miguel Navarroa,1 aInstituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), 18100 Granada, Spain; bCentro Nacional de Medicina Tropical, The Institute of Health Carlos III, 28029 Madrid, Spain; cCentro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; and dBiozentrum, University of Basel, CH4056 Basel, Switzerland Edited by Alberto Carlos Frasch, Universidad de San Martin and National Research Council, San Martin, Argentina, and approved July 27, 2012 (receivedfor review June 21, 2012) African trypanosomes are protozoan parasites transmitted by that TbTOR4 assembles into a structurally and functionally a tsetse fly vector to a mammalian host. The life cycle includes unique TOR complex (TbTORC4) that plays a crucial role in the highly proliferative forms and quiescent forms, the latter being T. brucei life cycle. adapted to host transmission. The signaling pathways controlling TbTOR4 contains characteristic TOR kinase domains, in- the developmental switch between the two forms remain un- cluding HEAT, FAT, and FATC domains, but lacks a rapamy- known. Trypanosoma brucei contains two target of rapamycin cin-binding site (RBS). The RBSs in TbTOR1 and TbTOR3 also (TOR) kinases, TbTOR1 and TbTOR2, and two TOR complexes, are poorly conserved and do not interact with FKBP2-rapamycin TbTORC1 and TbTORC2. Surprisingly, two additional TOR kinases (5). Multiple-alignment analysis of TbTOR4 with other members are encoded in the T. brucei genome. We report that TbTOR4 asso- of the PI3K-related kinase (PIKK) superfamily indicates that ciates with an Armadillo domain-containing protein (TbArmtor), TbTOR4 clusters with the TOR family (Fig.
    [Show full text]
  • Integrative Taxonomy of the Pavlovophyceae (Haptophyta): a Reassessment
    Protist, Vol. 162, 738–761, November 2011 http://www.elsevier.de/protis Published online date 28 June 2011 ORIGINAL PAPER Integrative Taxonomy of the Pavlovophyceae (Haptophyta): A Reassessment El Mahdi Bendifa,b,1, Ian Proberta,2, Annie Hervéc, Chantal Billardb, Didier Gouxd, Christophe Lelongb, Jean-Paul Cadoretc, and Benoît Vérona,b,3 aUniversité de Caen Basse-Normandie, Algobank-Caen, IFR 146, 14032 Caen, France bUniversité de Caen Basse-Normandie, UMR 100 PE2 M - IFREMER, 14032 Caen, France cIFREMER, Laboratoire de Physiologie et Biotechnologie des Algues, rue de l’Ile d’Yeu, BP21105, 44311 Nantes, France dUniversité de Caen Basse-Normandie, Centre de Microscopie Appliquée à la Biologie, IFR 146, 14032 Caen, France Submitted October 18, 2010; Accepted March 15, 2011 Monitoring Editor: Barry S. C. Leadbeater. The Pavlovophyceae (Haptophyta) contains four genera (Pavlova, Diacronema, Exanthemachrysis and Rebecca) and only thirteen characterised species, several of which are important in ecological and eco- nomic contexts. We have constructed molecular phylogenies inferred from sequencing of ribosomal gene markers with comprehensive coverage of the described diversity, using type strains when avail- able, together with additional cultured strains. The morphology and ultrastructure of 12 of the described species was also re-examined and the pigment signatures of many culture strains were determined. The molecular analysis revealed that sequences of all described species differed, although those of Pavlova gyrans and P. pinguis were nearly identical, these potentially forming a single cryptic species complex. Four well-delineated genetic clades were identified, one of which included species of both Pavlova and Diacronema. Unique combinations of morphological/ultrastructural characters were iden- tified for each of these clades.
    [Show full text]
  • MAPPE PARASSITOLOGICHE MAPPE Alghero 26-29 Giugno 2012
    18 SOIPA Società Italiana di Parassitologia Comune di Alghero SOCIETÀ ITALIANA DI PARASSITOLOGIA XXVII Congresso Nazionale MAPPE PARASSITOLOGICHE MAPPE Alghero 26-29 giugno 2012 Dipartimento di Medicina Veterinaria In copertina: Protoscolice di Echinococcus granulosus Università degli Studi di Sassari (Foto G. Garippa) MAPPE PARASSITOLOGICHE MAPPE MAPPE PARASSITOLOGICHE 18 Mappe Parassitologiche CONTENTS Series Editor Lettura Magistrale Giuseppe Cringoli Relazioni ai Simposi e Tavola Rotonda Copyrigth© 2012 by Giuseppe Cringoli Comunicazioni Scientifiche del XXVII Congresso Nazionale della Società Italiana di Parassitologia Registered office Veterinary Parasitology and Parasitic Diseases Alghero, 26-29 giugno 2012 Department of Pathology and Animal Health GIOVANNI GARIPPA - Nota editoriale . 3 Faculty of Veterinary Medicine University of Naples Federico II Via della Veterinaria, 1 Lettura Magistrale 80137 Naples - Italy EUGENIA TOGNOTTI - Americani, comunisti e zanzare . 7 Tel +39 081 2536283 e-mail: [email protected] website: www.parassitologia.unina.it Simposio 1 Epidemiologia della trichinellosi nell’uomo CREMOPAR e negli animali in italia e in europa Centro Regionale per il Monitoraggio delle Parassitosi Località Borgo Cioffi - Eboli (Sa) BRUSCHI F. - We can still learn something from trichinellosis: from a public health problem to a model for studying im- Tel./Fax +39 0828 347149 mune mediated diseases . 13 e-mail: [email protected] POZIO E. - Epidemiology of Trichinella infections in humans All rights reserved – printed in Italy and animals of Italy and Europe . 15 No part of this publication may be reproduced in any form or by any REINA D. - Epidemiological situation of trichinellosis in means, electronically, mechanically, by photocopying, recording or Spain . 16 otherwise, without the prior permission of the copyright owner.
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • Leishmania LABCG1 and LABCG2 Transporters
    Manzano et al. Parasites & Vectors (2017) 10:267 DOI 10.1186/s13071-017-2198-1 RESEARCH Open Access Leishmania LABCG1 and LABCG2 transporters are involved in virulence and oxidative stress: functional linkage with autophagy José Ignacio Manzano1, Ana Perea1, David León-Guerrero1, Jenny Campos-Salinas1, Lucia Piacenza2, Santiago Castanys1*† and Francisco Gamarro1*† Abstract Background: The G subfamily of ABC (ATP-binding cassette) transporters of Leishmania include 6 genes (ABCG1-G6), some with relevant biological functions associated with drug resistance and phospholipid transport. Several studies have shown that Leishmania LABCG2 transporter plays a role in the exposure of phosphatidylserine (PS), in virulence and in resistance to antimonials. However, the involvement of this transporter in other key biological processes has not been studied. Methods: To better understand the biological function of LABCG2 and its nearly identical tandem-repeated transporter LABCG1, we have generated Leishmania major null mutant parasites for both genes (ΔLABCG1-2). NBD-PS uptake, infectivity, metacyclogenesis, autophagy and thiols were measured. Results: Leishmania major ΔLABCG1-2 parasites present a reduction in NBD-PS uptake, infectivity and virulence. In addition, we have shown that ΔLABCG1-2 parasites in stationary phase growth underwent less metacyclogenesis and presented differences in the plasma membrane’s lipophosphoglycan composition. Considering that autophagy is an important process in terms of parasite virulence and cell differentiation, we have shown an autophagy defect in ΔLABCG1-2 parasites, detected by monitoring expression of the autophagosome marker RFP-ATG8. This defect correlates with increased levels of reactive oxygen species and higher non-protein thiol content in ΔLABCG1-2 parasites. HPLC analysis revealed that trypanothione and glutathione were the main molecules accumulated in these ΔLABCG1-2 parasites.
    [Show full text]
  • The Polar Lipidome of Cultured Emiliania Huxleyi: a Source of Bioactive Lipids with Relevance for Biotechnological Applications
    biomolecules Article The Polar Lipidome of Cultured Emiliania huxleyi: A Source of Bioactive Lipids with Relevance for Biotechnological Applications Susana S. Aveiro 1 ,Tânia Melo 2, Ana Figueiredo 1, Pedro Domingues 1 , Hugo Pereira 3, Inês B. Maia 4 , Joana Silva 5, M. Rosário Domingues 1,2 , Cláudia Nunes 6 and Ana S. P.Moreira 1,6,* 1 Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (S.S.A.); [email protected] (A.F.); [email protected] (P.D.); [email protected] (M.R.D.) 2 ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] 3 Green Colab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; [email protected] 4 Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; [email protected] 5 Allmicroalgae Natural Products S.A., Apartado 9, 2449-909 Pataias, Portugal; [email protected] 6 CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-401-505 Received: 14 September 2020; Accepted: 5 October 2020; Published: 12 October 2020 Abstract: Polar lipids from microalgae have aroused greater interest as a natural source of omega-3 (n-3) polyunsaturated fatty acids (PUFA), an alternative to fish, but also as bioactive compounds with multiple applications.
    [Show full text]
  • Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
    Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34).
    [Show full text]