Post-Transcriptional Modification Characterizing and Mapping of Archaea Trnas Using Liquid Chromatography with Tandem Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Post-Transcriptional Modification Characterizing and Mapping of Archaea Trnas Using Liquid Chromatography with Tandem Mass Spectrometry Post-transcriptional Modification Characterizing and Mapping of Archaea tRNAs Using Liquid Chromatography with Tandem Mass Spectrometry A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in the Department of Chemistry of the McMicken College of Arts and Sciences by Ningxi Yu M. Sc. Chemistry, Central China Normal University, 2012 B. Eng. Wuhan Institute of Technology, 2009 October 2018 Committee Chair: Patrick A. Limbach, Ph.D i Abstract This dissertation is focused on exploring the transfer RNA modification profiles in archaea. Transfer RNA (tRNA) plays a key role in decoding the genetic information on messenger RNA (mRNA), and the post-transcriptional modification within tRNAs shape the decoding strategies in different organisms. Bacteria have been extensively studied in term of types and positions of tRNA modifications, and a few eukaryotic organisms have also been investigated. However, our knowledge of tRNA modifications in archaea is still limited. While the modifications in multiple archaeal organisms have been identified, the only sets of tRNA sequences whose modification have been localized to particular tRNAs is from Haloferax volcanii. To improve our understanding of archaeal tRNA modification profiles and decoding strategies, I have used liquid chromatography and tandem mass spectrometry to localize post-transcriptional modifications of selected archaeal organisms. A computational tool has been developed for MS/MS data interpretation and RNA sequence annotation. By using this tool, the modifications were localized to tRNA sequences from five archaeal organisms. Among the five selected organisms, the modifications in the anticodon of Methanocaldococcus jannaschii tRNAs have been fully identified, and the first compilation of modified tRNA sequences of this archaea have been generated. The types of modification in four other archaeal organisms, Methanopyrus kandleri, Methanothermobacter marburgensis, Sulfolobus acidocaldarius, and Thermoproteus tenax, were investigated, and some of these modifications were localized on the tRNA sequences. This study expands our understanding of modification patterns and decoding strategies of archaeal tRNAs, and it also allows us to have a more comprehensive comparison of the tRNA modification landscape among three domains of life. ii iii Acknowledgment This dissertation is dedicated to my family. Your love and support always keep me moving forward. I would like to express my sincere gratitude to my advisor Dr. Patrick A. Limbach for your patience and guidance, his encouragement and help has led me to overcome the challenges and finish my Ph.D. Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Neil Ayres and Dr. Peng Zhang, for their insightful comments and suggestions for my research. I also would like to thank all the members of Limbach group for helping me and bringing me joy, I have been so lucky to work with you. iv Table of Contents Abstract .......................................................................................................................................... ii Acknowledgment .......................................................................................................................... iv Tale of Contents .............................................................................................................................v Chapter 1 Introduction..................................................................................................................1 1.1 Research Goal ........................................................................................................................1 1.2 Post-transcriptional Modifications of tRNA .........................................................................2 1.3 tRNA Modifications and Decoding .......................................................................................4 1.4 Analytical Methods of tRNA Modification Mapping ............................................................9 1.5 tRNA Modifications in Archaea ..........................................................................................13 Chapter 2 RNAModMapper: RNA Modification Mapping Software for Analysis of Liquid Chromatography Tandem Mass Spectrometry Data. ..............................................................19 2.1 Introduction ..........................................................................................................................19 2.2 Experimental ........................................................................................................................20 2.3 Results and Discussion ........................................................................................................23 2.4 Conclusions ..........................................................................................................................51 Chapter 3 Transfer RNA Modification Profiles and Codon Decoding Strategies in Methanocaldococcus jannaschii. .................................................................................................52 3.1 Introduction ..........................................................................................................................52 3.2 Experimental ........................................................................................................................52 3.3 Results and Discussion ........................................................................................................58 3.4 Conclusions ........................................................................................................................130 Chapter 4 The Post-transcriptional Modifications in tRNA from Selected Archaeal Organisms. ..................................................................................................................................131 4.1 Introduction ........................................................................................................................131 4.2 Experimental ......................................................................................................................132 4.3 Results and Discussion ......................................................................................................134 v 4.4 Conclusions ........................................................................................................................159 Chapter 5 Conclusions and Future Work ...............................................................................171 5.1 Conclusions ........................................................................................................................171 5.2 Future Work .......................................................................................................................173 Bibliography ...............................................................................................................................179 Appendices ..................................................................................................................................189 vi vii Chapter 1 Introduction 1.1 Research Goal The goal of this dissertation is to expand our understanding of transfer RNA (tRNA) modification profiles in archaea by using liquid chromatography and tandem mass spectrometry (LC-MS/MS). A new software tool, RNAModMapper, was developed to enable MS/MS spectral data interpretation and modification mapping for RNA (Chapter 2). This tool then was used for mapping the modifications on tRNAs from selected archaeal organisms. I started by analyzing the modification pattern of Methanocaldococcus jannaschii in terms of the types and locations of tRNA modifications, and all the modifications in the anticodon loop were identified, which revealed the decoding coding strategies of this organism. To further explore the tRNA modifications profiles in archaea, four other archaea, Methanopyrus kandleri, Methanothermobacter marburgensis, Sulfolobus acidocaldarius, and Thermoproteus tenax, were studied. This work provides a starting point for understanding tRNA modifications in archaea. Portions of this chapter have previously been published in Analytical Chemistry, 2017, 89 (20), pp 10744-10752. 1 1.2 Post-transcriptional Modifications of tRNA Ribonucleic acid (RNA) is a polymeric biomolecule that plays important roles in many biological processes. The basic composition of RNA is four canonical nucleosides, adenosine (A), guanosine (G), cytidine (C) and uridine (U) as shown in Figure 1.1. After transcription, RNA can be post- transcriptionally modified, and a variety of chemical modifications are enzymatically introduced to the canonical nucleosides within the RNA sequence. There are more than 100 types of naturally- occurring chemical modifications found in RNA, and the modifications vary from simple methylations to complex modifications with multiple function groups1-3. The formation of modifications are catalyzed by enzymes. The simple modifications usually need few enzymes, while the complex modifications require multiple enzymes with many steps. Figure 1.1 The basic structure of RNA and some examples of modifications. Among all types of RNAs, transfer RNA (tRNA) has been found to have the greatest density of modifications. To date, there are more than 100 chemically unique modified nucleosides that have 2 been identified in tRNAs from all three domains of life
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
    www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike .
    [Show full text]
  • Archaeoglobus Profundus Type Strain (AV18T)
    Standards in Genomic Sciences (2010) 2:327-346 DOI:10.4056/sigs.942153 Complete genome sequence of Archaeoglobus profundus type strain (AV18T) Mathias von Jan1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan-Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, Lynne Goodwin2,3, Cliff Han2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Galina Ovchinnikova2, Olga Chertkov2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Elizabeth Saunders2, Thomas Brettin2,3, John C. Detter2,3, Patrick Chain2,4, Konrad Eichinger6, Harald Huber6, Ste- fan Spring1, Manfred Rohde7, Markus Göker1, Reinhard Wirth6, Tanja Woyke2, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Philip Hugenholtz2, Nikos C Kyrpides2, and Hans-Peter Klenk1* 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 University of Regensburg, Microbiology – Archaeenzentrum, Regensburg, Germany 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: hyperthermophilic, marine, strictly anaerobic, sulfate respiration, hydrogen utili- zation, hydrothermal systems, Archaeoglobaceae, GEBA Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the eu- ryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeog- lobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no va- lidly published name.
    [Show full text]
  • Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus Fulgidus VC-16 by Comparative Transcriptome Analyses
    Hindawi Publishing Corporation Archaea Volume 2015, Article ID 235384, 12 pages http://dx.doi.org/10.1155/2015/235384 Research Article Assessment of the Carbon Monoxide Metabolism of the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus VC-16 by Comparative Transcriptome Analyses William P. Hocking, Irene Roalkvam, Carina Magnussen, Runar Stokke, and Ida H. Steen Department of Biology, Centre for Geobiology, University of Bergen, 5020 Bergen, Norway Correspondence should be addressed to Ida H. Steen; [email protected] Received 10 April 2015; Revised 9 June 2015; Accepted 14 June 2015 Academic Editor: Uwe Deppenmeier Copyright © 2015 William P. Hocking et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The hyperthermophilic, sulfate-reducing archaeon, Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained from A. fulgidus during growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism of A. fulgidus. The model suggests proton translocation by “Mitchell-type” loops facilitated by Fqo catalyzingred aFd :menaquinone oxidoreductase reaction, as the major mode of energy conservation, rather than formate or H2 cycling during respiratory growth. The bifunctional CODH (cdhAB-2) is predicted to play an ubiquitous role in the metabolism of CO, and a novel nitrate reductase- associated respiratory complex was induced specifically in the presence of sulfate. A potential role of this complex in relation to Fdred and APS reduction is discussed.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • A Kinase and Site-Specific Endoribonuclease
    Ire1P 25 3 Ire1p: A Kinase and Site-Specific Endoribonuclease Tania N. Gonzalez and Peter Walter 1. Introduction 1.1. Ire1p in the Unfolded Protein Response The lumen of the endoplasmic reticulum (ER) is a highly specialized compartment in eukaryotic cells. Here, secretory and most membrane proteins are folded, covalently modified, and oligomerized with the assistance of specialized ER resident proteins (1). Perturbation of the ER lumen interferes with the production of many essential cellular components and can thus be highly deleterious. Indeed, in humans, defects in protein folding in the ER can lead to devastating diseases, such as cystic fibrosis, alpha1-anti- trypsin deficiency, and osteogenesis imperfecta (2). One way in which cells cope with the accumulation of unfolded proteins in the ER is by activating the unfolded protein response (UPR), an ER-to-nucleus signal transduction pathway (3–5). In the yeast Sac- charomyces cerevisiae, Ire1p is an essential component of this pathway. Ire1p is a transmembrane protein localized to ER membranes. When Ire1p was ini- tially identified as a component of the UPR, it was thought to function primarily as a serine/threonine kinase because of its homology to other kinases and its demonstrated kinase activity (6–8). Subsequent studies revealed that Ire1p functions as a site-spe- cific endoribonuclease as well (9). Both the kinase and endoribonuclease activities map to the carboxy-terminal half of Ire1p. The amino-terminal portion of Ire1p lies in the ER lumen (6,7), where it senses increases in the concentration of misfolded pro- teins. Since the ER and nuclear membranes are continuous, the carboxy-terminal portion of Ire1p is predicted to be located in either the cytoplasm and/or nucleus, where it induces downstream events in the UPR pathway.
    [Show full text]
  • Supplementary Information
    Retroconversion of estrogens into androgens by bacteria via a cobalamin-mediated methylation Po-Hsiang Wang, Yi-Lung Chen, Sean Ting-Shyang Wei, Kan Wu, Tzong-Huei Lee, Tien-Yu Wu, and Yin-Ru Chiang Supplementary Information Table of Contents Dataset Dataset S1. Genome annotation of strain DHT3 and transcriptomic analysis (RNA-Seq) of bacterial cells grown anaerobically with testosterone or estradiol. SI Tables Table S1. Oligonucleotides used in this study. Table S2. Selection of housekeeping genes of strain DHT3 used for constructing the linear regression line in the global gene expression profiles (RNA-Seq). Table S3. Selection of the cobalamin-dependent methyltransferases used for the un-rooted maximum likelihood tree construction. Table S4. UPLC–APCI–HRMS data of the intermediates involved in anaerobic estrone catabolism by strain DHT3. Table S5. 1H- (600 MHz) and 13C-NMR (150 MHz) spectral data of the HPLC-purified metabolite (AND2) and the authentic standard 5-androstan-3,17-diol Table S6. Selection of the bacteria used for comparative analysis of the gene organization for HIP degradation. SI Figures Fig. S1 Scanning electron micrographs of strain DHT3 cells. Fig. S2 Cobalamin as an essential vitamin during the anaerobic growth of strain DHT3 on estradiol. Fig. S3 Arrangement and expression analysis of the emt genes in strain DHT3. Fig. S4 The anaerobic growth of the wild type (A) and the emtA-disrupted mutant (B) of strain DHT3 with testosterone and estradiol. Fig. S5 APCI–HRMS spectrum of the HIP produced by estrone-fed strain DHT3. 1 Fig. S6 UPLC–APCI–HRMS spectra of two TLC-purified androgen metabolites, 17β-hydroxyandrostan-3-one (A) and 3β,17β-dihydroxyandrostane (B).
    [Show full text]
  • An Evolutionary Approach to Bibliographic Classification
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2018 AN EVOLUTIONARY APPROACH TO BIBLIOGRAPHIC CLASSIFICATION David Linn Sims University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Sims, David Linn, "AN EVOLUTIONARY APPROACH TO BIBLIOGRAPHIC CLASSIFICATION. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5006 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by David Linn Sims entitled "AN EVOLUTIONARY APPROACH TO BIBLIOGRAPHIC CLASSIFICATION." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Communication and Information. Suzanne L. Allard, Major Professor We have read this dissertation and recommend its acceptance: David G. Anderson, Bradley Wade Bishop, Stuart N. Brotman Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) AN EVOLUTIONARY APPROACH TO BIBLIOGRAPHIC CLASSIFICATION A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville David Linn Sims August 2018 Copyright © 2018 by David L. Sims All rights reserved. ii ACKNOWLEDGEMENTS If it had not been for my dissertation chair, Suzie Allard, I may not have completed this degree.
    [Show full text]
  • Can Methanogens Grow in a Perchlorate Environment on Mars? T.A
    72nd Annual Meteoritical Society Meeting (2009) 5136.pdf CAN METHANOGENS GROW IN A PERCHLORATE ENVIRONMENT ON MARS? T.A. Kral1,2, T. Goodhart1, K.L. Howe2 and P. Gavin2. 1Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, 2Arkansas Cen- ter for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701. [email protected]. Introduction: We have been studying methanogens as a model for life on Mars for a number of years now. Methanogens are microorganism in the domain Archaea that use carbon diox- ide as a carbon source, molecular hydrogen as an energy source, produce methane as a by-product of metabolism, and have been shown to grow on a Mars soil simulant, JSC Mars-1 (1). The relatively recent discovery of methane in the Martian atmosphere has added relevance to these types of studies (2). In 2008, The Mars Phoenix Lander discovered perchlorate at its landing site in concentrations of approximately 1.0wt% (3). Because of perchlo- rate’s powerful oxidizing property, many believed that the chances for extant life on the planet had decreased. Methods: The research reported here was designed to de- termine if methanogens could grow in the presence of three dif- ferent perchlorate salts. The methanogens tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Metha- nobacterium formicicum and Methanococcus maripaludis. Stan- dard growth media were prepared containing 0, 0.1, 0.5 and 1.0wt% magnesium perchlorate, sodium perchlorate, or potas- sium perchlorate. Organisms were inoculated into their respective media followed by incubation at each organism’s optimal growth temperature. Methane production, commonly used to measure methanogen growth, was measured by gas chromatography of headspace samples.
    [Show full text]
  • Tackling the Methanopyrus Kandleri Paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo†
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open Access Research2004BrochieretVolume al. 5, Issue 3, Article R17 Archaeal phylogeny based on proteins of the transcription and comment translation machineries: tackling the Methanopyrus kandleri paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo† Addresses: *Equipe Phylogénomique, Université Aix-Marseille I, Centre Saint-Charles, 13331 Marseille Cedex 3, France. †Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Céline Brochier. E-mail: [email protected] Published: 26 February 2004 Received: 14 November 2003 Revised: 5 January 2004 Genome Biology 2004, 5:R17 Accepted: 21 January 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/3/R17 reports © 2004 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. ArchaealPhylogeneticsequencedusingrespectively). two phylogeny concatenated genomes, analysis based it of is datasetsthe now on Archaea proteinspossible consisting has ofto been thetest of transcription alternative mainly14 proteins established approach involv and translationed byes in 16S bytranscription rRNAusing machineries: largesequence andsequence 53comparison.tackling ribosomal datasets. the Methanopyrus Withproteins We theanalyzed accumulation(3,275 archaealkandleri and 6,377 of phyparadox comp positions,logenyletely Abstract deposited research Background: Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets.
    [Show full text]
  • WARREN LYNWOOD GARDNER Expression Vectors for the Methane-Producing Archaeon Methanococcus Maripaludis (Under the Direction of WILLIAM B
    WARREN LYNWOOD GARDNER Expression vectors for the methane-producing archaeon Methanococcus maripaludis (Under the Direction of WILLIAM B. WHITMAN) Methanogens are strict anaerobes that use one and two carbon compounds for methanogenesis. They contain many unusual cofactors and enzymes, and many of their proteins are oxygen-sensitive and are present at low concentrations within the cells. An expression system that overexpresses homologous and heterologous proteins would facilitate research on the unique oxygen-sensitive enzymes in these organisms. However, traditional expression systems may lack the cofactors and maturation enzymes necessary for the expression of the active holoenzymes. Therefore, a major goal of this work was to develop expression vectors. To develop a shuttle vector, a series of integrative vectors were first constructed. The integrative vectors were based on the pUC-derivative pMEB.2. pMEB.2 provided the puromycin resistance marker for methanococci, an Escherichia coli origin of replication, and an ampicillin resistance marker for E. coli. A multiple cloning site and the Methanococcus voltae histone promoter (PhmvA) were added to form the integrative, expression vector pWLG14. To demonstrate the utility of PhmvA, pWLG14 was used to overexpress the genomic copy of the Methanococcus maripaludis acetohydroxyacid synthase. To form an expression shuttle vector suitable for heterologous genes, pWLG14 and the cryptic plasmid pURB500 from M. maripaludis strain were ligated together to form pWLG30. pWLG30 was the first expression shuttle vector for the methanogens. To demonstrate the utility of pWLG30, the E. coli b-galactosidase gene was cloned into pWLG30 to yield pWLG30+lacZ. Upon transformation into M. maripaludis, the recombinant strain expressed b-galactosidase to the level of 1% of the cellular protein.
    [Show full text]
  • Extremophiles
    Extremophiles These microbes thrive under conditions that would kill other creatures. The molecules that enable extremophiles to prosper are becoming useful to industry by Michael T. Madigan and Barry L. Marrs DEEP-SEA VENT HEAT-LOVING MICROBES (THERMOPHILES AND HYPERTHERMOPHILES) SEA ICE COLD-LOVING MICROBES (PSYCHROPHILES) Methanopyrus kandleri Polaromonas vacuolata thereby increasing efficiency and reduc- magine diving into a refreshingly ing costs. They can also form the basis of cool swimming pool. Now, think entirely new enzyme-based processes. I instead of plowing into water that tially serve in an array of applications. Perhaps 20 research groups in the U.S., is boiling or near freezing. Or consider Of particular interest are the enzymes Japan, Germany and elsewhere are now jumping into vinegar, household am- (biological catalysts) that help extremo- actively searching for extremophiles and monia or concentrated brine. The leap philes to function in brutal circumstanc- their enzymes. Although only a few ex- would be disastrous for a person. Yet es. Like synthetic catalysts, enzymes, tremozymes have made their way into many microorganisms make their home which are proteins, speed up chemical use thus far, others are sure to follow. As in such forbidding environments. These reactions without being altered them- is true of standard enzymes, transform- microbes are called extremophiles be- selves. Last year the biomedical field and ing a newly isolated extremozyme into cause they thrive under conditions that, other industries worldwide spent more a viable product for industry can take from the human vantage, are clearly ex- than $2.5 billion on enzymes for appli- several years.
    [Show full text]