Deposition of Nutrients from Harmattan Dust in Ghana, West Africa

Total Page:16

File Type:pdf, Size:1020Kb

Deposition of Nutrients from Harmattan Dust in Ghana, West Africa Pedosphere 25(4): 613–621, 2015 ISSN 1002-0160/CN 32-1315/P c 2015 Soil Science Society of China Published by Elsevier B.V. and Science Press Deposition of Nutrients From Harmattan Dust in Ghana, West Africa Henrik BREUNING-MADSEN1,∗, Theodore Wola AWADZI2 and Gry LYNGSIE1 1Institute of Geosciences and Natural Resource Management, University of Copenhagen, Oster Voldgade 10, 1350 Copenhagen K (Denmark) 2Department of Geography and Resource Development, University of Ghana, PO Box LG 59, Legon, Accra (Ghana) (Received September 10, 2014; revised April 2, 2015) ABSTRACT In order to measure dust’s nutrient input on farmland in different agro-ecological zones, Harmattan dust was sampled by mats with plastic straw in Ghana between 2002–2006. The inputs of total nutrients by Harmattan dust in Ghana per Harmattan period were about 1–2 kg Ca ha−1, 0.5–2 kg K ha−1, 0.5–1.5 kg Mg ha−1 and less than 0.5 kg P ha−1. Compared with the annual input of nutrients by precipitation, the dust accounted for 10% or less of Ca, Mg and K but approximately 20%–40% of P. The input of nutrients by dust was only valid for areas with vegetation, because in areas with none or sparse vegetation, loss of soil due to wind erosion and hereby loss of nutrients might be significant. In farmland areas with bare and vegetated fields there seemed to be an internal redistribution of the nutrients and not a net gain of nutrients from outside the area (long-range transported dust). The input of P by dust might be of some importance in the traditional shifting cultivation systems, while the inputs of other three nutrients of Ca, Mg and K were so low that they must be considered insignificant. In the intensive agriculture systems with huge inputs of manures and fertilizers the nutrient input by dust is insignificant and could be neglected. Key Words: deposition rate, dust deposition, input of nutrient, long-range transported dust, nutrient concentration, traditional agricultural system Citation: Breuning-Madsen H, Awadzi T W, Lyngsie G. 2015. Deposition of nutrients from Harmattan dust in Ghana, West Africa. Pedosphere. 25(4): 613–621. INTRODUCTION parts of the year. In Ghana the Harmattan wind is ex- perienced in December to March, replacing the south- Ghana is located in West Africa and stretches for west monsoon wind. Throughout that period, storm about 1 000 km from the Gulf of Guinea towards the activities in the Bod´el´e Depression, located in the north. The traditional agricultural system throughout Chad Basin of Africa, raise large amounts of dusts into the country is shifting cultivation, a system characteri- the atmosphere, which are transported towards south- zed by a few years of cultivation followed by many years west by the predominant trade winds (Kalu, 1979; Mc- of fallow. It is a system of subsistence agriculture and Tainsh, 1980; Afeti and Resch, 2000; Washington et harvest crops are mainly for domestic use with little al., 2006; Warren et al., 2007). During a Harmattan surplus for sale. In this system, nutrient lost to the dust plume’s movement towards southwest, the coarse surroundings is limited and import of fertilizers and grain dust settles quickly and only the most fine grain manure is therefore not necessary. The loss of nutrients fraction stays in the atmosphere and can be transpor- due to leaching and soil erosion are replaced by atmos- ted thousands of kilometers as reported by Koren et pheric input from precipitation and dust deposition, al. 5 (2006) and Ben-Ami et al. (2010), who pointed and by weathering of primary subsoil silicates available out that the Bod´el´e Depression is the main source of (Szott et al., 1991). The atmospheric input of nutrient dust, and hereby nutrients, to the Amazon forests. is measured normally by the chemical compositions of The input of nutrients by dust can be determined rainwater, but wind-blow dust is an important agent by measuring the concentrations of nutrients in dust that can contribute with a significant portion of nu- deposited. The sampling strategy is important when trients to soil in some areas, i.e., countries along the determining the amount of deposited dust and the sam- Gulf of Guinea. In these areas, a dry dust-laden wind, plers should mirror the surface of the ground as good as the Harmattan wind, blows from the Sahara Desert in possible. In researches on Harmattan dust, dust sam- ∗Corresponding author. E-mail: [email protected]. 614 H. BREUNING-MADSEN et al. ples were collected mostly in different types of contai- ners or funnels, some dry, others filled with different liquids (McTainsh and Walker, 1982; Møberg et al., 1991; Tiessen et al., 1991; McTainsh et al., 1997; Ade- tunji et al., 2001; Breuning-Madsen and Awadzi, 2005; Goossens and Rajot, 2008). For determination of dust deposition in forests the drip canopy method was used (Stoorvogel et al., 1997). Several studies on Harmattan dust have been car- ried out in Ghana. Tiessen et al. (1991) investigated soils in northern Ghana and compared their chemi- cal properties with that of Harmattan dust captured on plastic sheets or funnels. Pelig-Ba et al. (2001) showed, indirectly, the influence of airborne dust on the amount of nutrients (Ca, Mg and K) and other ele- ments (Fe, Al, Mn, Zn, V, Cr, Cu and Pb) deposited around Tamale, Ghana. Breuning-Madsen and Awadz- i (2005) measured, at a regional scale, the amount of dust trapped in bowls with water, mats with plastic straw and wooden plates and showed the regional vari- ation in texture and organic matter content of dust. He et al. (2007) determined the clay mineralogy of Har- mattan dust in northern and southern Ghana. Lyngsie Fig. 1 Map showing the agro-ecological zones in Ghana and the et al. (2011) used water-filled bowls to capture dust for location of sampling sites. mineralogical investigation of dust in the Harmattan and southwest monsoon seasons at Tamale. Breuning- a long dry season. Madsen et al. (2012) used bowls and mats to collect In the coastal area of southeastern Ghana, the an- dust for determining the amount of dust deposited in nual precipitation is lower than 1 000 mm and a nar- Lake Volta. Few of studies investigated the annual and row coastal savannah zone with grasses and few trees is regional variation of nutrients due to Harmattan dust found. In the southwestern corner of Ghana, the vege- deposition. This variation may be significant for sub- tation is tropical rainforest (Fig. 1). This is surroun- sistence agriculture and natural systems, as mentioned ded by a moist semi-deciduous tropical forest with pro- above. Thus, the objectives of this work were to in- nounced litter fall in the dry season. Towards the north vestigate the annual amount of nutrients deposited via the moist semi-deciduous tropical forest turns into a Harmattan dust on surfaces with short vegetation like Guinea savannah with grasses, scrubs and a few trees. grasses in different agro-ecological zones of Ghana in In the dry north, the Guinea savannah zone turns into West Africa, and to evaluate if Harmattan dust de- a Sudan savannah zone. position had any significant influence on keeping soil In December–February the northeast Harmattan nutrients at an adequate level for plant production. wind dominates in northern Ghana, while the south- west monsoon wind dominates in southern Ghana. MATERIALS AND METHODS This means that most areas of Ghana are affected by Study areas the Intercontinental Convergence Zone (ITCZ). The location of the border between the two wind systems, Ghana is located in West Africa on the Gulf of Inter Tropical Discontinuity (ITD), is movable during Guinea and lies between 6◦–11◦ Nand1◦ E–3◦ W the Harmattan period (Engelstaedter et al., 2006; Sun- (Fig. 1). The mean monthly temperature is between nu et al., 2008). The ITD reaches its most southern lo- 25 and 30 ◦C. In the south of Ghana, two pronounced cation of Ghana, approximately 5◦ N, in the beginning rainy seasons exist, one in April to June and the other of January (Sunnu et al., 2008), but can move further in September to November. The minor dry season is toward south and the northeast Harmattan wind rea- in July to August, while the major dry season is in ches the Gulf of Guinea. Thus, the northeast Harmat- December to February. In the north of Ghana, there is tan wind dominates in northern Ghana (Bawku and only one rainy season from July to October, followed by Tamale) on a monthly basis in December–February, NUTRIENTS DEPOSITED FROM DUST 615 while it reaches the Central Ghana (Kintampo and occur during the Harmattan period, especially in the Kete Krachi) every year although it does not domi- south. The tube fed the water to a 36-L plastic contai- nate in all the three months (Awadzi and Breuning- ner. Second, at the other 4 sites located in Central and Madsen, 2007). The southwest monsoon dominates at southern Ghana another type of mat sampler was used the coast (Accra in southern Ghana) on a monthly ba- because erratic showers during the Harmattan period sis in December–February, but in more inland areas will fill the 36-L plastic containers, and thereby reduce at Kpong and Kade northerly wind blows occasional- the possibility of accurately calculating the amount of ly on a monthly basis (Awadzi and Breuning-Madsen, dust retained. A plate of plywood with a diameter of 2007). A study of Lyngsie et al. (2013) indicated that about 55 cm was placed in a bowl 2 cm from the top.
Recommended publications
  • Winds:Towards Better Weather Forecasts in Africa
    WINDS:TOWARDS BETTER WEATHER FORECASTS IN AFRICA. KINYODA G. G Kenya Meteorological Department P.o box 30259, Nairobi. KENYA Tel: 56 78 80/Fax: 56 78 88 ABSTRACT: Poor operational meteorological network in Africa has for a long time continued to make weather forecasting difficult. Data extracted from the operational meteorological satellites is therefore vital information for this region. This paper describes, compares and evaluates the operational use of wind information disseminated via the MDD system to Africa; focussing at the Regional Specialized Meteorological Centre (RSMC), Nairobi, the African Centre of Meteorological Applications for Development (ACMAD), Niamey (Niger) and the Drought Monitoring Centre (DMC) in Nairobi. 1. INTRODUCTION 4. SCOPE In describing and evaluating the use of the wind Meteorological services rely heavily on timely information received via the MDD system, this paper :- dissemination of meteorological observations and derived • Discusses briefly the main weather/climate infuencing products.In many parts of the world telecommunications factors in Africa. This is considered important in the links provided by the WMO Global Telecommunications understanding of how the wind information is analysed, System (GTS), which is also used for interchange of interpreted and incorporated into the weather forecasts. meteorological data are satisfactory. However, extensive • Verifies qualitatively, the analysed wind information areas still suffer from a high degree of unreliability. Africa against the validating "truth" provided by a is particularly affected by the unreliability of the GTS. coresponding Meteosat imagery, over a short period. Fortunately, this region lies within the field of view of the • Finally, the MDD’s mission performance is evaluated Meteosat satellite.
    [Show full text]
  • Harmattan Haze and Environmental Health
    African Journal of Environmental Science and Technology Vol. 1 (4), November 2007 Available online at http://www.academicjournals.org/AJEST ISSN 1996-0786 © 2007 Academic Journals Editorial Harmattan Haze and Environmental Health It is the season to cover up. Beginning in November of every year and ending around March, fine particulate matter (typically 0.5 – 10 micrometers) emanating from the Sahara desert blow south, obscuring vision and laboring breathing for everyone (Figure 1). In addition, the dry dusty winds cause a variety of domestic inconveniences because of the lay- ers of dust that envelope everything both outdoors and indoors. This is harmattan season, and it is ingrained in all West Figure 1. The mosque in Abuja Nigeria, seen through the harmattan haze. Photograph by courtesy of Kipp Jones1. Figure 2. Harmattan dust storms from the Sahara desert as captured by NASA’s MODIS satellite reaches across to the Atlantic Ocean in the South, and all the way to South America and the Caribbean islands2. 1 http://en.wikipedia.org/wiki/Image:MosqueinAbuja.jpg. Figure 3. Distribution of Harm attan dust particles in W est Africa. African cultures as something to look forward to, or to dread, depending on local circumstances. Dust from the Sahara desert has global environmental effects, as documented by NASA’s satellite images showing that the dust reaches as far as South America and the Caribbean3 (Figure 2). Transcontinental and over-seas transport of Sahara dust carries fungal spores, potentially affecting agricultural productivity in distant land, enriching biological diversity. Furthermore, iron-rich Sahara dust is associated with fertilizing the oceans, leading to phytoplankton growth and carbon seq- uestration, and influencing the Earth’s radiative balance4,5,6.
    [Show full text]
  • Towards a Prediction of the Intensity of a Harmattan
    DELFT UNIVERSITYOF TECHNOLOGY FACULTY OF CIVIL ENGINEERINGAND GEOSCIENCES MARCH 29, 2019 TOWARDS A PREDICTION OF THE INTENSITY OF A HARMATTAN SEASON PRISKA VAN BINSBERGEN, 4227743 Introduction The harmattan is a seasonal phenomena in West Africa. It is a dry and warm wind which is able to transport large dust plumes. Each year during the harmattan season, between November and March, this wind reaches parts of West Africa. Harmattan winds can transport large amounts of dust originating from the Sahara and Sahel through the atmosphere. This makes dust aerosol the most common aerosol type in West-Africa [Ochei and Adenola, 2018]. These fine dust particles transported by the harmattan winds scatter light and decrease the incoming sunlight. This results in decreased visibility and dangerous situation for aviation. In addition to affecting the visibility, the har- mattan brings other negative effects as well, like health issues and crop loss. The countries in West Africa along the Gulf of Guinea (from Ivory Coast to Nigeria) suffer most from the conse- quences of the harmattan due to their location relative to the harmattan winds. Not only from a health or aviation perspective, but also from an agricultural perspective these countries are affected by the harmattan, as their crops are affected by the warm, dry and dusty harmattan winds. These are countries investing in crops like cocoa pods or cashew nuts. Those crops can be largely influenced by the harmattan winds, as they are highly sensitive to dusty and dry conditions. For these farmers, a good or bad harmattan season can make a huge difference, because crop yield can decrease significantly during a bad harmattan year [Reuters, 2016].
    [Show full text]
  • The West African Monsoon Dynamics. Part II: the ''Preonset'
    1NOVEMBER 2003 SULTAN AND JANICOT 3407 The West African Monsoon Dynamics. Part II: The ``Preonset'' and ``Onset'' of the Summer Monsoon BENJAMIN SULTAN AND SERGE JANICOT LMD/IPSL, CNRS, Ecole Polytechnique, Palaiseau, France (Manuscript received 24 October 2002, in ®nal form 21 May 2003) ABSTRACT The arrival of the summer monsoon over West Africa has been documented by using daily gridded rainfall data and NCEP±NCAR reanalyses during the period 1968±90, and OLR data over the period 1979±90. Two steps have been characterized through a composite approach: the preonset and the onset of the summer monsoon. The preonset stage corresponds to the arrival in the intertropical front (ITF) at 158N, that is, the con¯uence line between moist southwesterly monsoon winds and dry northeasterly Harmattan, bringing suf®cient moisture for isolated convective systems to develop in the Sudano±Sahelian zone while the intertropical convergence zone (ITCZ) is centered at 58N. The mean date for the preonset occurrence is 14 May and its standard deviation is 9.5 days during the period 1968±90. This leads to a ®rst clear increase of the positive rainfall slope corre- sponding to the beginning of the rainy season over this Sudano±Sahelian area. The onset stage of the summer monsoon over West Africa is linked to an abrupt latitudinal shift of the ITCZ from a quasi-stationary location at 58N in May±June to another quasi-stationary location at 108N in July±August. The mean date for the onset occurrence is 24 June and its standard deviation is 8 days during the period 1968± 90.
    [Show full text]
  • The Analysis of Influence of Weather Conditions on Atmospheric Extinction Coefficient Over Bauchi, North Eastern Nigeria
    Journal of Atmospheric Pollution, 2015, Vol. 3, No. 1, 31-38 Available online at http://pubs.sciepub.com/jap/3/1/6 © Science and Education Publishing DOI:10.12691/jap-3-1-6 The Analysis of Influence of Weather Conditions on Atmospheric Extinction Coefficient over Bauchi, North Eastern Nigeria D. Buba1, F.O. Anjorin2,*, A. Jacob3 1Department of PRE-ND, Federal Polytechnic, Bauchi State-Nigeria 2Department of Physics, University of Jos. Plateau State-Nigeria 3Department of Pure and Applied Physics, Federal University Wukari, Taraba State-Nigeria *Corresponding author: [email protected] Abstract Weather conditions are natural causes of visibility deterioration and increase in atmospheric extinction coefficient at a place. A 10- year dataset (1998-2007) of visibility and meteorological parameters such as Relative Humidity, Temperature and Atmospheric Pressure measured every 3-hour daily were analysed to examine the dependence of Atmospheric Extinction Coefficient, βext on seasonal meteorological conditions and synoptic weather patterns in Bauchi, a City in the North-eastern-Nigeria. From the visibility data obtained, the corresponding atmospheric extinction coefficient (βext) for the period under review was computed by using the Koschmieder relationship. In year 2000, when the Relative Humidity and atmospheric extinction coefficient, βext are highest, the temperature and visibility values are lowest. In 2003, when temperature (29.82°C) is highest, the Relative Humidity (42.52%) is lowest, although, the atmospheric coefficient was not at its lowest neither was the visibility (18.49km) at its highest. Of the years considered, year 2000 has the highest estimated atmospheric extinction coefficient, βext for both raining season and harmattan season.
    [Show full text]
  • Compendium on Tropical Meteorology for Aviation Purposes
    Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 930 Compendium on Tropical Meteorology for Aviation Purposes 2020 edition WMO-No. 930 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at https://public.wmo.int/en/ meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 930 © World Meteorological Organization, 2020 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-10930-9 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Impact of Harmattan Sun and Dust of the Eye in a Nigeria City
    IOSR Journal of Research & Method in Education (IOSR-JRME) e-ISSN: 2320–7388,p-ISSN: 2320–737X Volume 7, Issue 3 Ver. I (May. - June. 2017), PP 36-41 www.iosrjournals.org Impact of Harmattan Sun and Dust of the Eye in a Nigeria City 1R.O.K. Meindinyo, 2M.C. Misra, $R.C. Orji 1 Department of Physics, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria, 2 University of Jos/ Jos University Teaching Hospital Jos Plateau State, Nigeria. Abstract: This work reports Studies that were carried out to investigate the impact of harmattan sun and dust on the eye. These includes ocular media absorbance, ocular related disease incidence, Sun intensity and amount of atmospheric dust during harmattan and non harmattan periods in Jos Nigeria. This is because the eye is the essential organ of sight. It functions by way of refraction of light (from objects) by the refracting media (the cornea, aqueous and vitreous humours and the lens) onto the retina. The brain which is connected to the eye through the optic nerve does the interpretation. Vision loss/blindness could result if any these parts fails to function from damage. The study showed that the harmattan season has hazardous effects on the eye. This might be because the harmattan wind from the Sahara desert is always laden with dust which coupled with increased intensity of the sun cause irritation, lacrination and burning sensational type of pains. This may later lead to other degenerative conditions of the eye especially the cornea because it highly absorbs the energy rich Ultra- violet rays which might destroy its epithelial cells.
    [Show full text]
  • Photovoltaic Power Potential in West Africa Using Long-Term Satellite Data
    Atmos. Chem. Phys., 20, 12871–12888, 2020 https://doi.org/10.5194/acp-20-12871-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Photovoltaic power potential in West Africa using long-term satellite data Ina Neher1,2, Susanne Crewell2, Stefanie Meilinger1, Uwe Pfeifroth3, and Jörg Trentmann3 1International Centre for Sustainable Development, University of Applied Science Bonn-Rhein-Sieg, Grantham-Allee 20, 53757 Sankt Augustin, Germany 2Institute of Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany 3Deutscher Wetterdienst, Satellite-based Climate Monitoring, Frankfurter Straße 135, 63067 Offenbach, Germany Correspondence: Ina Neher ([email protected]) Received: 30 March 2020 – Discussion started: 20 May 2020 Revised: 25 August 2020 – Accepted: 28 August 2020 – Published: 5 November 2020 Abstract. This paper addresses long-term historical changes 1 Introduction in solar irradiance in West Africa (3 to 20◦ N and 20◦ W to 16◦ E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data The United Nations proposed the Sustainable Development Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature Goals to achieve a better and more sustainable future (United data from a reanalysis (ERA5) to derive photovoltaic yields. Nations, 2015). The seventh goal, to “ensure access to Based on 35 years of data (1983–2017), the temporal and affordable, reliable, sustainable and modern energy for all”, regional variability as well as long-term trends in global implies a shift away from fossil-fuel-based sources towards and direct horizontal irradiance are analyzed. Furthermore, a renewable energy sources.
    [Show full text]
  • Harmattan, Saharan Heat Low and West African
    Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-309, 2017 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 15 May 2017 c Author(s) 2017. CC-BY 3.0 License. Harmattan, Saharan heat low and West African Monsoon circulation: Modulations on the Saharan dust outflow towards the north Atlantic Kerstin Schepanski1, Bernd Heinold1, and Ina Tegen1 1Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany Correspondence to: Kerstin Schepanski ([email protected]) Abstract. The outflow of dust from the North African continent towards the north Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterised by three major 5 circulation regimes: (1) the Harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African Monsoon cir- culation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes. This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), 10 during which also the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) fly- ing on-board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources.
    [Show full text]
  • Dust Over West Africa
    Dust over West Africa Dr. Vincent O. Ajayi Federal University of Technology, Akure, Nigeria. [email protected] Lecture outline • Introduction • Source region • Transport and trajectory • Characteristics of Bodele depression • Meteorological conditions • Mechanism of raising dust • Dust climatology • Impact of dust in West Africa • Forecasting of dust West Africa Weather zone revisited Figure 1: Weather zones relative to the surface location of ITD in August(Source: Weischet, 2000) Introduction Figure 2: Seasonal variation in latitudinal position of the ITCZ and its consequences for atmospheric conditions over northwestern Africa. Arrows indicate direction of trade winds; dust plumes are indicated by grey shadings. December, January, and February (winter) and June, July, and August (summer) are shown. (From Stuut et al., 2005.) Winter Summer Figure 3: Animation of AOT in sumer and winter, It can be noted that harmattan dust is transported to West African in Winter and towards North and South America in Summer seasons Source region Kalu (1979) identified the source region to be around Bilma Faya Largeau Western Sahara Southern Sudan Figure 4: Major dust region in West Africa as observed by Kalu (1979) Figure : The most important regions are grey shaded: PSANAF-1: Zone of chotts in Tunisia and northern Algeria; PSANAF-2: Foothills of Atlas Mountains (PSANAF-2a) and western coastal region (PSANAF-2b; western Sahara, western Mauritania); PSANAF-3: Mali-Algerian border region; PSANAF-4: Central Libya; PSANAF-5: Bodélé Depression Figure 5: Overview of potential dust source (western Chad) areas in northern hemispheric Africa (PSANAF) PSANAF-6: Southern Egypt, based on a synergy analysis by Formenti et al.
    [Show full text]
  • Climate Change Profile: West African Sahel April 2018
    Climate Change Profile West African Sahel Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel | Climate Change Profile | West African Sahel Climate Change Profile: West African Sahel April 2018 Table of contents Introduction 3 Overall ranking 3 Biophysical Vulnerability 4 Socio-economic and political vulnerability 6 Climate change, conflict and migration 9 National Strategies and Policies 11 Nationally Determined Contributions (NDC) 12 Climate Finance and key projects 14 Maps Map 1 The Sahel region 18 Map 2 Climate hotspots in the Sahel 18 Map 3 Shift of climate zones to the south 19 Map 4 Livelihood systems in the Sahel 19 Map 5 Food insecurity in the West Sahel region 20 Map 6 Gender discrimination in the West Africa Sahel 20 Map 7 Pastoral seasonal migration in the West Sahel 21 Map 8 Location of Lake Chad 21 Map 9 The shrinking of Lake Chad 22 | 2 | Climate Change Profile: West African Sahel April 2018 Introduction Mali, Mauritania, Niger, and Nigeria1. This region is one of the poorest and most environmentally degraded regions in This climate change profile is designed to help integrate the world. Drought and high inter-annual climate variability climate actions into development activities. It complements are already being felt in the region in the form of decreased the publication ‘Climate-smart = Future-Proof! – Guidelines agricultural yields, loss of pastureland, and the shrinking of for Integrating climate-smart actions into development important water bodies2.
    [Show full text]
  • Harmatten Winds, Disease and Gender Gaps in Human Capital Investment
    CDEP‐CGEG WORKING PAPER SERIES CDEP‐CGEG WP No. 54 Harmatten Winds, Disease and Gender Gaps in Human Capital Investment Belinda Archibong and Francis Annan April 2018 Harmattan Winds, Disease and Gender Gaps in Human Capital Investment ∗ Belinda Archibong † Francis Annan Barnard College Columbia University March 7, 2018 Abstract Persistent gender gaps in educational attainment have been examined in the context of differential parental costs of investment in the education of boys versus girls. This paper examines whether disease burdens, especially prevalent in the tropics, contribute significantly to widening gender gaps in educational attainments. We estimate the impact of sudden exposure to the 1986 meningitis epidemic in Niger on girls’ education relative to boys. Our results suggest that increases in meningitis cases during epidemic years significantly reduce years of education disproportionately for school-aged going girls in areas with higher meningitis exposure. There is no significant effect for boys in the same cohort and no effects of meningitis exposure for non-epidemic years. We use theory to explore different channels, highlighting income effects of epidemics on households and early marriage of girls in areas with higher exposure during epidemic years. We also use National Aeronautics and Space Administration (NASA) data to investigate the relationship between climate variables and the meningitis epidemic and explore how climate change could potentially worsen social inequality through widening the gender gap in human capital investment.
    [Show full text]