Atmos. Chem. Phys., 20, 12871–12888, 2020 https://doi.org/10.5194/acp-20-12871-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Photovoltaic power potential in West Africa using long-term satellite data Ina Neher1,2, Susanne Crewell2, Stefanie Meilinger1, Uwe Pfeifroth3, and Jörg Trentmann3 1International Centre for Sustainable Development, University of Applied Science Bonn-Rhein-Sieg, Grantham-Allee 20, 53757 Sankt Augustin, Germany 2Institute of Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany 3Deutscher Wetterdienst, Satellite-based Climate Monitoring, Frankfurter Straße 135, 63067 Offenbach, Germany Correspondence: Ina Neher (
[email protected]) Received: 30 March 2020 – Discussion started: 20 May 2020 Revised: 25 August 2020 – Accepted: 28 August 2020 – Published: 5 November 2020 Abstract. This paper addresses long-term historical changes 1 Introduction in solar irradiance in West Africa (3 to 20◦ N and 20◦ W to 16◦ E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data The United Nations proposed the Sustainable Development Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature Goals to achieve a better and more sustainable future (United data from a reanalysis (ERA5) to derive photovoltaic yields. Nations, 2015). The seventh goal, to “ensure access to Based on 35 years of data (1983–2017), the temporal and affordable, reliable, sustainable and modern energy for all”, regional variability as well as long-term trends in global implies a shift away from fossil-fuel-based sources towards and direct horizontal irradiance are analyzed. Furthermore, a renewable energy sources.