University of Groningen Experimental and Modelling Studies on The

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Experimental and Modelling Studies on The University of Groningen Experimental and modelling studies on the synthesis of 5-hydroxymethylfurfural from sugars van Putten, Robert-Jan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Putten, R-J. (2015). Experimental and modelling studies on the synthesis of 5-hydroxymethylfurfural from sugars. [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-10-2021 Experimental and modelling studies on the synthesis of 5-hydroxymethylfurfural from sugars Robert-Jan van Putten ISBN 978-94-6259-502-6 ISBN 978-94-6259-504-0 (electronic version) Experimental and modelling studies on the synthesis of 5-hydroxymethylfurfural from sugars PhD thesis to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans. This thesis will be defended in public on Friday 16 January 2015 at 16.15 hours by Robert-Jan van Putten born on 18 August 1981 in Hilversum Supervisor Prof. H.J. Heeres Co-supervisors Dr. E. de Jong Dr. ir. J.C. van der Waal Assessment committee Prof. A.A. Broekhuis Prof. R. Palkovits Prof. G. Centi Table of contents 1 Preface 1 1.1 Biomass as source for energy, transportation fuels and materials 1 1.2 This thesis 3 1.3 References 5 2 Hydroxymethylfurfural, a versatile platform chemical made from 7 renewable resources 2.1 Introduction 7 2.2 Nutritional and toxicological aspects of HMF and its derivatives 11 2.2.1 HMF occurrence in our diet 11 2.2.2 Metabolic breakdown of HMF and derivatives 16 2.2.3 Toxicological effects of HMF and its derivatives 18 2.3 Dehydration chemistry 20 2.3.1 Neutral monomeric sugars 20 2.3.2 Disaccharides and polysaccharides 42 2.3.3 Sugar acids 44 2.3.4 Conclusion 46 2.4 Process chemistry 47 2.4.1 HMF formation in single-phase systems 47 2.4.2 HMF formation in biphasic solvent systems 100 2.4.3 HMF formation in ionic liquids 123 2.5 Process technology 155 2.5.1 Introduction 155 2.5.2 Kinetic studies on HMF formation 159 2.5.3 Reactor concepts 201 2.5.4 Separation and purification strategies 206 2.5.5 Pilot scale production of HMF 212 2.5.6 Technoeconomic evaluations of different modes of HMF 216 production 2.6 Relevance of 5-hydroxymethylfurfural as a platform chemical 220 2.6.1 Conversion of HMF to monomers for polymers 220 2.6.2 Fine chemicals 233 2.6.3 HMF as precursor of fuel components 259 2.7 Conclusions 261 2.8 References 264 3 The dehydration of different ketoses and aldoses to 5- 281 hydroxymethylfurfural 3.1 Introduction 282 3.2 Experimental section 285 3.2.1 High-throughput screening 285 3.2.2 Kinetic experiments 285 3.2.3 Determination of the kinetic parameters 286 3.2.4 DFT calculations 286 3.3 Results and discussion 286 3.3.1 High-throughput screening 286 3.3.2 Kinetic study 291 3.3.3 DFT calculations 293 3.3.4 Mechanistic aspect 295 3.4 Conclusions 298 3.5 References 299 4 A comparative study on the reactivity of various ketohexoses to furanics in 301 methanol 4.1 Introduction 302 4.2 Experimental section 305 4.2.1 Chemicals 305 4.2.2 High-throughput experimentation 305 4.2.3 Synthesis of 2-methoxyacetylfuran 306 4.2.4 Chromatographic analysis 306 4.2.5 Experiments with L-[6-13C]sorbose 307 4.3 Results and discussion 307 4.3.1 High-throughput experimentation 308 4.3.2 Mechanistic considerations and 13C labelling experiments with 320 sorbose 4.4 Conclusions 326 4.5 References 328 5 Reactivity studies on the acid-catalysed dehydration of ketohexoses to 5- 329 hydroxymethylfurfural in water 5.1 Introduction 330 5.2 Experimental section 332 5.3 Results and discussion 332 5.3.1 Sugar reactivity 332 5.3.2 HMF yield 334 5.3.3 Product selectivity 337 5.4 Conclusions 338 5.5 References 339 6 Experimental and modelling studies on the solubility of D-arabinose, D- 341 fructose, D-glucose, D-mannose, sucrose and D-xylose in methanol and methanol-water mixtures 6.1 Introduction 342 6.2 Experimental section 345 6.2.1 Chemicals 345 6.2.2 Solubility measurements 345 6.2.3 UNIQUAC modeling 346 6.3 Results and discussion 348 6.3.1 Experimental studies 348 6.3.2 Modelling studies 351 6.3.3 Literature comparison 352 6.4 Conclusions 355 6.5 Symbols 355 6.6 References 356 7 Concluding remarks and recommendations 359 Summary 363 Samenvatting 367 Acknowledgements 371 Publications 373 |1 1 Preface 1.1 Biomass as resource for energy, transportation fuels and biobased chemicals Our world is completely dependent on fossil resources for materials and energy production. Almost everything we use and consume in everyday life has a significant input of oil, coal and natural gas, including the production of food. The earth’s population is still growing, mainly in developing countries, and combined with economic development and the accompanying increase in consumption in countries like India and China creates an enormous pressure on earth’s resources. This is not a sustainable situation and it is of critical importance to develop alternatives for fossil resources for energy and bulk materials production. For energy generation, renewables like solar and wind energy are available. For bulk materials production, though, sources of fixed carbon are required. This leads to biomass as the obvious solution, since it is the largest sustainable global source of fixed carbon. There are however major differences in the chemical composition of fossil carbon sources and biomass. Fossil feedstocks generally have a very high carbon and hydrogen content and are very low in heteroatoms like oxygen, sulphur and nitrogen. On the contrary, biomass generally has a very high oxygen content and also a higher nitrogen content than fossil feeds. Especially the amount of oxygen in the molecular structure of the biomass has to be reduced before it can be used in any potential application. Apart from water, biomass mainly consists of carbohydrates, lignin, fatty acids, lipids and proteins of which the carbohydrates are the most abundant. This makes carbohydrates a very appropriate feed stock for a biobased economy. The conversion of carbohydrates into suitable building block molecules for the petrochemical industry in most cases requires the removal of the majority of the oxygen from the molecular structure. There are three main methods for oxygen removal: (i) removing small, highly oxidised molecules such as CO2, CO, formaldehyde and formic acid; (ii) hydrogenolysis, typically removing water at the cost of hydrogen; and (iii) dehydration. The removal of highly oxygenated compounds like CO2 2| Chapter 1 comes at the cost of carbon loss, a significant disadvantage when the carbohydrate acts as a carbon source. Hydrogenolysis requires at least one molecule of hydrogen for each oxygen atom that is removed. This is only applicable in bulk application when a sustainable source of hydrogen can be used. Dehydration, when possible, is very appealing as it retains all the carbon atoms from the carbohydrate by removing water exclusively. Avantium Chemicals B.V., founded in 2000, is a spin-off from Royal Dutch Shell and based in Amsterdam, the Netherlands. Its core business revolves around advanced catalysis research, selling both services and high-end equipment to a broad customer base, consisting of some of the world’s largest chemical companies. Advanced catalysis research deals with high-throughput experimentation on a small scale and an infrastructure of experimental design and analytics, which allows the generation of large amounts of data at the cost of relatively little resources (time, material). In 2006 Avantium started the development of its own process for the production of biobased plastics by applying their advanced technology to biomass conversion. This YXY project deals with the production of a polyethylene terephtalate (PET) replacement named polyethylene furanoate (PEF). PET is one of the most used plastics on the planet with a global production of around 65 million tons per year. Replacing it with PEF would result in a significant reduction of non-renewable energy use and thus increasing sustainability.1 PEF is synthesised by polymerising 2,5-furandicarboxylic acid (FDCA), which replaces terephtalic acid used in PET, and ethylene glycol (Scheme 1). PEF is not just favourable compared to PET from an environmental point of view, but it also has strongly improved material properties.2,3 The barrier properties, for instance, are better than for PET and show much lower permeability for most gases, especially CO2 and oxygen.
Recommended publications
  • Synthesis of Terephthalic Acid Via Diels-Alder Reactions with Ethylene and Oxidized Variants of 5-Hydroxymethylfurfural
    Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural Joshua J. Pacheco and Mark E. Davis1 Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 Contributed by Mark E. Davis, May 7, 2014 (sent for review April 16, 2014) Terephthalic acid (PTA), a monomer in the synthesis of polyethylene can react to form PX in a one-pot Diels-Alder dehydration re- terephthalate (PET), is obtained by the oxidation of petroleum- action (7). This reaction has received much attention recently, derived p-xylene. There is significant interest in the synthesis of and it is catalyzed by homogeneous Lewis acids and a wide va- renewable, biomass-derived PTA. Here, routes to PTA starting riety of heterogeneous Brønsted acid-containing solids (7–12). from oxidized products of 5-hydroxymethylfurfural (HMF) that can Although nearly 100% PX yields from the Diels-Alder de- be produced from biomass are reported. These routes involve Diels- hydration reaction can be achieved, the reduction step to convert Alder reactions with ethylene and avoid the hydrogenation of HMF HMF to DMF requires expensive metal catalysts and a hydrogen to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with source, making this route challenging to commercially imple- ethylene over solid Lewis acid catalysts that do not contain strong ment (13). Therefore, the discovery of routes to PTA from HMF Brønsted acids to synthesize intermediates of PTA and its equally that avoid any hydrogenation steps could be useful. important diester, dimethyl terephthalate (DMT). The partially oxi- An oxidation route to PTA that has previously been consid- dized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with ered is the Diels-Alder dehydration reaction of ethylene with the high pressure ethylene over a pure-silica molecular sieve containing fully oxidized HMF, 2,5-furandicarboxylic acid (FDCA).
    [Show full text]
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Rigid Biobased Building Blocks: Current Developments and Outlook
    Rigid Biobased Building Blocks: Current Developments and Outlook Daan S. van Es Wageningen UR Food &Biobased Research, Wageningen, The Netherlands Received October 15, 2012; Accepted November 12, 2012 ABSTRACT: In this perspectives paper we will look at the state-of-the-art in rigid renewable building blocks for biobased materials, with a focus on two types of carbohydrate-based difunctional monomers, i.e.,isohexides and furan- 2,5-dicarboxylic acid (FDCA). KEYWORDS: Biobased building blocks, FDCA, isohexides, polymers 1 INTRODUCTION (i.e. high purity) aromatic monomers from lignin is not likely in the short term [3]. Whereas in the case of lignin The continuously increasing interest in biomass and the challenges are mostly chemical and technological, biobased materials is fuelled by growing concerns the use of, e.g., terpenes as feedstock for the produc- about fossil feedstock depletion, as well as greenhouse tion of aromatics is severely hampered by the limited gas emissions and global warming. Whereas most of availability compared to the potential demand. Since the current focus is on using terrestrial vegetable bio- carbohydrates (C6 and C5 sugars) are abundantly mass as alternative feedstock for energy carriers (e.g. available they are the most likely candidates as feed- transportation fuels) and chemicals production, aquatic stock for the production of bulk (platform) chemicals biomass (e.g. micro- and macroalgae) is also being for materials production. Basically two approaches can explored as a renewable feedstock source. A success- be distinguished in the transition towards a biobased ful transition from a fossil-feedstock-based economy to (i.e. carbohydrate based) economy; transformation of a biobased economy can only be achieved sustainably biomass feedstocks to existing (fossil based) chemicals, if there is no competition with food and feed produc- also known as drop-in, or transformation of biomass to tion, and negative effects of (indirect) land use change “new” chemicals.
    [Show full text]
  • PRODUCTION of ETHYL LEVULINATE VIA ESTERIFICATION REACTION of LEVULINIC ACID in the PRESENCE of Zro2 BASED CATALYST
    Malaysian Journal of Analytical Sciences, Vol 23 No 1 (2019): 45 - 51 DOI: https://doi.org/10.17576/mjas-2019-2301-06 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society PRODUCTION OF ETHYL LEVULINATE VIA ESTERIFICATION REACTION OF LEVULINIC ACID IN THE PRESENCE OF ZrO2 BASED CATALYST (Penghasilan Etil Levulinat Melalui Pengesteran Asid Levulinik dengan Kehadiran Mangkin Berasaskan ZrO2) Dorairaaj Sivasubramaniam1, Nor Aishah Saidina Amin1*, Khairuddin Ahmad1, Nur Aainaa Syahirah Ramli2 1Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia 2Advanced Oleochemical Technology Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia *Corresponding author: [email protected] Received: 13 April 2017; Accepted: 17 April 2018 Abstract Ethyl levulinate is widely used as a fuel additive, flavor or fragrance and as a component of fuel blending. This study focused on the production of ethyl levulinate from levulinic acid via esterification reaction in the presence of HPW/ZrO2.The catalyst was prepared using the wet impregnation method, characterized by using FTIR, BET and NH3-TPD and screened based on 20%, 40% and 60% HPW/ZrO2. The 40% HPW/ZrO2 catalyst exhibited the highest catalytic performance during the parameter screening stage which included catalyst loading (0.25‒1.25g) and volume ratio of levulinic acid to ethanol (1:4 – 1:8). The highest ethyl levulinate yield of 99% corresponded to a catalyst loading of 0.5 g and volume ratio of levulinic acid to ethanol of 1:5 with reaction conditions at 150 °C for 3 hours.
    [Show full text]
  • WO 2017/003293 Al 5 January 2017 (05.01.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/003293 Al 5 January 2017 (05.01.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 307/50 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/NL20 16/050469 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 1 July 20 16 (01 .07.2016) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 2015065 1 July 2015 (01.07.2015) NL (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: FURANIX TECHNOLOGIES B.V. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [NL/NL]; 29, Zekeringstraat, 1014 BV Amsterdam (NL).
    [Show full text]
  • Valerolactone Using Polymer-Based Metal-Containing Catalysts, Chemical Engineering Transactions, 61, 895-900 DOI:10.3303/CET1761147 896
    895 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright © 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8; ISSN 2283-9216 DOI: 10.3303/CET1761147 Hydrogenation of Biomass-Derived Levulinic Acid to Gamma- Valerolactone Using Polymer-Based Metal-Containing Catalysts Linda Zh. Nikoshvili*, Igor I. Protsenko, Dialia A. Abusuek, Anna O. Zaykovskaya, Alexey V. Bykov, Valentina G. Matveeva, Esther M. Sulman Tver Technical University, A.Nikitina str. 22, 170026, Tver, Russian Federation [email protected] Nowadays the development of effective catalytic systems of selective hydrogenation of levulinic acid (LA) to gamma -valerolactone (GVL) is of high importance. However, there is a lack of data concerning the use of polymer -based catalyst in this process. The possibility to use of Ru-containing catalysts on the basis of hypercrosslinked polystyrene (HPS) in hydrogenation of LA to GVL is discussed. Catalyst 5%-Ru/HPS is shown to be highly active and selective in hydrogenation of LA in aqueous medium (yield of GVL more than 99%) at mild reaction conditions (90 °C, 2 MPa of hydrogen partial pressure) and the absence of co-catalysts. 1. Introduction Global petro-chemical market faces increasing competition and a dependency on external sources, and is under considerable cost and ecological pressure. Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy, especially for the transportation sector.
    [Show full text]
  • A Possible Emergent Cause of Honey Bee Mortality? Lara Zirbes, Bach Kim Nguyen, Dirk C
    Subscriber access provided by Université de Liège Review Hydroxymethylfurfural: a possible emergent cause of honey bee mortality? Lara Zirbes, Bach Kim Nguyen, Dirk C. de Graaf, Bruno De Meulenaer, Wim Paul Reybroeck, Eric Haubruge, and Claude Saegerman J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/jf403280n • Publication Date (Web): 15 Oct 2013 Downloaded from http://pubs.acs.org on October 21, 2013 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Safety Assessment of Levulinic Acid and Sodium Levulinate As Used in Cosmetics
    Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: February 16, 2021 Panel Meeting Date: March 11-12, 2021 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. Previous Panel member involved in this assessment: James G. Marks, Jr., M.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Preethi S. Raj, M.Sc., Senior Scientific Analyst/Writer, CIR. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons From: Preethi S. Raj, M.Sc. Senior Scientific Analyst/Writer, CIR Date: February 16, 2021 Subject: Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics Enclosed is the Draft Tentative Report of the Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics (identified as levaci032021rep in the pdf). This is the second time the Panel is seeing a safety assessment of these cosmetic ingredients. At the September 2020 Panel Meeting, the Panel issued an Insufficient Data Announcement (IDA), and the following data were requested.
    [Show full text]
  • 3 in Methyl Levulinate Production from Biomass Carbohydrates
    ARTICLE IN PRESS JID: JECHEM [m5G; November 9, 2017;20:14 ] Journal of Energy Chemistry xxx (2017) xxx–xxx Contents lists available at ScienceDirect Journal of Energy Chemistry http://www.journals.elsevier.com/ journal-of-energy-chemistry/ journal homepage: www.elsevier.com/locate/jechem Catalysis performance comparison of a Brønsted acid H 2 SO 4 and a Lewis acid Al 2 (SO 4 ) 3 in methyl levulinate production from biomass carbohydrates ∗ Q1 Xueli Chen, Yuxuan Zhang, Tao Hou, Lujia Han, Weihua Xiao College of Engineering, China Agricultural University, Beijing 10 0 083, China a r t i c l e i n f o a b s t r a c t Article history: An experimental investigation was conducted to understand the roles of the Brønsted acid H 2 SO 4 and Received 5 July 2017 Lewis acid Al (SO ) in methyl levulinate (ML) production from biomass carbohydrates, including glucose, 2 4 3 Revised 5 November 2017 fructose and cellulose. The product distributions with different catalysts revealed that the Lewis acid was Accepted 6 November 2017 responsible for the isomerization of methyl glucoside (MG), producing a significant amount of the subse- Available online xxx quent product 5-methoxymethylfurfural (MMF), while the Brønsted acid facilitated the production of ML Keywords: from MMF. Al 2 (SO 4 ) 3 was efficient for monosaccharide conversion but not for cellulose. Using ball-milled Carbohydrates cellulose with Al 2 (SO 4 ) 3 resulted in a desired ML yield within a reasonable reaction time. The significant Brønsted acid catalysis performances of two types of acids will guide the design of efficient catalytic processes for the Lewis acid selective conversion of biomass into levulinate esters.
    [Show full text]
  • Dehydration of D-Fructose to 5-Hydroxymethyl-2-Furfural in DMSO
    www.nature.com/scientificreports OPEN Dehydration of d‑fructose to 5‑hydroxymethyl‑2‑furfural in DMSO using a hydrophilic sulfonated silica catalyst in a process promoted by microwave irradiation Sandro L. Barbosa1*, Milton de S. Freitas1, Wallans T. P. dos Santos1, David Lee Nelson1, Stanlei I. Klein2, Giuliano Cesar Clososki3, Franco J. Caires3, Adriano C. M. Baroni4 & Alexandre P. Wentz5 2 3 −1 + SiO2‑SO3H, with a surface area of 115 m /g, pore volumes of 0.38 cm g and 1.32 mmol H /g, was used as a 10% w/w catalyst for the preparation of 5‑hydroxymethyl‑2‑furfural (HMF) from fructose. A conversion of 100% was achieved in a microwave reactor during 10 min at 150 °C in DMSO, with 100% selectivity for HMF, at a molar ratio of fructose: DMSO equal to 1:56. The catalyst could be re‑used three times. 5-Hydroxymethyl-2-furfural (HMF), which can be obtained from the dehydration of sugars, has a high potential as renewable raw material for the production of a variety of important molecules containing or derived of the furan ring, including biofuels, solvents, drugs, and biopolymer monomers 1–3. Tus, several studies have described the synthesis of HMF by catalytic dehydration of fructose4–18, Fig. 1. Glucose is less efcient than fructose for the synthesis of HMF19–21; according to Kuster22,23 and Zakrzewska et al.24, this results from the diference in stability of the two cyclical sugar structures, which are composed of six atoms in glucose (pyranose form) and fve atoms in fructose (furanose form).
    [Show full text]
  • Supplementary Information Experimental Products (Furfurals) Were Calculated by Comparison with an Internal Standard Solvent As the Reference Sample (N-Octanol)
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Experimental products (furfurals) were calculated by comparison with an internal standard solvent as the reference sample (n-octanol). Chemicals The MLA and n-octanol relevant line equation is For this study, bamboo particles was collected from a local y=2.06543x–0.02107 (coefficient of correlation R2 =0.9998), farm in Jiangsu Province, China. All materials were passed the intermediate products (such as MMF) and n-octanol through a 250–425 μm sieve and dried to a constant weight for relevant line equation is y=1.9657x+0.0612 (coefficient of 24 h at 105 °C. The absolute-dried particles were kept in a correlation R2 = 0.9996). desiccator until used. The High Performance Liquid Chromatography HPLC instrument (Shimadzu LC–10ATVP, Aminex HPX–87H column) Analytic methods with a RID-20A detector was used to quantitative analyzed the Gas chromatography (GC) mass spectrometry (MS) (Agilent methyl pentose glycosides (C5-Gly) and methyl hexose 5975C VL MSD) analysis was used a HP-5 fused capillary glucosides (C6-Gly). Used 0.005 mmol sulfuric acid (sonication, column (l= 30 m, i d= 0.32 mm, t= 0.25 μm) with poly dimethyl deaeration) in water as the mobile phase and the flow rate siloxane with 5% phenyl methyl substitution as the stationary was of 0.5 mL/min, and the column temperature was kept at phase. The injection mode was split at a rate of 35. The carrier 45 °C for 30 min. The standard curve of concentration of −1 gas was He at a flow rate of 1.5 mL min .
    [Show full text]
  • Microwave Assisted Synthesis of Dehydrated Sugar Derivatives Hydroxymethylfurfural, Levulinic Acid, Anhydrosugar Alcohols, and E
    (19) TZZ _T (11) EP 2 598 466 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 51/00 (2006.01) C07D 307/02 (2006.01) 28.09.2016 Bulletin 2016/39 C07C 67/00 (2006.01) C07D 307/93 (2006.01) C07D 493/04 (2006.01) C07D 307/46 (2006.01) (2006.01) (2006.01) (21) Application number: 11812946.9 C07D 307/48 C07D 307/50 C07C 59/185 (2006.01) (22) Date of filing: 18.07.2011 (86) International application number: PCT/US2011/044324 (87) International publication number: WO 2012/015616 (02.02.2012 Gazette 2012/05) (54) MICROWAVE ASSISTED SYNTHESIS OF DEHYDRATED SUGAR DERIVATIVES HYDROXYMETHYLFURFURAL, LEVULINICACID, ANHYDROSUGAR ALCOHOLS, AND ETHERS THEREOF MIKROWELLENUNTERSTÜTZTE SYNTHESE VON DEHYDRIERTEN ZUCKERDERIVATEN, HYDROXYMETHYLFURFURAL, LÄVULINSÄURE, ANHYDROZUCKERALKOHOLEN SOWIE DEREN ETHERN SYNTHÈSE ASSISTÉE PAR RAYONNEMENT MICROONDES DES DÉRIVÉS DE SUCRES DÉSHYDRATÉS HYDROXYMÉTHYLFURFURAL, ACIDE LÉVULINIQUE, ALCOOLS DE SUCRE ANHYDRES ET LEURS ÉTHERS (84) Designated Contracting States: (74) Representative: dompatent von Kreisler Selting AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Werner - GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Partnerschaft von Patent- und Rechtsanwälten PL PT RO RS SE SI SK SM TR mbB Deichmannhaus am Dom (30) Priority: 30.07.2010 US 369350 P Bahnhofsvorplatz 1 50667 Köln (DE) (43) Date of publication of application: 05.06.2013 Bulletin 2013/23 (56) References cited: WO-A2-2009/155020 US-A- 5 558 899 (73) Proprietor: Archer-Daniels-Midland Company US-A1- 2007 213 544 US-A1- 2007 213 544 Decatur, IL 62526 (US) US-A1- 2009 156 841 US-A1- 2009 156 841 US-A1- 2009 253 920 US-A1- 2009 281 338 (72) Inventors: • HOWARD, Stephen J.
    [Show full text]