C.17E UNITED STATES PATENT OFFICE, ALANSON P

Total Page:16

File Type:pdf, Size:1020Kb

C.17E UNITED STATES PATENT OFFICE, ALANSON P A. P. BRUSH INTERNAL COMBUSTION ENGINE, APPLICATION FLED NOW, 27, 196. 1,265,735, Patented May 14, 1918, N (O) 1. N NeY,NaNNNNNNNYNNS Sso ) (es,- S R YN1Y 7 S NN A Re Yn & NX X NYNY N CXsy. YeSN N N . Ne SS a N. NNN N sNNNN N S. NN NSNN N-NNNE----- SSNNN NN:N N SSNN 12 F-2 N. N. NN - N N 1 NNT RR N N 7 rever for: SSNS Š NS - - - y 1 ar rt (&as or (7'06-4. // %-7. y 6... c.17e UNITED STATES PATENT OFFICE, ALANSON P. BRUSH, OF DETROIT, IMICHIGAN. INTERNAT-COINBUSTION ENGINE. 1,265,735. Specification of Letters Patent, Patented May 14, 1918. Application filed November 27, 1916. Serial No. 138,544. To all whom it may concern: has been selected because the application of Be it known that I, ALANSON P. BRUSH, a the present invention thereto is easy and the citizen of the United States, residing at De result is a thoroughly practical and efficient troit, in the county of Wayne and State of motor. It will be understood, however, that 60 Michigan, have invented a certain new and the new inventive idea, now to be referred to useful Improvement in Internal-Combustion and described is not restricted in its applica Engines, of which the following is a full, tion to engines having the specific construc clear and exact description. tion which is shown in the drawing and is This invention is an improvement in above described. 65 10 multi-cylinder internal combustion engines, Within the head plate, and extending and the object of the invention is to enable lengthwise thereof is a mixture distributing the engine to use low grade liquid fuel such passage, or, as it is commonly called, an in as is now available to the public, and obtain let manifold, 18, into which air and fuel may the maximum power output for the fuel con flow from a suitable carbureter 30 through 70 5 Sumed under different running conditions of an Opening 19 in the side of the head plate. the engine. The inlet passages 17 which directly dis The invention consists in the construction charge downward into the cylinders through and combination of parts shown in the draw the valve controlled inlet openings, are in ing and hereinafter described and pointed unrestricted communication with this in 75 20 Out definitely in the appended claims. let manifold 18, -being formed as short In the drawings, Figure 1 is a vertical branches thereof. Directly opposite the inlet transverse section of the tipper part of a opening 19 to this inlet manifold and within multi-cylinder internal combustion engine in the head plate is a thin metal plate 14 which Which the invention is embodied, the sec serves as a partition wall to separate the 80 25 tion extending through any one of the cyl manifold 18 from the middle exhaust gas inders, and extending also through the head passage 16, into which the hot exhaust gas plate, but in the plane indicated by line from the two middle cylinders discharges. A-B on Fig. 2. Fig. 2 is a horizontal sec This particular exhaust passage 16 dis tional plan view, of a part of the head plate charges its hot exhaust gases through a hole 85 30 of Said engine, the sectional plane being in in the side of the head plate into the exhaust dicated by the line C-D on Fig.1. manifold 28. The exhaust gas passages 16 The engine includes a plurality of cylin which receive the exhaust from the other ders 10, disposed in a row as indicated by cylinders also discharge into this same ex dotted lines in Fig. 1; and these are prefer haust manifold as is the common practice. 90 35 ably, though not necessarily, integral parts. This partition plate 14 is preferably an in of the same casting. The open upper ends of tegral part of the head plate casting, as all of the cylinders are closed by a single shown. It is evident that when the engine removable head plate 15, in which are inlet is running this partition plate will get to be and exhaust passages that communicate with very hot by reason of its direct contact with 95 40 the cylinders by means of valve controlled the hot exhaust gas from two cylinders. openings through the lower face of said The carbureter 30 may be and preferably head plate. One exhaust gas passage 16 and should be of the horizontal type; and may One inlet gas passage 17 communicates as be fastened to the head plate directly over stated with each cylinder; and these are sev the inlet 19 to said gas distributing passage 0) 45 erally controlled by inlet valves 20, and ex or manifold 18. It may be of any approved haust valves 21;-said valves being closed construction, such as includes a restricted by springs 22, and opened by rockers 23 air tube 31, and a nozzle 32 through which which engage the valve stems and are in turn the fuel will be drawn by the reduction of operated by tappet rods 24. These rockers pressure within the air tube due to the 05 50 may be pivoted to a cover plate 25 which is suction action of the engine. And, for removably fixed to the head plate, whereby reasons which will be hereinafter explained, it will cover and protect the mechanism in it is best that the fuel jet opening in the the open space between said head plate and nozzle from which the fuel is discharged cap. shall be located in a higher plane than To the extent above described the engine the plane in which the inlet manifold dis 55 is or may be of familiar construction, and charges into the cylinders-that is, shall 2: s --P be above the piane of the lower face c. neadhas plate.rate. Shoulds ld be- a notedted as isSC y that- na; Cheh diameterably larger of than the inletthe diameter manifold of isthe consider air tube s i;-8 wherefores the- veiocity3 of the air and fuel's stream in the inlet manifold will be less than of4. the manifold passages, since with in said air tube-which is a reason for d unyaporized fuel, however inely it may be nating the iniet manifold as a low yelic atomized, two difficulties are always present, inlet manifold, 5 an s in multiple cylinder engine operation. One J. During the operation of the engine the mixture of air and atomized but largely lin is the tendency of the particles of fuel to - condense upon the Wai is and accumulate at vaporized fuel formed in the carbureter. ny points of low aii. 7elocity producing the enters the manifold i8 Substantially at right, result commonly known as loading. This angles hereto, and directly toward the op loading with the ordinary type of updraft, 30 posite hot partition Wall which is located manifold occurs in its yorst form when the in he path of Said inrushing stream of air power output of the engine is reduced by and fuel Spray. The tendency of the In partially closing he throttie, and thereby 7aporized particles of fuel to continue their producing a relatively low velocity of the air through the intake manifold. If, or 35 cted, and especially When the velocity when, it is desired to increase the power he air stream is suddenly reduced, as output of an engine after it has operated 3 will be, is thus taken advantage of in io: some time at a reduced power output, gshat these unvaporized particles of fuel con inue heir direction of travel until a 7ery the...V. increase in air velocity in the ordinary 5 3. proportion. Of thern come into actual updraf, manifold picks up and carries into ci, Yith Said hot partition plate which- o the cylinders an oversupply of fuel with is directly in their line of travel, and there a resultant sluggishness and uncertainty of are instantly vaporized o engine performance. Ciry gas, which readily mixes y it is customary to overcorne of try to over ; -- R.L. -- .. - -- corne this defect by heating the air drawn 9 5 and goes yith it to the severalc cyln . into the carbureter soSC that the heated air is to be noted that, practically- o ail the heat;- inparted to the fue: and air mixture by will vaporize the fuelR. and prevent loading. this hot late is concentrated in the fuel It is, however, obvious that if the ingoing he mixture. aii is sufficiently heated to produce com iš is not unusual to have the gas distrib plete vaporization, the air will contain a using manifold in the removable head plate Very considerable amount of unnecessary of an internal combustion engine, but here. ineas not given up to the fuel, with the re tofore such gas manifold passages have Suit that the air will be so expanded by been of such small dimensions as that tier this excess heat that it will not enter the : C will be very little reduction in the velocit, cylinders at as great density as will be se of the air flowing through them after such cured with colder air, and this results in -- edited compression and consequently re air leaves the carbureter. 'has long been understood by engineer duced power output. Another endency toward defective op multiple cylinder engine burning a eration of high velocity manifolds as a gaseous fuel mixed with air may have neans for handling relatively low grade an intake manifold of as large size as may fuels in multiple cylinder engines is what for any reason be convenient or desirable; may be called the separator action; that is, Singe the fuel and the ingoing air mix yhenever the air stream changes direction easily and naturally, and have practically the tin Vaporized particles of fuel have a 5.
Recommended publications
  • Sbd Fuel Injection Assembly and Set up Instructions 2.0L Vauxhall High Specification Taper Throttle Kit
    SBDMotorsport April 2013 SBD FUEL INJECTION ASSEMBLY AND SET UP INSTRUCTIONS 2.0L VAUXHALL HIGH SPECIFICATION TAPER THROTTLE KIT SBD would like to thank you for choosing the taper throttle injection kit. The tapered throttle body system which Richard Jenvey and Steve Broughton of SBD Motorsport have developed back in 1995 for the 2.0L XE originally at that time for a touring car project which has been so successful, even spawning many copies. We decided that the fact that the 2.0L XE was still very popular, that is was time to look at the design again which everything that we had learnt in developing the Hayabusa and Duratec high specification throttle bodies. We contacted Jenvey Dynamics again, who have helped us to develop all our own special throttle body projects over the years and started designing a new intake system to suit the 2.0L XE as well as it’s larger capacity versions, 2.2L, 2.3L, 2.4L & 2.5L which are now being built. The tapered throttle body has a 54mm entry tapering down to 52mm butterfly. The taper then continues on through the throttle body then into the manifold and down to the cylinder head. The port shape we have developed to match up with our high specification CNC ported cylinder head, this means the inlet manifold should not require any porting when mated to one of these cylinder heads. The injectors are now mounted underneath the throttle body pointing at an upwards direction at the correct angle so that upon butterfly opening high gas speed is achieved allowing very fast throttle response.
    [Show full text]
  • Diesel Strategy Overview
    Diesel Strategy Overview Diesel Strategy Overview Status: Confidential Issue Date: 1st Sept 2014 Email: [email protected] Telephone: Tel: +1 (734) 656 0140 Address: Pi Innovo LLC 47023 W. Five Mile Road, Plymouth, MI 48170-3765, USA Incorporated in Delaware 20-5693756 Revision History see version control tool Abstract This document describes the functionality contained in the diesel common rail engine control strategies, discusses where the strategies have been used, and answers common questions customers have about them. Confidential Page 2 of 13 Contents 1. Introduction and Scope 5 2. Software Environment 5 3. Diesel Engine Components 5 4. Control Architecture 6 5. Functional Behavior 7 5.1 Torque Domain 7 5.1.1 Driver Request 7 5.1.2 Idle Speed Control 7 5.1.3 Engine Speed Limiter 7 5.1.4 The Engine Speed Limiter provides rev-limit functionality by reducing torque to provide a smooth limit rather than the sharp limit achieved by cutting cylinders.CAN Torque Requests 7 5.1.5 Engine Loads Model 8 5.1.6 Torque Governor 8 5.2 Air Charge Estimate 8 5.3 Air Controls 8 5.3.1 EGR Demand 8 5.3.2 Boost Pressure Control 9 5.4 Fuel Controls 9 5.4.1 Fuel Rail Pressure Control 9 5.4.2 Injection Quantities to Durations 9 5.4.3 Cylinder Balancing 9 5.4.4 Deceleration Fuel Shut Off 10 5.4.5 Injector Compensation 10 5.5 Miscellaneous Controls 10 5.5.1 Engine Running Mode 10 5.5.2 Glow Plug Controls 10 5.5.3 Cooling Fan Control 10 5.5.4 Manual Calibration Override 10 5.5.5 CAN Communications 11 5.5.6 Diagnostics 11 5.5.6.1 Out of Range 11 Confidential Page 3 of 13 5.5.6.2 Rationality 11 5.5.6.3 Misfire detection 11 6.
    [Show full text]
  • How a Fuel Injection System Works | How a Car Works 10/5/20, 1128 AM How a Fuel Injection System Works
    How a fuel injection system works | How a Car Works 10/5/20, 1128 AM How a fuel injection system works For the engine to run smoothly and efficiently it needs to be provided with the right quantity of fuel /air mixture according to its wide range of demands. A fuel injection system Petrol-engined cars use indirect fuel injection. A fuel pump sends the petrol to the engine bay, and it is then injected into the inlet manifold by an injector. There is either a separate injector for each cylinder or one or two injectors into the inlet manifold. Traditionally, the fuel/air mixture is controlled by the carburettor , an instrument that is by no means perfect. Its major disadvantage is that a single carburettor supplying a four- cylinder https://www.howacarworks.com/basics/how-a-fuel-injection-system-works Page 1 of 7 How a fuel injection system works | How a Car Works 10/5/20, 1128 AM engine cannot give each cylinder precisely the same fuel/air mixture because some of the cylinders are further away from the carburettor than others. One solution is to fit twin-carburettors, but these are difficult to tune correctly. Instead, many cars are now being fitted with fuel-injected engines where the fuel is delivered in precise bursts. Engines so equipped are usually more efficient and more powerful than carburetted ones, and they can also be more economical, as well as having less poisonous emissions . Diesel fuel injection The fuel injection system in petrolengined cars is always indirect, petrol being injected into the inlet manifold or inlet port rather than directly into the combustion chambers .
    [Show full text]
  • Combined Effect of Inlet Manifold Swirl and Piston Head Configuration in a Constant Speed Four Stoke Diesel Engine V
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-11, September 2019 Combined Effect Of Inlet Manifold Swirl And Piston Head Configuration In A Constant Speed Four Stoke Diesel Engine V. V.NagaDeepthi , K.GovindaRajulu Abstract: The internal combustion engine manifold has a subsystem that supplies the fresh A/F mixture to the engine cylinders where the fuel is combusted. For efficient combustion of charge, the walls of the intake manifold must be smooth / polished to minimize any side resistance. To redesign the inlet port of a small internal combustion engine, to increase the production of turbulence by a swirl. A good swirl promotes more rapid combustion and improves efficiency. The CI engine has a piston shaped flat on the crown and a concave combustion chamber, with this geometry we are driving the engine. But here the A/F ratio mixture cannot mix properly. To avoid this we make piston geometry changes. The main objective of this project is that three new technologies have been adopted here. The first stage is varying the diameter of the convergence - the divergent nozzle. The second stage is the change on the piston head and the Figure 1: Valve Parts of the Inlet and Exhaust last stage is replacing the inlet and exhaust valve with pitch 0.5. Mm to 2 mm and the cut thread depth is 4 mm and three threads The reduced dilution reduces the amount of un burnt per inch. All of these techniques aim to investigate performance mixture/charge inside the chamber which reduces the techniques to increase air flow to achieve improved engine hydrocarbon emissions coming out of the engine.
    [Show full text]
  • 1,120,118, Patented Dec. 8,1914
    E. H. & H. H. ASHLOOK. AUXILIARY AIR INLET DEVICE FOR INTERNAL ‘COMBUSTION ENGINES. APPLICATION FILED NOW 19, 1913. 1,120,118, Patented Dec. 8,1914 Attorneys WTTED STATES PATENT OFFTCE. ERNEST H. ASHLOGK AND HENRY H. ASHLOGK, OF SAN DIEGO, CALIFORNIA. AUXILIARY AIR-INLET DEVICE FOR INTERNAL-COMBUSTION ENGINES. 1,120,118. Speci?cation of Letters Patent. Patented Dec. 8, 1914. Application ?led November 19, 1913. Serial No. 801,910. To all whom it may concern .' through and with which opening my i1n~ Be it known that we, ERNnsT H. AsnLocK, proved device communicates. and HENRY H. AsHLooK, citizens of the An elbow 7 is externally threaded at one United States, residing, at San Diego, in the end as at 8 and to which is secured the yoke 5 county of San Diego and State of Cali 9. The yoke 9 embraces the fuel inlet mani 60 fornia, have invented a new and useful fold 4 therebetwecn and is held rigidly Auxiliary Air-Inlet Device for Internal~ thereto by the curved bolt 10. The extreme . Combustion Engines, of which the follow end of the elbow 7 is beveled as at 11 and ing is a speci?cation. effects an air-tight joint with the side walls of the opening (3 of the fuel inlet manifold. 65 10 This invention relates to an attachment for internal combustion engines and more The remote end of the elbow 7 is also ex particularly to a device for supplying either ternally threaded as at 12 and to which is cold or heated air to the inlet manifold be secured the valve chamber or casing 13.
    [Show full text]
  • E Series Valves and Manifolds Introduction
    Instrumentation Products E Series Valves and Manifolds Introduction Introduction The AS-Schneider Group with its headquarters in Germany is one of the World‘s Leading Manufacturers of Instrumentation Valves and Manifolds. AS-Schneider offers a large variety of E Series Valves and Manifolds as well as numerous accessories needed for the instrumentation installations globally. Selection can be made from a comprehensive range of bodies with a variety of connections and material options, optimising installation and access opportunities. Many of the valves shown in this catalogue are available from stock or within a short period of time. The dimensions shown in this catalogue apply to standard types – very often 1/2 NPT treaded. If you need the dimensions for your individual type please contact the factory. Note: Not every configuration which can be created in the ordering information is feasible / available. Continuous product development may from time to time necessitate changes in the details contained in this catalogue. AS-Schneider reserves the right to make such changes at their discretion and without prior notice. All dimensions shown in this catalogue are approximate and subject to change. 2 Introduction Service Portal // Digital Product Pass AS-Schneider Contents Introduction | page 2 Contents | page 3 General Features | page 4 Valve Head Unit Options | page 5-11 Connections | page 12-13 Hand Valves | page 14-15 Gauge Valves | page 16-17 Multiport Gauge Valves | page 18-19 Block & Bleed and Double Block & Bleed Manifolds | page 20-21
    [Show full text]
  • Determination of Optimal Valve Timing for Internal Combustion Engines Using Parameter Estimation Method
    130 Determination of optimal valve timing for internal combustion engines using parameter estimation method A. H. Kakaee 1,* and M. Pishgooie 2 1 Assistant Professor, 2 MSc student, Department of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran * [email protected] Abstract In this article determination of appropriate valve timing using sensitivity analysis problem is investigated for a gasoline four stroke engine. In the first part of this study a 4­storke Spark Ignition engine (XU7JP4/L3) including its different systems such as inlet and exhaust manifold, exhaust pipe and engine geometry are modeled using GT­Power software and the model is coupled with MATLAB/Simulink to be able to control input and output parameters. Then in order to find the best model that fits experimental data, sensitivity analysis is performed and the best unknown parameters that can best model the engine are obtained. The input parameters are considered to be the inlet port temperature and pressure, and manifold friction coefficient. The target was achieving the least square error in engine power, torque and fuel consumption. In the second part of the study the optimized model is used for the sensitivity analysis and minimizing the engine specific fuel consumption up to 10 percent reduction in specific fuel consumption as a target. Sensitivity analysis is used for finding the best valve timing in different engine speeds to achieve the target. Keywords: Variable Valve Timing system, GT­Power, MATLAB Simulink, Valve Timing, sensitivity analysis 1. INTRODUCTION mid rpm (1200–3200 rpm) range, and the peak torque improved by an average of 3%.
    [Show full text]
  • Audi RS3 and TTRS High Flow Dump Valve and Inlet Pipe Installation
    Audi RS3 and TTRS High Flow Dump Valve and Inlet Pipe Installation Tools Required: Flat headed screw driver T25 Torx driver T30 Torx driver T30 socket, matching ratchet and long extension 7mm hose clamp driver 5mm Allen key 3mm Allen key 1. Remove the small plastic covers around the oil filler and cold air feed on the intake. Remove the two clips holding the hose between the air box and turbo inlet, and the one clip on the standard dump valve. Undo the T25 torx on the cold air feed and undo the 10mm bolt on the filter box. Pull air filter box upwards to release from the rubber grommets. Air box – turbo pipe 10mm bolt Cover Dump valve clip T25 T25 Cover 2. Unplug the MAP sensor, TPS sensor and stock dump valve, undo the jubilee clip and the four T30 torx bolts holding the inlet pipe and throttle body to the inlet manifold. Remove the inlet pipe taking care not to drop the metal gasket between the throttle body and inlet. Metal gasket Dump valve TPS MAP 3. Attach the throttle body with the new o ring supplied in the kit. Also attach the MAP sensor with the existing bolts. New O ring inside here 4. Refit the high flow inlet pipe with dump valve in reverse order of step 2. Take care when refitting the metal gasket and bolt on the solenoid as shown in view A. View A View A 5. This photo shows the how to connect the vacuum pipe assembly. Dump valve wire extension Solenoid & solenoid bracket T-piece to vacuum pump 6.
    [Show full text]
  • Piston Pump Service Manual
    PISTON PUMP SERVICE MANUAL 3 FRAME: 280, 281, 290, 291 10 FRAME: 621, 623, 820, 821, 825,1010,1011,1015 4 FRAME: 331, 333, 335, 430, 431, 435 25 FRAME: 1520,1521,1525, 2520, 2521, 2525, 2520C 5 FRAME: 323, 390 60 FRAME: 6020, 6021, 6024, 6040, 6041, 6044 INSTALLATION AND START-UP INFORMATION Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories. SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not Install a Pulsation Dampening device onto the discharge head or in the discharge implied that all maximums can be performed simultaneously. If more than one line. Be certain the pulsation dampener (Prrrrr-o-lator) is properly precharged for the maximum is considered, check with your CAT PUMPS supplier to confirm the proper system pressure (refer to individual Data Sheet). performance and pump selection. Refer to individual pump Data Sheet for complete A reliable Pressure Gauge should be installed near the discharge outlet of specifications, parts list and exploded view. the high pressure manifold. This is extremely important for adjusting pressure LUBRICATION: Fill crankcase with special CAT PUMP oil per pump specifications regulating devices and also for proper sizing of the nozzle or restricting [3FR-10 oz., 4FR-21 oz., 5FR-21 oz.,10FR-40 oz., 25FR-84 oz., 60FR-10 Qts.]. DO orifice. The pump is rated for a maximum pressure; this is the pressure which would NOT RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours be read at the discharge manifold of the pump, NOT AT THE GUN OR NOZZLE.
    [Show full text]
  • A Design Strategy for Volumetric Efficiency Improvement in a Multi-Cylinder Stationary Diesel Engine and Its Validity Under Transient Engine Operation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals SCI-PUBLICATIONS American Journal of Applied Sciences 5 (3): 189-196, 2008 ISSN 1546-9239 © 2008 Science Publications A Design Strategy for Volumetric Efficiency Improvement in a Multi-cylinder Stationary Diesel Engine and its Validity under Transient Engine Operation 1P. Seenikannan, 2V.M.Periasamy and 3P.Nagaraj 1 Author Manuscrip Deptartment of Mech., Sethu Institute of Tech., Kariapatti, T.N, India, 626106 2 Crescent Engineering College, Chennai, T.N, India 3Deptartmentof Mech, Mepco Schlenk Engg College, T.N., India Abstract: This paper proposes an approach to improve engine performance of volumetric efficiency of a multi cylinder diesel engine. A computer simulation model is used to compare volumetric efficiency with instantaneous values. A baseline engine model is first correlated with measured volumetric efficiency data to establish confidence in the engine model’s predictions. A derivative of the baseline model with exhaust manifold, is then subjected to a transient expedition simulating typical, in-service, t maximum rates of engine speed change. Instantaneous volumetric efficiency, calculated over discrete engine cycles forming the sequence, is then compared with its steady speed equivalent at the corresponding speed. It is shown that the engine volumetric efficiency responds almost quasi-steadily under transient operation thus justifying the assumption of correlation between steady speed and transient data. The computer model is used to demonstrate the basic gas dynamic phenomena graphically. The paper provides a good example of the application of computer simulation techniques in providing answers to real engineering questions.
    [Show full text]
  • Jaguar E-Type 3.8 & 4.2 Classic Manifold Kits for Weber
    JAGUAR E-TYPE 3.8 & 4.2 CLASSIC MANIFOLD KITS FOR WEBER CARBURETTORS, www.mangoletsimanifolds.com UNIQUE MANIFOLD AND THROTTLE CONTROL SYSTEM –Patent Pending 0922289.4 Classic Polished Flat Topped Water Gallery with polished thermostat housing From a new throttle pedal and ready-assembled linkages - through to perfectly matched head ports with innovative template method Over a two year period we have developed our new range, and up-dated our classic manifolds, in conjunction with 6 leading E-Type specialists in UK and USA. We thank them for their combined input in respect of design, fitting, engine performance and driveability, now incorporated in the final manifolds and linkages. The template matching system has been well received. Manifolds – Quality castings are essential for water jacketed manifolds. Mangoletsi manifolds are specially tooled to be cast by a highly mechanised specialist foundry, who produce original equipment cylinder heads, blocks and manifolds for engine manufacturers, to BS9001 quality standards. Manifolds are cast in heat treated LM25, double impregnated and pressure tested. See website – www.mangoletsimanifolds.com/technical. One servo offtake to all six cylinders via unique Mangoletsi cast-in air gallery Removes servo related flat spots under braking. The servo drillings are angled to enter the side of the ports. If drilled directly underneath the port, fuel may enter the servo system. (Further manifold information – see page 2) “Out of the Box” Fit – Much of the extensive development time was spent on refining all the components to suit the various different models and then producing dedicated parts, castings, hoses, hosetails, etc. (see page 3) All new fully adjustable throttle pedal assembly - unique “sliding set-up” carburettor linkage system( Page 4) “I had the pleasure of driving Harry's (E Type UK) EFI demonstrator a few weeks back and was mightily impressed with the smooth throttle response.
    [Show full text]
  • Lenntech.Com Lenntech Tel
    SF PLUNGER PUMP SERVICE MANUAL ® 2SF, 2SFX, CEE, SEEL MODELS: 4SF MODELS: 2SF10, 2SF20, 2SF22, 4SF32ELS, 4SF40ELS, 4SF45ELS, 4SF50ELS, 2SF25, 2SF29, 2SF30, 2SF35 4SF30GS1, 4SF35GS1, 4SF40GS1, 4SF45GS1, 2SF05, 10, 15, 25, 29, 35SEEL 4SF45GS118, 4SF50GS1 INSTALLATION AND START-UP INFORMATION Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories. SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not A reliable Pressure Gauge should be installed near the discharge outlet of the high implied that all maximums can be performed simultaneously. If more than one pressure manifold. This is extremely important for adjusting pressure regulating maximum is considered, check with your CAT PUMPS supplier to confirm the proper devices and also for proper sizing of the nozzle or restricting orifice. The pump is performance and pump selection. Refer to individual pump Data Sheet for complete rated for a maximum pressure; this is the pressure which would be read at the specifications, parts list and exploded view. discharge manifold of the pump, NOT AT THE GUN OR NOZZLE. LUBRICATION: Fill crankcase with special CAT PUMP oil per pump specifications Use PTFE thread tape or pipe thread sealant (sparingly) to connect accessories or [2SF, 2SFX: prior 3/03-11.83 oz., after 3/03-10.15 oz., 4SF: 23.66 oz.]. DO NOT plumbing. Exercise caution not to wrap tape beyond the last thread to avoid tape from RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours run- becoming lodged in the pump or accessories.
    [Show full text]