Optimization of Media for Mass Production of Xanthine Oxidase from Endophytic Fungus

Total Page:16

File Type:pdf, Size:1020Kb

Optimization of Media for Mass Production of Xanthine Oxidase from Endophytic Fungus Optimization of media for mass production of Xanthine Oxidase from endophytic fungus. A Thesis submitted In partial fulfillment of the requirement of the degree of MASTER OF SCIENCE IN BIOTECHNOLOGY Submitted By: Under the supervision of Pallavpreet kaur Dr. Sanjai Saxena Department Of Biotechnology And Environmental Sciences Thapar University, Patiala July, 2012 1 2 3 Contents S.no Contents Page no. 1. Executive summary 2. Introduction 3. Review of literature 4. Aim of study 5. Materials and methods 6. Results & discussion 7. Conclusion 8. Bibliography 4 List of Tables S.no Table No Page no. 1. Composition of reaction mixture for NBT assay 40 2. Composition of Lowry Reagent 43 3. Estimation of uric acid at 292 nm 52 4. Estimation of Uric acid by phosphotungstate assay 54 5. The optimized nutritional and physical parameters 55 6. The Placket –burman design 56 7. ANOVA for placket – burman design 59 8. Response Surface methodology 62 9. ANOVA for Response surface methodology 62 10. Coefficient estimate and standard error in RSM 63 11 XO activity in unoptimized and optimized media 65 12 The values of optimized parameters 65 13 Purification of XO from Endophytic fungus #19 NOBASVNP 69 14 The kinetic parameters of Purified XO. 69 5 List of figures S.no Figure no. Page no. 1. Crystallographic structure of XO 16 2. Purine degradation pathway 18 3. Template of microtiter used for standard curve of XO 39 activity 4. Template of microyiter for XO inhibition by allopurinol 41 5. Pure culture of Endophytic fungus strain #19NOBASVNP 46 o 6. Culture filtrate fermented at 29 C 49 7. The Pareto Chart 58 8. The Range of XO activity 60 9. The effect of Xanthine concentration on XO activity 61 10. 3 D plot of XO activity Vs pH and sucrose percentage 64 11. Prediction of the XO activity 65 12. XO inhibition assay using culture filtrate 66 13. XO inhibition assay using purified XO 71 6 List of Graphs S.no Graph no. Page no. 1. Optimization of Xanthine concentration 47 2. Optimization of sucrose percentage 48 3. Optimization of Potato extract 48 4. Optimization of temperature 49 5. Optimization of temperature 49 6. Optimization of pH 50 7. Optimization of inoculums size ( cells/ml) 50 8. Standard Curve of uric acid 51 9. XO inhibition assay in presence of allopurinol 53 10. Standard curve of uric acid by phosphotungstate. 67 11. XO activity in presence of allopurinol 67 12. XO activity of eluates from gel –filtration column 68 13. Line-weaver burk plot 70 14. The effect of Xanthine concentration on XO activity 70 15. The effect of temperature on XO activity 71 16. XO activity in presence of allopurinol 72 17. XO activity in absence of allopurinol 72 7 Abbreviations BSA Bovine Serum Albumin FAD Flavin Adenine Dinucleotide KDa Kilodalton mg milligrams PDA Potato Dextrose Agar ROS Reactive oxygen pecies rpm Revolutions per minute SDW Sterile distilled water PAGE Polyacrylamide gel electrophoresis PDB Potato Dextrose Broth NBT Nitroblue Tetrazolium µl Microlitre µM Micromoles XA Xanthine Agar XB Xanthine Broth XO Xanthine Oxidase XDH Xanthine Dehydrogenase XOR Xanthine Oxidoreductase nm Nanometer RSM Response surface Methodology PBD Placket Burman Design ABTS 2, 2 –azino –di (3- ethylbenthiazoline-6- sulphonate ) 8 Executive summary Xanthine Oxidase has been in lot of demand in clinical industry due to its crucial role in purine metabolism pathway. Various ailments like gout, hyperuricemia, myocardial infarction and reperfusion injury are related to the levels of expression of Xanthine Oxidase .A plethora of questions that need to be answered regarding the implication of genes in XO related disorders and mechanism of action and metabolic pathway of oxidoreductase class of enzymes. Xanthine Oxidase can also find application in the development of biosensors for monitoring substrate utilization in cell culture media. #19 NOBASVNP, an Endophytic fungus isolated from Nerium oleander , demonstrated the maximum potential to produce Xanthine Oxidase. The pure strain of this Endophytic fungus was grown on synthetic media to assess the yield and activity of Xanthine Oxidase. The natural media demonstrated higher ability to produce XO than synthetic media. The natural media was optimized by conventional methods optimizing one parameter at a time and by use of design expert version 8. The optimized media gave higher XO activity than unoptimized media. The enzyme activity of crude enzyme precipitate obtained from culture filtrate was assessed by Nitro blue tetrazolium assay. The crude enzyme was purified by gel filtration chromatography to achieve 34% fold purity. The various kinetic parameters of the partially purified enzyme were also deduced.Further studies on full- purification and characterization of enzyme would allow the commercial exploitation of enzyme from Endophytic fungus. 9 Chapter 1 Introduction 10 1. Introduction Purines are heterocyclic aromatic organic compounds, consisting up of pyrimidine ring fused to an imidazole ring. There are many naturally occurring purines like Adenine, Guanine, uracil hypoxanthine and isoguanine. Aside from the pivotal role of purines in DNA and RNA , purines also act as significant components in a number of other important biomolecules such as ATP, GTP, cyclic AMP, NADH and coenzyme A. The purine metabolism is essential to the body, it provides components of nucleic acids, DNA and RNA, and produces ubiquitous metabolites like ATP. Purine catabolism leads to the formation of a poorly soluble compound Uric acid. The reference range of uric acid in human blood plasma is 3.6mg/dL to 8.3mg/dL. Elevated levels of uric acid leads to hyperuricemia which is linked to Gout. Xanthine Oxidase, the major enzyme of purine metabolic pathway that control the rate limiting step of the pathway i.e. the conversion of hypoxanthine to uric acid via Xanthine with the concomitant production of reactive oxygen species (ROS). Reactive oxygen species are chemically reactive species that are formed as a natural byproduct of normal metabolism oxygen and have important role in cell signaling and homeostasis. Xanthine Oxidase is highly versatile and ubiquitous complex molybdoflavoprotein that oxidizes Xanthine to uric acid and transfer electrons to NAD + (Xanthine dehydrogenase ) or oxygen (Xanthine Oxidase). Xanthine Oxidase (XO) and Xanthine Dehydrogenase (XOD) are interconvertible forms of the same enzyme Xanthine Oxidoreductase (XOR) (Hille and Nishano,1995). These different forms of enzyme are conserved in living organisms including archea, bacteria, fungi, plants and metazoans (Amit Aggarwal et al..2009). XOR is widely distributed throughout various organs including liver, intestine, kidney, lungs, myocardium, brain, plasma. The enzyme consist up of 2 monomers each independently capable of catalysis. XO and XDH are capable of detoxification of endogenous compounds apart from oxidation of purines (Borges et al., 2002). The Oxidase form of Xanthine utilizing enzyme uses oxygen as + electron acceptor whereas dehydrogenase uses NAD (although it is capable of utilizing O2.).The presence of NAD+ binding site constitutes the primary difference between the dehydrogenase and Oxidase. Xanthine Oxidase family, commonly referred to as molybdenum hydroxylases, 11 which catalyze the hydroxylation of large variety of substrates ranging from aldehydes to aromatic heterocyclic. Members of this enzyme family have the same basic constitution of redox active centers: a molybdenum centre, two 2 Fe/2S centre’s of the ferrodoxin variety and one flavin adenine dinucleotide. The elevated levels of Xanthine Oxidase can lead to various pathological conditions like inflammation, carcinogenesis, ischemia-reperfusion and hepatitis. The level of Xanthine Oxidase is elevated in injured human skeletal muscle in association with inflammatory events (Ylva Hellesten et al.,1997). Thus there is utmost need to explore various inhibitors of Xanthine Oxidase. Allopurinol, structural isomer of hypoxanthine is being used to reduce the uric acid level and for the treatment of Gout. Due to the unavailability of free XO in the blood, diverse sources were exploited for the isolation of enzyme so as to design suitable xanthine oxidase inhibitors. On the other hand , Type I Xanthinuria, a condition due to loss of Xanthine Oxidase activity is due to mutations in genes encoding Xanthine oxidoreductase. Type II Xanthinuria results from loss of both Xanthine Oxidase and aldehyde Oxidase activities. Patients with type I and type II xanthinuria are asymptotic. The condition is due to inability to synthesize unique pterin co factor cheated to molybdenum and result in loss of activity of all mononuclear molybdenum enzymes. Xanthine Oxidase have been isolated and purified from bovine milk. Bovine milk Xanthine Oxidase is commercially available and is used for determination of Xanthine, hypoxanthine and as an auxiliary enzyme for determination of guanine. It has also been suggested that Xanthine Oxidase, due to wide range of substrate specificity may play a role in detoxification. Xanthine Oxidase may detoxify potentially oncogenic and dangerous compounds such as Purine N Oxidase by oxidizing them to less toxic form. It has also been suggested that uric acid may function as anti-oxidant and radical compounds by scavenging singlet oxygen and radicals. Milk is a rich source of Xanthine Oxidase (Ball, 1938). The probable role of enzyme in milk is its antibacterial activity by virtue of its ability to produce oxygen derived free radicals (Massey et 12 al., 1968). The Xanthine Oxidase from cow’s milk crude or purified, appears as Oxidase (type O) and can be converted almost completely into a NAD+ dependant dehydrogenase (type D) by treatment with dihydrolipoic acid, but only to some extent by other thiols. The D form of enzyme is inhibited by NADH which competes with NAD+. The kinetic constants of the two forms of enzyme are similar to those of the corresponding form of rat liver Oxidase. The enzyme on electrophoresis shows a major faster band and a minor slower band on gel electrophoresis. Xanthine Oxidase has also been isolated and purified from Bovine Small intestine (G.G.Roussos et al., 1956).
Recommended publications
  • Shigella Sonnei and Shigella Flexneri
    THE GENETICS AND EPIDEMIOLOGY OF SHIGELLA SONNEI AND SHIGELLA FLEXNERI IN VIETNAM Benjamin Robert Sobkowiak A thesis submitted for the degree of Doctorate of Philosophy Department of Genetics, Evolution and Environment University College London 1 I, Benjamin Robert Sobkowiak, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ………………………………………………………………………………… 2 Abstract Shigella sonnei is rapidly emerging as the primary agent of bacillary dysentery, or shigellosis, in many developing countries, replacing the historically more prevalent species, S. flexneri, in these regions. There have been various theories proposed to explain this phenomenon, including environmental changes and increased antimicrobial use, though the precise reasons for this shift are still uncertain. Here I present four studies investigating key ecological and genetic differences between S. sonnei and S. flexneri from a region that has undergone this pattern of species replacement, Vietnam. This work combines experimental and bioinformatics techniques with the aim of identifying the extent that differences in disinfectant sensitivity, chromosomal antimicrobial resistance profiles and gene content will contribute to the successful spread of S. sonnei over S. flexneri. Firstly, I conducted in vitro experimental work to characterise differences between species with respect to resistance to chlorine disinfection and tolerance to the detergent SDS. The mechanisms by which the bacteria respond to this treatment, in particular the role of efflux pumps, were then explored to determine whether any informative variation in these systems will explain any differences in disinfectant sensitivity. The availability of high quality whole genome sequences for ~150 of each Shigella species allowed for robust bioinformatics work to describe genomic variation between species.
    [Show full text]
  • Genetic Characterization of Caffeine Degradation by Bacteria and Its Potential Applications
    bs_bs_banner Minireview Genetic characterization of caffeine degradation by bacteria and its potential applications Ryan M. Summers,1† Sujit K. Mohanty,2† Sridhar production of chemical and fuels and development of Gopishetty3 and Mani Subramanian2,3* diagnostic tests have also been demonstrated. 1Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, Introduction USA. 2Department of Chemical and Biochemical Engineering Caffeine (1,3,7-trimethylxanthine) and related methylxan- and 3Center for Biocatalysis and Bioprocessing, The thines are natural purine alkaloids found in many plants University of Iowa, Coralville, IA 52241, USA. around the world (Ashihara and Crozier, 1999). These compounds are hypothesized to serve as natural insecti- cides, and have been shown to protect the plants Summary from insects and other predators (Nathanson, 1984; The ability of bacteria to grow on caffeine as sole Hollingsworth et al., 2002). Other possible reasons for carbon and nitrogen source has been known for over biosynthesis of caffeine include inhibition of plant matter 40 years. Extensive research into this subject has (Waller, 1989) and improved pollination (Wright et al., revealed two distinct pathways, N-demethylation and 2013). C-8 oxidation, for bacterial caffeine degradation. Methylxanthines are often consumed by humans in However, the enzymological and genetic basis for foods and beverages, including chocolate, coffee and tea. bacterial caffeine degradation has only recently been Coffee is a major worldwide agricultural commodity, with discovered. This review article discusses the recent millions of metric tons produced and distributed globally discoveries of the genes responsible for both each year (Summers et al., 2014). In addition to the N-demethylation and C-8 oxidation.
    [Show full text]
  • Asian Journal of Plant Biology, 2014, Vol 2, No 1, 18-27
    Asian Journal of Plant Biology, 2014, Vol 2, No 1, 18-27 ASIAN JOURNAL OF PLANT BIOLOGY Website: http://journal.hibiscuspublisher.com Bacterial Degradation of Caffeine: A Review Salihu Ibrahim 1, Mohd Yunus Shukor 1, Mohd Arif Syed 1, Nor Arina Ab Rahman 1, Khalilah Abdul Khalil 2, Ariff Khalid 3 and Siti Aqlima Ahmad 1* 1Department of Biochemistry, Faculty of Biotechnology and Bio-molecular Sciences, Universiti Putra Malaysia, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 2Department of Biomolecular Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA, Sec. 2, 40150 Shah Alam, Selangor, Malaysia. 3Biomedical Science Program, Faculty of Biomedicine and Health, Asia Metropolitan University, 43200 Cheras, Selangor, Malaysia Corresponding Author: Siti Aqlima Ahmad; Email: [email protected], [email protected] HISTORY ABSTRACT Caffeine (1,3,7-trimethylxanthine) is an important naturally occurring, commercially purine alkaloid which Received: 28 th of March 2014 can be degraded by bacteria. It is a stimulant central nervous system and also has negative withdrawal Received in revised form: 10 th of April 2014 Accepted: 12 th of April 2014 effects and is present in different varieties of plants such as coffee plant, tea leaves, colanut, cocoa beans and Available online: 13 th of July2014 other plant. It is also present in soft drinks and is being used extensively in human consumption and has in addition some therapeutic uses but in minimal amount. Evidence has proved the harmful effects of caffeine KEYWORD thus opening a path in the field of caffeine biodegradation. Biodegradation by bacteria is considered to be Caffeine Biodegradation the most efficient technique in degrading caffeine within the environment.
    [Show full text]
  • PDF/ TOTPRODUCTION.Pdf [15] R.M
    Cent. Eur. J. Chem. • 12(12) • 2014 • 1271-1279 DOI: 10.2478/s11532-014-0550-2 Central European Journal of Chemistry New genetic insights to consider coffee waste as feedstock for fuel, feed, and chemicals1 Research Article Ryan M. Summers1,2, Sridhar Gopishetty1, Sujit K. Mohanty1,2, Mani Subramanian1,2* 1Center for Biocatalysis and Bioprocessing, The University of Iowa, Coralville, IA 52241, USA 2Department of Chemical and Biochemical Engineering, The University of Iowa, Coralville, IA 52241, USA Received 23 October 2013; Accepted 27 February 2014 Abstract: Caffeine is a natural plant product found in many drinks, including coffee, tea, soft and energy drinks. Due to caffeine’s presence in the environment, microorganisms have evolved two different mechanisms to live on caffeine. The genetic maps of the caffeine N-demethylation pathway and C-8 oxidation pathway have been discovered in Pseudomonas putida CBB5 and Pseudomonas sp. CBB1, respectively. These genes are the only characterized bacterial caffeine-degrading genes, and may be of great value in producing fine chemicals, biofuels, and animal feed from coffee and tea waste. Here, we present preliminary results for production of theobromine and 7-methylxanthine from caffeine and theobromine, respectively, by two strains of metabolically engineered E. coli. We also demonstrate complete decaffeination of tea extract by an immobilized mixed culture of Klebsiella and Rhodococcus cells. These processes provide a first level demonstration of biotechnological utilization of coffee and tea waste. Keywords: Caffeine • Coffee waste • Pseudomonas putida CBB5 • Pseudomonas sp. CBB1 • N-demethylase © Versita Sp. z o.o. 1. Introduction pulp, coffee husk and spent coffee grounds.
    [Show full text]
  • Isolation and Characterization of High Caffeine-Tolerant Bacterium Strains from the Soil of Tea Garden
    African Journal of Microbiology Research Vol. 5(16), pp. 2278-2286, 18 August, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.611 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Isolation and characterization of high caffeine-tolerant bacterium strains from the soil of tea garden Fang-Yuan Fan1, Yan Xu1, Yue-Rong Liang1, Xin-Qiang Zheng2, Devajit Borthakur1,3 and Jian-Liang Lu1* 1Tea Research Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China. 2Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, China. 3Tocklai Experimental Station, Tea Research Association, Jorhat, Assam 785001, India. Accepted 30 July, 2011 Microbial biodegradation is an important and promising decaffeination approach because of its low cost and high security. The efficiency of this approach mainly depends on the characteristics of the strain. Twenty bacterium strains were isolated from soil of tea garden and exhibited high caffeine- tolerance, and these strains could grow on the medium supplemented with 20 g L-1 caffeine as the sole source for nitrogen and carbon. According to the physiological-biochemical characteristics and 16S rRNA gene sequence blast, two of them (CT25 and CT75) were identified as Pseudomonas putida. The results also showed that caffeine was not the preferential nutrition source for growth of strain CT25, and high level caffeine inhibited the bacterium amplification although caffeine could be metabolized by this strain. The CT25 grew well in agitated liquid medium when the incubation temperature was around 30°C. High initial concentration of strain inoculums would improve the efficiency of caffeine degradation.
    [Show full text]
  • Coffee Constituents and Modulation of Antioxidant
    COFFEE CONSTITUENTS AND MODULATION OF ANTIOXIDANT STATUS IN CACO-2 CELLS by YAZHENG LIU B. Sc., Shandong University, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Food Science) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) March 2010 © Yazheng Liu 2010 ABSTRACT Coffee contains biologically active components which may affect chronic disease risk. These biologically active components include caffeine, cafestol and kahweol, and antioxidants such as chlorogenic acids and Maillard reaction products (MRPs) that are generated during roasting. Although MRPs are regarded as being the most abundant group of antioxidants present in coffee, the mechanism underlying the antioxidant effects of coffee MRPs in both in vitro and in biological systems has yet to be elucidated. In this study, the in vitro antioxidant properties of roasted and non-roasted coffee extracts (Coffea arabica L.) were tested using oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC) and reducing power assays. MRPs were shown to be the prevailing antioxidants in roasted coffee extracts. The mechanisms of the antioxidant action associated with coffee MRPs involve the hydrogen atom transfer (HAT) mechanism and the single electron transfer (SET) mechanism. The biological effects of MRPs derived from coffee extracts on the enzymatic antioxidant defense in human colon adenocarcinoma Caco-2 cells were also investigated. No induction of antioxidant enzyme activities of catalase, glutathione peroxidase, glutathione reductase and superoxide dismutase were observed in Caco-2 cells after exposure to coffee MRPs, except for an increased glutathione peroxidase activity after 24 h exposure.
    [Show full text]
  • Discovery of Piperonal-Converting Oxidase Involved in the Metabolism of a Botanical Aromatic Aldehyde
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Tsukuba Repository Discovery of piperonal-converting oxidase involved in the metabolism of a botanical aromatic aldehyde 著者 Doi Shiori, Hashimoto Yoshiteru, Tomita Chiaki, Kumano Takuto, Kobayashi Michihiko journal or Scientific reports publication title volume 6 page range 38021 year 2016-12 権利 (C) The Author(s) 2016 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ URL http://hdl.handle.net/2241/00144937 doi: 10.1038/srep38021 Creative Commons : 表示 http://creativecommons.org/licenses/by/3.0/deed.ja www.nature.com/scientificreports OPEN Discovery of piperonal-converting oxidase involved in the metabolism of a botanical aromatic aldehyde Received: 13 November 2015 Shiori Doi*, Yoshiteru Hashimoto*, Chiaki Tomita, Takuto Kumano & Michihiko Kobayashi Accepted: 27 October 2016 Piperonal-catabolizing microorganisms were isolated from soil, the one (strain CT39-3) exhibiting Published: 01 December 2016 the highest activity being identified asBurkholderia sp. The piperonal-converting enzyme involved in the initial step of piperonal metabolism was purified from strain CT39-3. Gene cloning of the enzyme and a homology search revealed that the enzyme belongs to the xanthine oxidase family, which comprises molybdoenzymes containing a molybdopterin cytosine dinucleotide cofactor.
    [Show full text]
  • WO 2013/059507 Al 25 April 2013 (25.04.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/059507 Al 25 April 2013 (25.04.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 9/00 (2006.0 1) C12N 1/21 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12N 15/53 (2006.01) CI2P 17/18 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/26 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US20 12/060894 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 October 2012 (18.10.2012) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/549,339 20 October 201 1 (20. 10.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: UNIVERSITY OF IOWA RESEARCH UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, FOUNDATION [US/US]; Iowa Centers for Enterprise, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 2660 University Capitol Centre, 200 South Capitol Street, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Iowa City, IA 52242 (US).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,951,752 B2 Subramanian Et Al
    US008951752B2 (12) United States Patent (10) Patent No.: US 8,951,752 B2 Subramanian et al. (45) Date of Patent: Feb. 10, 2015 (54) N-DEMETHYASE GENES AND USES (58) Field of Classification Search THEREOF USPC .............. 435/18, 252.3, 320.1, 195; 530/350; 536/23.2 (71) Applicant: University of Iowa Research See application file for complete search history. Foundation, Iowa City, IA (US) (56) References Cited (72) Inventors: Venkiteswaran Subramanian, Coralville, IA (US); Michael Tai-Man U.S. PATENT DOCUMENTS Louie, Longmont, CO (US); Ryan Summers, Iowa City, IA (US) 5,550,041 A * 8/1996 Koide et al. ................... 435/119 (73) Assignee: University of Iowa Research FOREIGN PATENT DOCUMENTS Foundation, Iowa City, IA (US) DE 4316882 A1 11F1993 WO WO-2013059507 A1 4/2013 (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. “International Application Serial No. PCT/US2012/060894, Interna Appl. No.: 14/344,037 tional Search Report mailed Mar. 28, 2013', 7 pgs. (21) “International Application Serial No. PCT/US2012/060894, Invita PCT Fled: Oct. 18, 2012 tion to Pay Additional Fees and Partial Search Report mailed Dec. 19. (22) 2012”, 6 pgs. “International Application Serial No. PCT/US2012/060894, Written (86) PCT NO.: PCT/US2O12/060894 Opinion mailed Mar. 28, 2013”.9 pgs. S371 (c)(1), Dash, et al., “Catabolic pathways and Botechnological applications (2) Date: Mar. 10, 2014 of microbial caffeine degradation'. Biotechnology Letters, vol. 28 (Jan. 1, 2006), 1993-2002. PCT Pub. No.: WO2013/059507 Summers, Ryan M.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130244920A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2013/0244920 A1 Lee et al. (43) Pub. Date: Sep. 19, 2013 (54) WATER SOLUBLE COMPOSITIONS (52) US. Cl. INCORPORATING ENZYMES, AND METHOD USPC ......................................... .. 510/392; 264/299 OF MAKING SAME (57) ABSTRACT (76) Inventors: David M. Lee, CroWn Point, IN (US); Jennifer L‘ Sims’ Lowell’ IN (Us) Disclosed herein are Water soluble compositions, such as ?lms, including a mixture of a ?rst Water-soluble resin, an (21) Appl' NO': 13/422’709 enzyme, and an enzyme stabilizer Which comprises a func (22) Filed: Man 16, 2012 tional substrate for the enzyme, methods of making such compositions, and methods of using such compositions, e.g. Publication Classi?cation to make packets containing functional ingredients. The enzymes can include proteases and mixtures of proteases (51) Int. Cl. With other enzymes, and the compositions provide good C11D 3/386 (2006.01) retention of enzyme function following ?lm processing and B29C 39/02 (2006.01) storage. US 2013/0244920 A1 Sep. 19,2013 WATER SOLUBLE COMPOSITIONS preheated to a temperature less than 77° C., optionally in a INCORPORATING ENZYMES, AND METHOD range ofabout 66° C. to about 77° C., or about 74° C.; drying OF MAKING SAME the Water from the cast mixture over a period of less than 24 hours, optionally less than 12 hours, optionally less than 8 FIELD OF THE DISCLOSURE hours, optionally less than 2 hours, optionally less than 1 [0001] The present disclosure relates generally to Water hour, optionally less than 45 minutes, optionally less than 30 soluble ?lms.
    [Show full text]
  • 1 Isolation of Bacteria from Compost for Potential Use in Biodecaffeination 1
    1 1 Isolation of bacteria from compost for potential use in biodecaffeination 2 3 Honors Thesis 4 Presented to the College of Agriculture and Life Sciences, Physical Sciences 5 of Cornell University 6 in Partial Fulfillment of the Requirements for the 7 Research Honors Program 8 by 9 Robert Divine 10 May 2014 11 Dr. Alicia Orta-Ramirez 12 13 14 15 16 17 18 19 20 21 22 23 2 24 Abstract 25 Caffeine (1,3,7-trimethyl xanthine) is a bioactive compound present in common 26 foods and beverages such as coffee, tea, and chocolate. Though many consumers value 27 caffeine for its physiological effects, others may prefer decaffeinated products to avoid 28 caffeine. Current methods used to remove caffeine from foods have several 29 disadvantages, such as cost, waste, and solvent use. Enzymatic methods, known as 30 biodecaffeination, have been explored as alternatives. Various microbes that are able to 31 metabolize caffeine have been isolated from coffee plant roots. To this point, compost 32 has not been looked at as a potential source for decaffeinating microbes. 33 Our objective was to isolate and identify microorganisms from compost and to 34 address their potential as biodecaffeinators. Compost samples were obtained and then 35 grown in nutrient broth. Cultures were streaked onto a selective agar that contained 36 caffeine as its only carbon source. Partial 16S rDNA sequences were obtained for a 37 subset of the colonies isolated from the caffeine agar. Preliminary results suggested that 38 the isolated strains were Pseudomonas, Arthrobacter, Sphingobacterium, Streptomyces, 39 and Paenibacillus, and that they may be capable of metabolizing caffeine.
    [Show full text]
  • Large-Scale Integration of Microarray Data: Investigating the Pathologies of Cancer and Infectious Diseases Noor Dawany Aydin Tozeren, Phd
    Large-Scale Integration of Microarray Data: Investigating the Pathologies of Cancer and Infectious Diseases A Thesis Submitted to the Faculty of Drexel University by Noor Dawany in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2010 ii Dedications To my late grandmother, Dr. Siranoosh Raihani, for being a great inspiration… iii Acknowledgements First and foremost I would like to acknowledge my parents, Bassam and Nada, for their unconditional support throughout my educational life. I would not be here if it were not for their sacrifices and encouragement. I also want to thank my brother, Sahil, for telling me almost nine years ago to toughen up and continue; I have never looked back since then. I owe my sincerest gratitude to my advisor, Dr. Aydin Tozeren, for his patience, his support and for all the effort he has put into this accomplishment. He is responsible for where I am today and where I will be, for that I am forever grateful. I would also like to thank my colleagues at the Center for Integrated Bioinformatics: Mahdi Saramdy, Will Dampier, Yichuan Liu and Perry Evans, and my friends from the Biomedical Engineering Department for their help and for entertaining conversations that commemorate our lives as PhD students at Drexel University. Finally, a big thank you for the support of old friends, for always being there for me… iv Table of Contents List of Tables ................................................................................................................................ viii
    [Show full text]