The Moho in Extensional Tectonic Settings: Insights from Thermo-Mechanical Models

Total Page:16

File Type:pdf, Size:1020Kb

The Moho in Extensional Tectonic Settings: Insights from Thermo-Mechanical Models TECTO-125938; No of Pages 47 Tectonophysics xxx (2013) xxx–xxx Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article The Moho in extensional tectonic settings: Insights from thermo-mechanical models Sierd Cloetingh a,⁎, Evgenii Burov b,c, Liviu Matenco a, Fred Beekman a, François Roure a,e, Peter A. Ziegler d,† a Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b UPMC Univ Paris 06, ISTEP UMR 7193, Université Pierre et Marie Curie, F-75005 Paris, France c CNRS, ISTEP, UMR 7193, F-75005 Paris, France d Kirchweg 41, 4102 Binningen, Switzerland e IFPEN, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France article info abstract Article history: The lithospheric memory is key for the interplay of lithospheric stresses and rheological structure of the Received 22 November 2012 extending lithosphere and for its later tectonic reactivation. Other important factors are the temporal and Received in revised form 12 June 2013 spatial migration of extension and the interplay of rifting and surface processes. The mode of extension Accepted 13 June 2013 and the duration of the rifting phase required to lead to continental break-up are to a large extent controlled Available online xxxx by the interaction of the extending plate with slab dynamics. The finite strength of the lithosphere has an important effect on the formation of extensional basins. This applies both to the geometry of the basin shape Keywords: Lithosphere rheology as well as to the record of vertical motions during and after rifting. We demonstrate a strong connection between Lower crustal flow the bulk rheological properties of Europe's lithosphere and the evolution of some of Europe's main rifts and Moho imagery back-arc systems. The thermo-mechanical structure of the lithosphere has a major impact on continental Mode of rifting break-up and associated basin migration processes, with direct relationships between rift duration and extension Stress regimes velocities, thermal evolution, and the role of mantle plumes. Compressional reactivation has important conse- Lithospheric memory quences for post-rift inversion, borderland uplift, and denudation, as illustrated by poly-phase deformation of extensional back-arc basins in the Black Sea and the Pannonian Basin region. © 2013 Elsevier B.V. All rights reserved. Contents 1. Introduction ............................................................... 0 2. Constraints by deep seismic imaging, potential field data and mantle tomography on the architecture of the Moho, volcanic underplating and the occurrence of residual lithospheric slabs in rift basins, passive margins and intracontinental sags ....................... 0 2.1. Architecture of the Moho and lower crust in extensional settings, as revealed by deep seismic reflection profiles............ 0 2.2. Evidence for volcanic underplating from refraction data and inversion of potential field data ...................... 0 2.3. Long lasting subsidence of intracratonic sags induced by residual lithospheric slabs .......................... 0 2.4. Negative inversion of former thrust belts .............................................. 0 3. Rifting and extensional basin formation and its role in the evolution of the continental lithosphere ...................... 0 4. Extensional tectonics: concepts and global-scale observations ....................................... 0 4.1. Extensional basin systems ..................................................... 0 4.1.1. Thermal thinning and stretching of the lithosphere: concepts and models .......................... 0 4.1.2. Syn-rift subsidence and duration of rifting stage ...................................... 0 4.1.3. Post-rift subsidence .................................................... 0 4.1.4. Post-rift compressional reactivation of extensional basins .................................. 0 4.1.5. Finite strength of the lithosphere during extensional basin formation ............................ 0 4.1.6. Rift-shoulder development and architecture of basin fill................................... 0 5. Rheological stratification of the lithosphere and basin evolution ...................................... 0 5.1. Lithosphere strength and deformation mode ............................................ 0 5.2. Mechanical controls on the evolution of rifts: Europe's continental lithosphere ............................ 0 ⁎ Corresponding author. Tel.: +31 30 2537314; fax: +31 30 2535030. E-mail address: [email protected] (S. Cloetingh). † Deceased July 19th, 2013. 0040-1951/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tecto.2013.06.010 Please cite this article as: Cloetingh, S., et al., The Moho in extensional tectonic settings: Insights from thermo-mechanical models, Tectonophysics (2013), http://dx.doi.org/10.1016/j.tecto.2013.06.010 2 S. Cloetingh et al. / Tectonophysics xxx (2013) xxx–xxx 5.3. Lithospheric folding: an important mode of compressional reactivation of rifts ............................ 0 6. Models for continental breakup and rift basins ............................................... 0 6.1. Extensional basin migration: observations and thermo-mechanical models . ............................ 0 6.2. Fast rifting and plate separation .................................................. 0 6.3. Thermo-mechanical evolution and tectonic subsidence during slow extension . ............................ 0 6.4. Interplay of lower crustal flow and surface erosion in rifts ...................................... 0 6.5. Breakup processes: timing and mantle plumes ........................................... 0 6.6. The evolution of the Moho geometry during rifting ......................................... 0 6.7. Post-rift inversion, intraplate stresses, borderland uplift, and denudation . ............................ 0 7. Back-arc basin formation and evolution .................................................. 0 7.1. Black Sea ............................................................. 0 7.1.1. Rheology and back-arc rift basin formation ......................................... 0 7.1.2. Strength evolution and neotectonic reactivation at the basin margins during the post-rift phase ................ 0 7.2. Modes of basin (de)formation, lithospheric strength, and vertical motions in continental back-arc rifts ................. 0 7.2.1. Neogene development and evolution of the Pannonian Basin ................................ 0 7.2.2. Dynamic models of basin formation ............................................ 0 7.2.3. Stretching models and subsidence analysis ......................................... 0 7.2.4. Lithospheric strength in the Pannonian–Carpathian system ................................. 0 7.2.5. Deformation of the Pannonian–Carpathian system ..................................... 0 8. Conclusions ............................................................... 0 Acknowledgements .............................................................. 0 References .................................................................. 0 1. Introduction the thermo-mechanical aspects of extensional sedimentary basin de- velopment in the context of large-scale lithosphere models for the The Moho, originally defined as an acoustic contrast marking the underlying lithosphere and on tectonic controls on the post-rift evo- compositional boundary between the crust and the underlying mantle, lution of extensional basins. is also of crucial importance for the mechanical state of the lithosphere. We highlight the connection between the bulk rheological proper- Actually, the effect of the inherited crustal fabric and strength appear to ties of the lithosphere and the evolution of extensional basins and be of paramount influence on the nature of tectonic deformation in the find that the finite strength of the lithosphere plays an important plate interiors. A particularly important parameter for lithospheric role in their development. This applies both to the geometry of the strength is the ratio of the thickness-dependent crustal and lithospheric basin shape as well as to the record of vertical motions during and mantle strength (e.g. Burov, 2011)anditisexactlythisratiothatis after lithospheric extension. strongly affected by crustal thinning during the rifting process. In addi- Below we give a brief review of concepts for the rheological struc- tion, changes in thermal regime characteristic for rifting processes leave ture of continental lithosphere and discuss insight gained from global a strong imprint on the temporal and spatial variations in crustal and models of strength distribution, highlighting the impact rifting pro- lithospheric strength during and after the rifting phases. cesses have on the lithospheric strength distribution. This is followed The notion that rifting is a very important mechanism for sedimen- by a discussion of constraints on the duration of rifting based on case tary basin formation with key implications for the basin fill and thermal studies (e.g. Ziegler and Cloetingh, 2004), the effects of slow versus regime is of immediate importance for the assessment of the hydrocar- fast extension on lithospheric strength and crustal configuration bon habitat. This has boosted rifting studies in the context of global (van Wijk and Cloetingh, 2002; Van Wijk et al., 2004), and an analysis exploration for hydrocarbons. Deep seismic
Recommended publications
  • Marie Tharp: Mapping the Seafloor of Back-Arc Basins, Mid-Ocean Ridges, Continental Margins & Plate Boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020
    A Tribute to Marie Tharp: Mapping the seafloor of back-arc basins, mid-ocean ridges, continental margins & plate boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020 Eulàlia Gràcia, Sara Martínez Loriente, Susana Diez, Laura Gómez de la Peña*, Cristina S. Serra, Rafael Bartolome, Valentí Sallarès, Claudio Lo Iacono, Hector Perea**, Roger Urgeles, Ingo Grevemeyer* and Cesar R. Ranero B-CSI at Institut de Ciències del Mar – CSIC, Barcelona *GEOMAR, Kiel, Germany **Universidad Complutense de Madrid, Facultad de Geologia, Madrid 1 The first steps of Marie Tharp • Marie Tharp, July 30, 1920 (Ypsilanti, Michigan) – August 23, 2006 (Nyack, New York) was an American geologist & oceano- graphic cartographer who, in partnership with Bruce Heezen, created the first scientific map of the Atlantic Ocean floor. • Tharp's work revealed the detailed topography and multi-dimensional geographical landscape of the ocean bottom. • Her work revealed the presence of a continuous rift-valley along the axis Fig. 1. A young Marie in the field helping his father, William E. of the Mid- Atlantic Ridge, causing a Tharp, a soil surveyor for United States Dpt. of Agriculture. Marie often paradigm shift in Earth Sciences that helped him with this task, which gave her an introduction to map- led to acceptance of Plate Tectonics making. From book “Soundings” by Hali Felt (2012). and Continental Drift. 2 Working at Columbia University Lamont Geological Observatory (NY) Fig. 2. Marie Fig. 3. at streets of Bruce New York, Heezen after she looking at a was hired to fathogram work by Dr. being Maurice produced by Ewing’, at an early the newly- echosounder formed (year 1940).
    [Show full text]
  • An Evaporite-Bearing Accretionary Complex in the Northern Front of The
    PUBLICATIONS Tectonics RESEARCH ARTICLE An evaporite-bearing accretionary complex in the northern 10.1002/2016TC004414 front of the Betic-Rif orogen Special Section: Fernando Pérez-Valera1,2 , Mario Sánchez-Gómez1,3 , Alberto Pérez-López4,5 , fi Orogenic cycles: from eld and Luis Alfonso Pérez-Valera1 observations to global geodynamics 1Centro de Estudios Avanzados en Ciencias de la Tierra (Universidad de Jaén), Jaén, Spain, 2Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante, Spain, 3Departamento de Geología, Facultad de Ciencias Key Points: Experimentales (Universidad de Jaén), Jaén, Spain, 4Departamento de Estratigrafía y Paleontología, Facultad de Ciencias • Evaporite-bearing units form an (Universidad de Granada), Granada, Spain, 5Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), accretional complex in Betics Armilla, Spain north end • Evaporites display a suite of ductile structures with coherent kinematics • Kinematics indicate westward motion, Abstract The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of with subordinate N-S contraction the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or Correspondence to: diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the F. Pérez-Valera, outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of [email protected] roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction.
    [Show full text]
  • Gondwana Breakup Via Double-Saloon-Door Rifting and Seafloor Spreading in a Backarc Basin During Subduction Rollback
    Available online at www.sciencedirect.com Tectonophysics 445 (2007) 245–272 www.elsevier.com/locate/tecto Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback A.K. Martin Repsol YPF Exploración, Al Fattan Plaza, PO Box 35700, Dubai, United Arab Emirates Received 2 February 2007; received in revised form 4 July 2007; accepted 21 August 2007 Available online 28 August 2007 Abstract A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline.
    [Show full text]
  • Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault As Revealed by Seismic Reflection Data from the Alboran Sea (W-Mediterranean) E
    Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean) E. d’Acremont, M. Lafosse, A. Rabaute, G. Teurquety, D. Do Couto, G. Ercilla, C. Juan, B. Mercier Lépinay, S. Lafuerza, J. Galindo-zaldivar, et al. To cite this version: E. d’Acremont, M. Lafosse, A. Rabaute, G. Teurquety, D. Do Couto, et al.. Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean). Tectonics, American Geophysical Union (AGU), 2020, 39 (3), 10.1029/2019TC005885. hal-03004274 HAL Id: hal-03004274 https://hal.archives-ouvertes.fr/hal-03004274 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Polyphase Tectonic Evolution of Fore‐Arc Basin Related 10.1029/2019TC005885 to STEP Fault as Revealed by Seismic Reflection Data Key Points: ‐ • The reactivation of the Subduction From the Alboran Sea (W Mediterranean) Tear Edge Propagator fault zone on E. d'Acremont1 , M. Lafosse1 , A. Rabaute1 , G. Teurquety1,2, D. Do Couto1, G. Ercilla3, the southern edge of the Alboran 3 4 1 5,6 3 Domain forms the South Alboran C.
    [Show full text]
  • 2014 Newsletter Draft
    DECEMBER 2014 ISSUE NO.8 Earth & Environmental Sciences A letter from the chair.... Dear friends, students, and alumni of Earth and Environmental Sciences, I wish you the warmest of holiday greetings. The EES department continues to be a vibrant academic community of highly talented faculty, staff, and students...albeit with change. Professor Bruce Hargreaves is set to retire after 38 years at Lehigh. We all wish Bruce and his family good health and much success for years to come. EES achievements in 2014 made it difficult to select what to highlight in the following pages. Noteworthy were the election of Professor Ken Kodama as a Fellow of the American Association for the Advancement of Science, the awarding of the Christian and Mary Linback award for distinguished teaching to Professor Frank Pazzaglia, and the selection of EES graduate student Helen Malenda as a National Science Foundation Fellow. The newsletter also gives me an opportunity to acknowledge the generosity of our alumni who have given their time to share their career experiences with our students or their wealth to EES to embellish the educational experiences we can provide. For many earth and environmental scientists, a field setting always stirs emotions, provides awe and wonder, and inspires our curiosity. The field setting also provides a strong social learning environment where professor-student and peer-to-peer relations flourish. Inspirational field trips and summer field camp provides students with the opportunity to discover the breadth and scale of the many processes that have shaped the Earth. Thanks to the generosity of the Chevron Corporation and Chevron-EES alumni our field programs got a boost in 2014.
    [Show full text]
  • The Geologic Record of the Antarctic Ice Sheet from Drilling, Coring and Seismic Studies
    Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] Extended Abstracts for the International ANTOSTRAT Symposium on THE GEOLOGIC RECORD OF THE ANTARCTIC ICE SHEET FROM DRILLING, CORING AND SEISMIC STUDIES “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, September 8-14, 2001 Edited by Fabio Florindo and Alan K. Cooper Conveners of the symposium (ANTOSTRAT Steering Committee) A. Cooper P. Barker P. Barrett G. Brancolini I. Goodwin Y. Kristoffersen R. Oglesby P. O’Brien Directors of the symposium A. Cooper F. Florindo A. Meloni Director of the School E. Boschi Director of the Center A. Zichichi Contents Foreword.............................................................................................................................................................IX ********** Carbonate Diagenesis of the Cenozoic Sedimentary Successions Recovered at the CRP-1, 2 and 3 Drillsites, Ross Sea, Antarctica. An Overview F.S. Aghib, M. Ripamonti and G. Riva...........................................................................................................1 Late Quaternary Fluctuations in the Antarctic Ice Sheet J.B. Anderson, S.S. Shipp, A.L. Lowe, J.W. Wellner
    [Show full text]
  • A Reconstruction of the Depositional History and Palaeoenvironment of the Plio-Pleistocene of Northeast Iceland
    FACULTY OF SCIENCES A reconstruction of the depositional history and palaeoenvironment of the Plio-Pleistocene of northeast Iceland A combined terrestrial and marine palynological approach Koen Verhoeven Thesis submitted in partial fulfilment to achieve the degree of Doctor in Sciences, Geology Academic year 2011-2012 Ghent University Faculty of Sciences, Department of Geology and Soil Sciences Research Unit Palaeontology Krijgslaan 281, S8, WE 13, B-9000 Ghent, Belgium Promotor: Prof. Dr. Stephen Louwye Co-promotor: Prof. Dr. Jacques Verniers Members of the reading committee: 1. Prof. dr. Jacques Verniers (Ghent University) 2. Prof. dr. Jón Eiríksson (University of Iceland; University of Copenhagen, Denmark) 3. Prof. dr. David Van Rooij (Ghent University) 4. Dr. Stijn De Schepper (University of Bergen, Norway) Members of the examination committee: 1. Prof. dr. Stephen Louwye (Ghent University) – Promotor 2. Prof. dr. Jacques Verniers (Ghent University) – co-promotor 3. Prof. dr. Peter Van den haute (Ghent University) – chairman 4. Prof. dr. David Van Rooij (Ghent University) 5. Dr. Jan De Coninck (Ghent University) 6. Prof. dr. Etienne Steurbaut (Royal Institute for Natural Sciences; Catholique University of Leuven) 7. Prof. dr. Jón Eiríksson (University of Iceland; University of Copenhagen, Denmark) 8. Dr. Stijn De Schepper (University of Bergen, Norway) Public thesis defence: Thursday, December 20th 2012 at 4.00 p.m., Ghent University, Auditorium A3, S9, Krijgslaan 281, 9000 Ghent To refer to this thesis: Verhoeven, K. 2012. A reconstruction of the depositional history and plaeoenvironment of northeast Iceland: a combined terrestrial and marine palynological approach. PhD thesis, Ghent University, Belgium, 192 pp. The autor and the promotor give the authorization to consult and copy parts of this work for personal use only.
    [Show full text]
  • Crustal Structure and Active Deformation in the Westernmost Betic Cordillera and Its Foreland
    Crustal structure and active deformation in the westernmost Betic Cordillera and its foreland Lourdes González Castillo Ph.D. Thesis 2015 Universidad de Granada Departamento de Geodinámica Departamento de Geodinámica Jesús Galindo Zaldívar, Catedrático de Geodinámica Interna de la Universidad de Granada, HACE CONSTAR: Que la presente tesis titulada “Crustal structure and active deformation in the westernmost Betic Cordillera and its foreland” ha sido realizada bajo mi dirección y cumple las condiciones suficientes para que su autora, Lourdes González Castillo, opte al grado de Doctor en Ciencias Geológicas por la Universidad de Granada. Granada, Marzo de 2015 Vº Bº del Director Fdo. Jesús Galindo Zaldívar Fdo. Lourdes González Castillo La doctoranda Lourdes González Castillo y el director de la tesis D. Jesús Galindo Zaldívar garantizamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado por el doctorando bajo la dirección del director de la tesis y hasta donde nuestro conocimiento alcanza, en la realización del trabajo, se han respetado los derechos de otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones. Granada, Marzo de 2015 Director/es de la Tesis Doctoranda Fdo.: Jesús Galindo Zaldívar Fdo.: Lourdes González Castillo A mi madre, Paco, Cecilio, Lourdillas y Mª Isabel “Nunca digas no lo intenté” (Lourdes Castillo Alférez) Así empieza todo en mi vida AGRADECIMIENTOS Es muy difícil expresar en pocas líneas la gratitud que siento hacía las personas que, de una forma u otra, me han ayudado a realizar este trabajo. Lo que viene a continuación es sólo un intento. A Jesús Galindo Zaldívar, como director, agradecerle su confianza, orientación y disposición constantes.
    [Show full text]
  • From the Bay of Biscay to the High Atlas: Completing the Anisotropic Characterization of the Upper Mantle Beneath the Westernmost Mediterranean Region
    Tectonophysics 663 (2015) 192–202 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto From the Bay of Biscay to the High Atlas: Completing the anisotropic characterization of the upper mantle beneath the westernmost Mediterranean region J. Díaz a,⁎, J. Gallart a,I.Moraisc, G. Silveira c,d, D. Pedreira b, J.A. Pulgar b,N.A.Diasc,d, M. Ruiz a, J.M. González-Cortina b a ICTJA-CSIC, c/ Sole Sabaris sn, 08080 Barcelona, Spain b Dep. de Geología, Universidad de Oviedo, c/ J. Arias de Velasco, s/n, 33005 Oviedo, Spain c Instituto Dom Luiz-IDL, Campo Grande, Edifício C8, 1749-016 Lisbon, Portugal d Instituto Superior de Engenharia de Lisboa-ISEL, R. Conselheiro Emídio Navarro, 1959-007 Lisbon, Portugal article info abstract Article history: The knowledge of the anisotropic properties beneath the Iberian Peninsula and Northern Morocco has been Received 12 January 2015 dramatically improved since late 2007 with the analysis of the data provided by the dense TopoIberia broad- Received in revised form 27 February 2015 band seismic network, the increasing number of permanent stations operating in Morocco, Portugal and Spain, Accepted 15 March 2015 and the contribution of smaller scale/higher resolution experiments. Results from the two first TopoIberia Available online 25 March 2015 deployments have evidenced a spectacular rotation of the fast polarization direction (FPD) along the Gibraltar Arc, interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Alboran Keywords: Anisotropy Sea, and a rather uniform N100°E FPD beneath the central Iberian Variscan Massif, consistent with global mantle SKS splitting flow models taking into account contributions of surface plate motion, density variations and net lithosphere Mantle flow rotation.
    [Show full text]
  • Mio-Pliocene Aridity in the South-Central Andes Associated with Southern Hemisphere Cold Periods
    Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods William H. Amidona,1, G. Burch Fisherb,c, Douglas W. Burbankc, Patricia L. Cicciolid, Ricardo N. Alonsoe, Andrew L. Gorina, Perri H. Silverharta, Andrew R. C. Kylander-Clarkc, and Michael S. Christoffersenb aGeology Department, Middlebury College, Middlebury, VT 05753; bJackson School of Geosciences, University of Texas at Austin, Austin, TX 78712; cEarth Research Institute, University of California, Santa Barbara, CA 93106; dDepartamento de Ciencias Geológicas, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EHA, Argentina; and eInstituto Superior de Correlación Geológica, Universidad Nacional de Salta-Consejo Nacional de Investigaciones Científicas y Técnicas, 4400 Salta, Argentina Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved May 12, 2017 (received for review January 9, 2017) Although Earth’s climate history is best known through marine Africa, and Asia (6–8). However, the exact timing and continental records, the corresponding continental climatic conditions drive climatic conditions that drove this expansion have been the subject the evolution of terrestrial life. Continental conditions during the of much discussion. C4 plants tend to thrive in warmer conditions, latest Miocene are of particular interest because global faunal as long as ample moisture is present during the growing season turnover is roughly synchronous with a period of global glaciation (9). However, because they concentrate CO2 during photosyn- ∼ – from 6.2 5.5 Ma and with the Messinian Salinity Crisis from thesis, they likely outcompete C3 plants under low-CO2 and low- ∼6.0–5.3 Ma.
    [Show full text]
  • Mantle Resistance Against Gibraltar Slab Dragging As a Key Cause of the Messinian Salinity Crisis
    Received: 20 May 2019 | Revised: 19 November 2019 | Accepted: 28 November 2019 DOI: 10.1111/ter.12442 PAPER Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian Salinity Crisis Walter Capella1,2 | Wim Spakman1,3 | Douwe J. J. van Hinsbergen1 | Mariya V. Chertova4 | Wout Krijgsman1 1Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands Abstract 2Department of Earth Sciences, Royal The Messinian Salinity Crisis (5.97–5.33 Ma) was caused by the closure of the Holloway, University of London, Egham, UK Atlantic-Mediterranean gateways that cut through the Gibraltar orogenic system. 3Centre of Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway The geodynamic drivers underlying gateway closure and re-opening are still debated. 4Netherlands eScience Center, Amsterdam, Here, we interrogate the gateway successions to find the imprints of surface defor- The Netherlands mation, infer the timing and nature of associated geodynamic drivers, and test such Correspondence inferences against numerical simulations of slab dynamics. We find that since the lat- Wout Krijgsman, Department of Earth est Miocene, a tectonic framework was established in the gateway region dominated Sciences, Utrecht University, 3584CD Utrecht, The Netherlands. simultaneously by (a) relative plate convergence, (b) slab tearing under the eastern Email: [email protected] Betic Cordillera and (c) mantle resistance against north-northeastward dragging of Funding information the Gibraltar slab by the African plate's absolute motion. We propose that mantle- NWO, Grant/Award Number: 865.10.011, resisted slab dragging and slab tearing operated in concert closing the gateways that 864.11.004, 865.17.001 and 855.01.141; European Union's 7th Framework caused the Messinian Salinity Crisis, whereas sinking of heavy oceanic lithosphere Programme, Grant/Award Number: 290201; located between buoyant continental plates re-opened the Strait of Gibraltar at Research Council of Norway, Grant/Award Number: 223272 5.33 Ma.
    [Show full text]
  • Polarized Plate Tectonics
    ARTICLE IN PRESS Polarized Plate Tectonics Carlo Doglioni*,1, Giuliano Panzax,{ *Dipartimento di Scienze della Terra, Universita Sapienza, Roma, Italy x Dipartimento di Matematica e Geoscienze, Universita di Trieste, ICTP-SAND group, Trieste, Italy and Institute of Geophysics, China Earthquake Administration, Beijing, China { International Seismic Safety Organization (ISSO) 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 2 1.1 Mantle Stratigraphy 8 2. Tectonic Equator and Westward Drift of the Lithosphere 10 3. Asymmetries along Opposite Subduction Zones 25 4. Asymmetries along Rift Zones 52 5. Mediterranean Geodynamics 62 6. Mechanisms of Plate Tectonics 95 6.1 Mantle Convection 98 6.2 Slab Pull 102 6.3 Astronomical Tuning 122 7. Discussion 132 8. Conclusions 144 Acknowledgments 147 References 148 Abstract The mechanisms driving plate motion and the Earth’s geodynamics are still not entirely clarified. Lithospheric volumes recycled at subduction zones or emerging at rift zones testify mantle convection. The cooling of the planet and the related density gradients are invoked to explain mantle convection either driven from the hot interior or from the cooler outer boundary layer. In this paper we summarize a number of evidence sup- porting generalized asymmetries along the plate boundaries that point to a polariza- tion of plate tectonics. W-directed slabs provide two to three times larger volumes to the mantle with respect to the opposite E- or NE-directed subduction zones. W-directed slabs are deeper and steeper, usually characterized by down-dip compres- sion. Moreover, they show a shallow decollement and low elevated accretionary prism, a steep regional monocline with a deep trench or foredeep, a backarc basin with high heat flow and positive gravity anomaly.
    [Show full text]