Geochronological Database and Classification System for Age Uncertainties in Neotropical Pollen Records
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reconstructing Quaternary Environments
Reconstructing Quaternary Environments Third Edition John Lowe arid Mike Walker 13 Routledge jjj % Taylor & Francis Croup LONDON AND NEW YORK Contents List offigures and tables xv Preface to the third edition xxvn Acknowledgements xxix Cover image details xxx 1 The Quaternary record 1 1 1 Introduction 1 1 2 Interpreting the Quaternary record 2 1 3 The status of the Quaternary in the geological timescale 2 1 4 The duration of the Quaternary 3 1 5 The development of Quaternary studies 5 151 Historical developments 5 152 Recent developments 7 1 6 The framework of the Quaternary 9 17 The causes of climatic change 13 1 8 The scope of this book 16 Notes 17 2 Geomorphological evidence 19 2 1 Introduction 19 2 2 Methods 19 22 1 Field methods 19 22 11 Field mapping 19 2 2 12 Instrumental levelling 20 222 Remote sensing 22 2 2 2 1 Aerial photography 22 2 2 2 2 Satellite imagery 22 2 2 2 3 Radar 23 2 2 2 4 Sonar and seismic sensing 24 2 2 2 5 Digital elevation/terrain modelling 24 2 3 Glacial landforms 26 23 1 Extent of ice cover 27 2 3 2 Geomorphological evidence and the extent of ice sheets and glaciers during the last cold stage 30 2 3 2 1 Northern Europe 30 2 3 2 2 Britain and Ireland 33 vi CONTENTS 2 3 2 3 North America 35 2 3 3 Direction of ice movement 39 2 3 3 1 Striations 40 2 3 3 2 Friction cracks 40 2 3 3 3 Ice moulded (streamlined) bedrock 40 2 3 3 4 Streamlined glacial deposits 42 2 34 Reconstruction offormer tee masses 43 2 3 4 1 Ice sheet modelling 43 2 3 4 2 Ice caps and glaciers 47 23 5 Palaeochmatic inferences using former glacier -
Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents
Consultation Draft Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents Foreword............................................................................................................................. 3 PART 1 - OVERVIEW .............................................................................................................. 3 1. Introduction .............................................................................................................. 3 The Quaternary stratigraphical framework ........................................................................ 4 Palaeogeography ........................................................................................................... 6 Fitting the archaeological record into this dynamic landscape .............................................. 6 Shorter-timescale division of the Late Pleistocene .............................................................. 7 2. Scientific Dating methods for the Pleistocene ................................................................. 8 Radiometric methods ..................................................................................................... 8 Trapped Charge Methods................................................................................................ 9 Other scientific dating methods ......................................................................................10 Relative dating methods ................................................................................................10 -
The Timing, Dynamics and Palaeoclimatic Significance of Ice Sheet Deglaciation in Central Patagonia, Southern South America
The timing, dynamics and palaeoclimatic significance of ice sheet deglaciation in central Patagonia, southern South America Jacob Martin Bendle Department of Geography Royal Holloway, University of London Thesis submitted for the degree of Doctor of Philosophy (PhD), Royal Holloway, University of London September, 2017 1 Declaration I, Jacob Martin Bendle, hereby declare that this thesis and the work presented in it are entirely my own unless otherwise stated. Chapters 3-7 of this thesis form a series of research papers, which are either published, accepted or prepared for publication. I am responsible for all data collection, analysis, and primary authorship of Chapters 3, 5, 6 and 7. For Chapter 4, I contributed datasets, and co-authored the paper, which was led by Thorndycraft. Detailed statements of contribution are given in Chapter 1 of this thesis, for each research paper. I wrote the introductory (Chapters 1 and 2), synthesis (Chapter 8) and concluding (Chapter 9) chapters of the thesis. Signed: ..................................................................................... Date:.............................. (Candidate) Signed: ..................................................................................... Date:.............................. (Supervisor) 2 Acknowledgements First and foremost, I am very grateful to my supervisors Varyl Thorndycraft, Adrian Palmer, and Ian Matthews, whose tireless support, guidance and, most of all, enthusiasm, have made this project great fun. Through their company in the field they have contributed greatly to this thesis, and provided much needed humour along the way. For always giving me the freedom to explore, but wisely guiding me when required, I am very thankful. I am indebted to my brother, Aaron Bendle, who helped me for five weeks as a field assistant in Patagonia, and who tirelessly, and without complaint, dug hundreds of sections – thank you for your hard work and great company. -
40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor
40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor To cite this version: Jonathan Gaylor. 40Ar/39Ar Dating of the Late Cretaceous. Earth Sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112124. tel-01017165 HAL Id: tel-01017165 https://tel.archives-ouvertes.fr/tel-01017165 Submitted on 2 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Sud 11 UFR des Sciences d’Orsay École Doctorale 534 MIPEGE, Laboratoire IDES Sciences de la Terre 40Ar/39Ar Dating of the Late Cretaceous Thèse de Doctorat Présentée et soutenue publiquement par Jonathan GAYLOR Le 11 juillet 2013 devant le jury compose de: Directeur de thèse: Xavier Quidelleur, Professeur, Université Paris Sud (France) Rapporteurs: Sarah Sherlock, Senoir Researcher, Open University (Grande-Bretagne) Bruno Galbrun, DR CNRS, Université Pierre et Marie Curie (France) Examinateurs: Klaudia Kuiper, Researcher, Vrije Universiteit Amsterdam (Pays-Bas) Maurice Pagel, Professeur, Université Paris Sud (France) - 2 - - 3 - Acknowledgements I would like to begin by thanking my supervisor Xavier Quidelleur without whom I would not have finished, with special thanks on the endless encouragement and patience, all the way through my PhD! Thank you all at GTSnext, especially to the directors Klaudia Kuiper, Jan Wijbrans and Frits Hilgen for creating such a great project. -
Radiocarbon Dating and the End of the Late Bronze Age
Testing the Limits: Radiocarbon Dating and the End of the Late Bronze Age Item Type Article; text Authors Hagens, Graham Citation Hagens, G. (2006). Testing the limits: Radiocarbon dating and the end of the Late Bronze Age. Radiocarbon, 48(1), 83-100. DOI 10.1017/S0033822200035414 Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 29/09/2021 20:51:22 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/653751 RADIOCARBON, Vol 48, Nr 1, 2006, p 83–100 © 2006 by the Arizona Board of Regents on behalf of the University of Arizona TESTING THE LIMITS: RADIOCARBON DATING AND THE END OF THE LATE BRONZE AGE Graham Hagens 251 Bond Street North, Hamilton, Ontario, Canada L85 3X1. Email: [email protected]. ABSTRACT. Archaeometry is becoming an increasingly important tool in chronological research related to events in the Ancient Near East during the 2nd millennium BCE. This paper is a review of recently published radiometric results in an attempt to establish the probable dating range for one particular event that occurred during the last quarter of that millennium, the end of the Late Bronze Age. The conclusion is that in spite of significant improvements in methodology in recent years, the quantity and quality of radiocarbon data are still insufficient to define the range of that date to much better than a century. It is concluded that the most likely date of the Late Bronze/Iron Age transition (here defined by the arrival of Mycenaean LH IIIC:1b pottery in the Levant) is somewhere in the 8-decade range between ~1170 to 1100 BCE. -
A Y2K Solution to the Chronology Problem
67 A Y2K Solution to the Chronology Problem By: SHELDON EPSTEIN, BERNARD DICKMAN and YONAH WILAMOWSKY Introduction Scholars have long grappled with the apparently differing chronological dating for the Second Temple implied by the Talmud date the עבודה זרה ח:-ט. and historical records: Seder Olam and building of the Temple to about 350 BCE; Historians date it to about 516 BCE. In general three approaches have been taken to address the chronological differences, i.e. Historical dating is in error; the Talmud’s chronology is in error; the Talmud purposely manipulated the dating to achieve some important objective. The first approach would have us reject the objectivity and integrity of the historical records. The problem with this approach is that there is a substantial amount of available historical evidence that is difficult to refute. In a 1962 essay Rabbi S. Schwab found this discrepancy a “truly vexing problem” and wrote1 that the historical chronological dating: “can hardly be doubted for they appear to be the result of painstaking research by hundreds of scholars and are borne out by profound erudition and by ever increasing authoritative evidence … we are compelled to admit that the Bayis Sheni must have existed for no less than 586 years.” The second approach, that the Gemara erred, is equally unacceptable. Without resorting to arguments about the infallibility ______________________________________________________ Sheldon Epstein, Bernard Dickman and Yonah Wilamowsky are professional educators. Their joint works on Biblical and -
Chronological Dating of Bat Roosting Sites on Standing Snags, Northern Vancouver Island
Chronological Dating of Bat Roosting Sites on Standing Snags, Northern Vancouver Island Prepared by: Colin P. Laroque and Mandy Kellner (Department of Biological Sciences SFU) University of Victoria Tree-Ring Laboratory Department of Geography University of Victoria UVTRL Report 99-02 February 22, 1999 Table of Contents Introduction .............................................. 1 Study Sites ............................................... 1 Methods .................................................. 2 Data Collection ........................................... 2 Laboratory Processing of Roost Tree Data ...................... 3 Results ................................................... 3 Yellow-cedar ............................................. 3 Western Hemlock ......................................... 6 Western White Pine ....................................... 9 Discussion .............................................. 11 Dendrochronological Implications ............................ 11 Habitat Implications ....................................... 12 Summary ................................................ 12 Acknowledgments ..................................... 12 References Cited ...................................... 13 ii Introduction Habitat analysis for tree species in forested locations of coastal British Columbia is a difficult process. Habitat managers often codify various descriptive tasks to streamline their workload, but in the process may oversimplify some complex natural processes occurring in coastal forests. One oversimplification -
Dating Glacial Landforms I: Archival, Incremental, Relative Dating Techniques and Age- Equivalent Stratigraphic Markers
TREATISE ON GEOMORPHOLOGY, 2ND EDITION. Editor: Umesh Haritashya CRYOSPHERIC GEOMORPHOLOGY: Dating Glacial Landforms I: archival, incremental, relative dating techniques and age- equivalent stratigraphic markers Bethan J. Davies1* 1Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX *[email protected] Manuscript Code: 40019 Abstract Combining glacial geomorphology and understanding the glacial process with geochronological tools is a powerful method for understanding past ice-mass response to climate change. These data are critical if we are to comprehend ice mass response to external drivers of change and better predict future change. This chapter covers key concepts relating to the dating of glacial landforms, including absolute and relative dating techniques, direct and indirect dating, precision and accuracy, minimum and maximum ages, and quality assurance protocols. The chapter then covers the dating of glacial landforms using archival methods (documents, paintings, topographic maps, aerial photographs, satellite images), relative stratigraphies (morphostratigraphy, Schmidt hammer dating, amino acid racemization), incremental methods that mark the passage of time (lichenometry, dendroglaciology, varve records), and age-equivalent stratigraphic markers (tephrochronology, palaeomagnetism, biostratigraphy). When used together with radiometric techniques, these methods allow glacier response to climate change to be characterized across the Quaternary, with resolutions from annual to thousands of years, and timespans applicable over the last few years, decades, centuries, millennia and millions of years. All dating strategies must take place within a geomorphological and sedimentological framework that seeks to comprehend glacier processes, depositional pathways and post-depositional processes, and dating techniques must be used with knowledge of their key assumptions, best-practice guidelines and limitations. -
Studies on the Ancient Exact Sciences in Honor of Lis Brack-Bernsen
44 Studies on the Ancient Exact Sciences in Honor of Lis Brack-Bernsen John M. Steele Mathieu Ossendrijver (eds.) EDITION TOPOI EDITION BERLIN STUDIES OF THE ANCIENT WORLD are the main subject in this collection of papers, o ered in honor of Lis Brack-Bernsen by her colleagues and friends. The topics of the articles are linked by the themes that have been at the center of much of Lis’s own work: the Babylo- nian observational record, and the relationship between observation and theory; the gnomon, sundials, and time measurement; and the relationship between di er- ent scientifi c activities in the ancient world, especially the connections between mathematics and astronomy. Lis Brack-Bernsen has been a key fi gure in transform- ing the study of Babylonian astronomy from an almost exclusive focus on the mathematical astronomy of the late period to embracing a much broader consideration of all aspects of the subject, both early and late, math- ematical and observational, astronomical and astrolog- ical, and their relationships between one another. The papers demonstrate the wide variety of questions asked and approaches used by historians of ancient science. 44 · 44 Studies on the Ancient Exact Sciences in Honor of Lis Brack-Bernsen John M. Steele Mathieu Ossendrijver Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliographie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. © Edition Topoi / Exzellenzcluster Topoi der Freien Universität Berlin und der Humboldt-Universität zu Berlin Cover image: Sector of TU 11, hand copy of a tablet also known by its museum number AO , reverse side, lines –. -
Towner Dendroarchaeology.Pdf
Dendroarchaeology 3 types of Information Chronological: dating Behavioral: wood use practices Environmental: species, reconstructions The Single Most Important Factor: PAST HUMAN BEHAVIOR Human-Environment Interaction: A Complex Matrix Human Systems Environmental Systems Ideological Biotic Social Abiotic Technological Atmospheric Remember: Wood as a Resource Dendroarchaeology: Sampling • Architecture • Arboreal • Artifactual • Where on the Beam? • Charcoal • Excavated Dendroarchaeology: Dating • Types of Dates • Cutting Dates – B, G, L, r, c, v • Near Cutting Dates – +B, +G, +L, +r, etc. • Noncutting Dates – ++ dates – vv dates Interpreting Dates • Most important Factors – 1. Behavior of Prehistoric People • Species selection, wood use & modification – 2. Behavior of Archaeologists • Site selection & Sampling – Behavior of Dendrochronologists • Proper surfacing, dating Interpreting Dates All Dates Stem & Leaf • Date Clustering (n=30) 158 7 • Identifying Anomalous •*** * Dates •174 336 •175 48 • Beam Reuse/Recycling •176 78999 •177 1157 • Repair/Remodeling •178 0001112355 •179 0227 • Deadwood use •180 5 ***** It is CONTEXT**** Presenting Tree-Ring Dates: Stem-and-leaf Plots Savage Homestead Tree-Ring Dates (Underline indicates cutting date) Decade Year 182 3 190 789 191 016 192 558888999 193 01111112233333333333333344444444444445555566666666666666666666666666 77777777777777777777777777777777777777788888888888999999999999999999999999 194 000 The Enciero Box Site, NM Marker Rings Terminal Rings: Structure Contemporaneity Structure Seasonality -
Varves in Lake Sediments E a Review
Quaternary Science Reviews 117 (2015) 1e41 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Varves in lake sediments e a review * Bernd Zolitschka a, , Pierre Francus b, c, Antti E.K. Ojala d, Arndt Schimmelmann e a Geomorphology and Polar Research (GEOPOLAR), Institute of Geography, University of Bremen, Celsiusstraße FVG-M, D-28359 Bremen, Germany b Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Quebec-City, Quebec G1K 9A9, Canada c GEOTOP Research Center, Montreal, Quebec H3C 3P8, Canada d Geological Survey of Finland, FI-02151 Espoo, Finland e Indiana University, Department of Geological Sciences, 1001 East 10th Street, Bloomington, IN 47405-1405, USA article info abstract Article history: Downcore counting of laminations in varved sediments offers a direct and incremental dating technique Received 13 August 2014 for high-resolution climatic and environmental archives with at least annual and sometimes even sea- Received in revised form sonal resolution. The pioneering definition of varves by De Geer (1912) had been restricted to rhyth- 20 March 2015 mically deposited proglacial clays. One century later the meaning of ‘varve’ has been expanded to include Accepted 22 March 2015 all annually deposited laminae in terrestrial and marine settings. Under favourable basin configurations Available online 11 April 2015 and environmental conditions, limnic varves are formed due to seasonality of depositional processes from the lake's water column and/or transport from the catchment area. Subsequent to deposition of Keywords: Varve topmost laminae, the physical preservation of the accumulating varved sequence requires the sustained Varve formation absence of sediment mixing, for example via wave action or macrobenthic bioturbation. -
The Secret (Codified) of the Ark of the Covenant (I) 185 Years Transformed Into 555
Image: Suleiman the Magnificent, the true King Solomon. The secret (codified) of the Ark of the Covenant (I) 185 years transformed into 555 Author: Andreu Marfull-Pujadas 2017 © All rights reserved Exercise done for the Project of the Scientific Direction "New Chronology" - НЕВ ХРОНОЛОГИЈАА - directed by the professors A.T.Fomenko and G.V.Nosovskiy Work developed in the GLOBAL DIAGRAM OF THE DOUBLE CHRONOLOGICAL MANIPULATION OF THE HUMAN HISTORY - Representation of the Global Chronological Map of the "New Chronology" (Part 3) V.3.0 2017/10/12 Posted on 2018/01/08 1 Index 1. SUMMARY OF THE CHRONOLOGICAL DATING METHODS DEVELOPED IN THE FRAMEWORK OF RESEARCH WORK OF THE “NEW CHRONOLOGY” .......................................................................................................... 3 1.1. Problems of historical chronology .............................................................................................................. 5 1.2. Astronomical dates ..................................................................................................................................... 6 1.3. Mathematical-statistical methods of event-dating ...................................................................................... 6 1.4. Application of mathematical methods of dating in the construction of a global chronological map ........... 6 2. TWO COVENANTS THAT TRANSFORM THE PAST ................................................. 7 2.1. Beginning and finishing of the Ark of the Covenant ..................................................................................