Conversion of Furfuryl Alcohol Into Ethyl Levulinate Over Glucose-Derived Carbon-Based Solid Acid in Ethanol

Total Page:16

File Type:pdf, Size:1020Kb

Conversion of Furfuryl Alcohol Into Ethyl Levulinate Over Glucose-Derived Carbon-Based Solid Acid in Ethanol molecules Article Conversion of Furfuryl Alcohol into Ethyl Levulinate over Glucose-Derived Carbon-Based Solid Acid in Ethanol Geng Zhao 1,*, Ming Liu 1, Xinkui Xia 2, Li Li 1 and Bayin Xu 1 1 Analysis and Testing Center, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, Henan, China; [email protected] (M.L.); [email protected] (L.L.); [email protected] (B.X.) 2 College of Food Science, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China; [email protected] * Correspondence: [email protected]; Tel.: +86-376-639-3155 Received: 27 March 2019; Accepted: 15 May 2019; Published: 16 May 2019 Abstract: In this study, a carbon-based solid acid was created through the sulfonation of carbon obtained from the hydrothermal pretreatment of glucose. Additionally, ethyl levulinate, a viable liquid biofuel, was produced from furfuryl alcohol using the environmentally benign and low-cost catalyst in ethanol. Studies for optimizing the reaction conditions, such as reaction time, temperature, and catalyst loading, were performed. Under the optimal conditions, a maximum ethyl levulinate yield of 67.1% was obtained. The recovered catalyst activity (Ethyl levulinate yield 57.3%) remained high after being used four times, and it was easily regenerated with a simple sulfonation process. Moreover, the catalyst was characterized using FT-IR, XRD, SEM, elemental analysis, and acid-base titration techniques. Keywords: furfuryl alcohol; ethanol; ethyl levulinate; carbon-based solid acid 1. Introduction Because of the recent diminishment of fossil fuel resources, as well as environmental degradation resulting from greenhouse gas emissions, significant effort has been devoted to converting renewable biomass into liquid fuels, fuel additives, and organic bulk chemicals [1–3]. Ethyl levulinate (EL) is considered to be a potential liquid biofuel for the future [4]. Ethyl levulinate is a short chain fatty ester, with properties similar to the fatty acid methyl ester of biodiesel. It has many excellent benefits, such as high lubricity, non-toxicity, flashpoint stability, and good flow properties under cold conditions [5]. Moreover, EL is of particular interest due to its extensive applications in the flavoring, solvent, and plasticizer sectors [6]. Additionally, it has found applications in the area of organic chemistry for the synthesis of the viable biofuel γ-valerolactone [7,8]. Currently, acid-catalyzed esterification of levulinic acid (LA) is the most efficient method for the synthesis of EL, with high yields regularly achieved [9–12]. However, LA is an expensive raw material, because it needs to be prepared from carbohydrates or biomass firstly, and then needs to be purified for synthesis of ethyl levulinate [13,14]. On the other hand, an increasing number of studies have focused on the direct production of EL from biomass in ethanol, such as hexose [15–17], cellulose [18], wood, bagasse [19], and wheat straw [20]. As a direct feedstock, raw biomass is abundant and inexpensive; however, the highest yield (55%) was achieved starting from the aforementioned feedstock (hexose). As can be seen from Scheme1, furfuryl alcohol (FA) is produced industrially via the hydrogenation of furfural [21,22]. It should be noted that furfural can be derived from the hydrolysis and dehydration of xylan contained in hemicellulose-rich biomass, including corncobs, corn stock, rice hulls, and olive Molecules 2019, 24, 1881; doi:10.3390/molecules24101881 www.mdpi.com/journal/molecules Molecules 2019, 24, x FOR PEER REVIEW 2 of 9 Molecules 2019, 24, 1881 2 of 9 As can be seen from Scheme 1, furfuryl alcohol (FA) is produced industrially via the hydrogenation of furfural [21,22]. It should be noted that furfural can be derived from the hydrolysis stones.and Presently, dehydration there of arexylan more contained than 400 in hemicellulose factories producing-rich biomass, furfural including in China, corncob and thes, corn annual stock, global rice hulls, and olive stones. Presently, there are more than 400 factories producing furfural in China, production of furfural exceeds 700,000 tons [23,24]. Therefore, furfural and FA are not fully utilized in and the annual global production of furfural exceeds 700,000 tons [23,24]. Therefore, furfural and FA the chemical market [25]. The conversion of FA into EL is regarded as an economic and convenient are not fully utilized in the chemical market [25]. The conversion of FA into EL is regarded as an strategyeconomic that hasand several convenient advantages, strategy including that has lowerseveral reaction advantages, temperature, including cheaper lower rawreaction material, and highertemperature, product cheaper yield. raw However, material, littleand higher effort hasproduct been yield. made However, to employ little this effort approach has been to made produce EL. Someto employ researchers this approac haveh obtainedto produce EL EL. from Some FA researchers catalyzed have by sulfuric obtained acid EL from [24], acidicFA catalyzed ion-exchange by resinssulfuric [26], sulfonic acid [24], acid acidic functionalized ion-exchange ILs [resins27], and [26] aluminosilicates, sulfonic acid functionalized [28]. It is important ILs [27] to, noteand that thesealuminosilicates catalysts, except [28] for. It sulfuric is important acid, canto note be extremelythat these expensivecatalysts, except due to for their sulfuric complex acid, preparationcan be processes.extremely Furthermore, expensive sulfuricdue to their acid complex and sulfonic preparation acid functionalized processes. Furthermore, ILs are homogeneous, sulfuric acid and creating serioussulfonic drawbacks acid infunctionalized terms of separation, ILs are recycling,homogeneous, and equipmentcreating serious corrosion. drawbacks Therefore, in itterms is necessary of separation, recycling, and equipment corrosion. Therefore, it is necessary to develop an to develop an environmentally benign and low-cost solid acid catalyst for the conversion of FA into environmentally benign and low-cost solid acid catalyst for the conversion of FA into EL. In the EL. In the resulting studies, high EL yields were achieved, but under longer reaction time (24 h) resulting studies, high EL yields were achieved, but under longer reaction time (24 h) or lower or lowersubstrate substrate concentration concentration (1.0 wt. (1.0%), wt.%), which which may potentially may potentially be hurdles be hurdles in the in process the process of the of the commercializationcommercialization of EL. of EL. SchemeScheme 1. The1. The route route of of synthesizing synthesizing levulinate esters esters from from hemicellulose hemicellulose.. In thisIn this study, study, an an inexpensive inexpensive and and robust robust carbon-basedcarbon-based solid solid acid acid catalyst catalyst was was successfully successfully synthesizedsynthesized and and evaluated evaluated for for the the conversion conversion ofof FA into EL EL in in ethanol. ethanol. A maximum A maximum EL yield EL yield of of 67.1%67.1% was achievedwas achieved under under the the optimal optimal conditions, conditions, and and allall thethe conversionconversion reactio reactionsns were were performed performed in triplicate.in triplicate The recovered. The recovered catalyst catalyst possessed possessed good good catalytic catalytic activity activity (EL (EL yield yield 57.3%), 57.3%), eveneven afterafter four four cycles, and it was easily regenerated by a simple sulfonation process. Moreover, the catalyst cycles, and it was easily regenerated by a simple sulfonation process. Moreover, the catalyst was was characterized using FT-IR, XRD, SEM, elemental analysis, and acid-base titration techniques. characterized using FT-IR, XRD, SEM, elemental analysis, and acid-base titration techniques. 2. Results and Discussion 2. Results and Discussion 2.1. Catalyst Characterizations 2.1. Catalyst Characterizations Structural information about unsulfonated glucose-derived carbon (UGC) and glucose-derived Structuralcarbonaceous information catalyst (GCC about) sample unsulfonateds were obtaine glucose-derivedd by FT-IR and carbon XRD. (UGC)Figure 1 and shows glucose-derived the XRD carbonaceouspatterns of catalyst two sample (GCC)s, which samples exhibit were two obtained2θ° weak diffraction by FT-IR andpeaks XRD. between Figure 10 and1 shows 30° and the 35 XRD patternsand of50°, two which samples, can be which assigned exhibit to twoC (002) 2θ◦ weakand C di (101),ffraction respectively. peaks between The results 10 and indicate 30◦ and that 35 and 50◦, whichamorphous can becarbon, assigned composed to C (002)of aromatic and C carbon (101), sheets, respectively. is orientedThe in results a random indicate fashion that [29] amorphous. Two carbon,samples composed have si ofmilar aromatic XRD carbonpatterns, sheets, indicating is oriented that the in sulfonation a random process fashion had [29 ].no Two effect samples on the have similarmorphology XRD patterns, of carbon indicating. that the sulfonation process had no effect on the morphology of carbon. The UGC and GCC were further characterized by FT-IR, and the results are shown in Figure2. 1 The vibration bands at 1384, 1172, and 1035 cm− (SO3 stretching) on GCC are evidence that -SO3H groups were successfully incorporated into the UGC. In addition, the absorption bands at 1715 and 1 1620 cm− correspond to -C=O (carbonyl) and -OH (hydroxyl) bending vibrations, implying that 1 carboxyl groups exist on the prepared carbon materials. The bands at 3424 and 1620 cm− can
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • ||||||IIIHHHHHIIIIUSOO539607A United States Patent (19) (11) Patent Number: 5,139,607 Ward Et Al
    ||||||IIIHHHHHIIIIUSOO539607A United States Patent (19) (11) Patent Number: 5,139,607 Ward et al. 45) Date of Patent: Aug. 18, 1992 54 ALKALINE STRIPPING COMPOSITIONS Attorney, Agent, or Firm-John Lezdey (75) Inventors: Irl E. Ward, Hatfield; Francis W. 57 ABSTRACT Michelotti, Easton, both of Pa. An alkaline positive and negative resist stripping com 73) Assignee: ACT, Inc., Allentown, Pa. position having low volatility and operable at tempera (21) Appl. No.: 690,110 tures less than about 90° C. which comprises, A. about 10 to 30% by weight of tetrahydrofurfuryl (22) Filed: Apr. 23, 1991 alcohol; 51) Int. Cl. ......................... B44C 1/22; B29C 37/00 B. about 5 to 30% by weight of a polyhydric alcohol; 52 U.S. C. .................................... 156/655; 156/668; C. about 10 to 30% by weight of the reaction product of 252/79.5; 430/329 one mole of furfuryl alcohol with about 1 to 20 moles (58) Field of Search............... 252/79.5, 156; 156/655, of an alkylene oxide, 156/659.1, 668; 430/329; 134/22.17, 29, 38, 40 D. about 1 to 30% by weight of a water soluble Bron (56 References Cited stead base type of hydroxide compound, and E. the remainder being water. U.S. PATENT DOCUMENTS The composition comprising a ratio of organic materials 4,078,102 3/1978 Bendz et al. ................... 252/79.5 X 4,686,002 8/1987 Tasset ............................... 156/659.1 to inorganic materials to about 0.25:1 to 3:1. Primary Examiner-William A. Powell 11 Claims, No Drawings 5,139,607 1.
    [Show full text]
  • PRODUCTION of ETHYL LEVULINATE VIA ESTERIFICATION REACTION of LEVULINIC ACID in the PRESENCE of Zro2 BASED CATALYST
    Malaysian Journal of Analytical Sciences, Vol 23 No 1 (2019): 45 - 51 DOI: https://doi.org/10.17576/mjas-2019-2301-06 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society PRODUCTION OF ETHYL LEVULINATE VIA ESTERIFICATION REACTION OF LEVULINIC ACID IN THE PRESENCE OF ZrO2 BASED CATALYST (Penghasilan Etil Levulinat Melalui Pengesteran Asid Levulinik dengan Kehadiran Mangkin Berasaskan ZrO2) Dorairaaj Sivasubramaniam1, Nor Aishah Saidina Amin1*, Khairuddin Ahmad1, Nur Aainaa Syahirah Ramli2 1Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia 2Advanced Oleochemical Technology Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia *Corresponding author: [email protected] Received: 13 April 2017; Accepted: 17 April 2018 Abstract Ethyl levulinate is widely used as a fuel additive, flavor or fragrance and as a component of fuel blending. This study focused on the production of ethyl levulinate from levulinic acid via esterification reaction in the presence of HPW/ZrO2.The catalyst was prepared using the wet impregnation method, characterized by using FTIR, BET and NH3-TPD and screened based on 20%, 40% and 60% HPW/ZrO2. The 40% HPW/ZrO2 catalyst exhibited the highest catalytic performance during the parameter screening stage which included catalyst loading (0.25‒1.25g) and volume ratio of levulinic acid to ethanol (1:4 – 1:8). The highest ethyl levulinate yield of 99% corresponded to a catalyst loading of 0.5 g and volume ratio of levulinic acid to ethanol of 1:5 with reaction conditions at 150 °C for 3 hours.
    [Show full text]
  • Chemical and Physical Factors Affecting Combustion in Fuel-Nitric Acid Systems
    ASt 412 t?cONFIDENT Copy C C !' 'f RM E58D03 NACA RESEARCH MEMORANDUM CHEMICAL AND PHYSICAL FACTORS AFFECTING COMBUSTION IN FUEL - NITRIC ACID SYSTEMS By Louis Baker,Jr. Lewis Flight Propulsion Laboratory Cleveland, Ohio TO ; 2 L1 ::r LT h :O. 11, 1i ECTI LTE J1 CLASSDOED DOCUMENT This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which is acy manner to an unauthorized person Is prohibited by law. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASH I NGTON Ju1y 28, 1958 CONFIDENTIAL Jft NACA RM E58D03 CONFIDENTIAL NATIONAL ADVISORY COM1'tETJE FOR AERONAUTICS RESEARCH MEMORANDUM CIISMICAL AND PISICAL FACTORS AFFECTING COMBUSTION IN FTJEL - NITRIC ACID SYSTEMS* By Louis Baker, Jr. SUMMARY Characteristic exhaust-velocity measurements were made of the JP-4 fuel - red. fuming nitric acid propellant combination in 40-pound-thrust rocket engines with various combustion-chamber lengths from 1.5 to 12.3 inches and. dianieters of 1 and 1.5 inches (characteristic length, 30 to 240 in.). The effect of adding unsymmetrical diniethyihydrazine was de- termined.. Also measured was the effect of added water on the character- istic exhaust velocity of red fuming nitric acid with JP-4, toluene, or hydrazine fuels. The results, along with those from previous studies, are discussed in terms of a vaporization model of combustion. The experimental trends are consistent with the hypothesis that for spontaneously reacting fuels heat generation within mixed fuel-acid droplets can accelerate combus- tion; added water has very specific effects in such cases.
    [Show full text]
  • Valerolactone Using Polymer-Based Metal-Containing Catalysts, Chemical Engineering Transactions, 61, 895-900 DOI:10.3303/CET1761147 896
    895 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright © 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8; ISSN 2283-9216 DOI: 10.3303/CET1761147 Hydrogenation of Biomass-Derived Levulinic Acid to Gamma- Valerolactone Using Polymer-Based Metal-Containing Catalysts Linda Zh. Nikoshvili*, Igor I. Protsenko, Dialia A. Abusuek, Anna O. Zaykovskaya, Alexey V. Bykov, Valentina G. Matveeva, Esther M. Sulman Tver Technical University, A.Nikitina str. 22, 170026, Tver, Russian Federation [email protected] Nowadays the development of effective catalytic systems of selective hydrogenation of levulinic acid (LA) to gamma -valerolactone (GVL) is of high importance. However, there is a lack of data concerning the use of polymer -based catalyst in this process. The possibility to use of Ru-containing catalysts on the basis of hypercrosslinked polystyrene (HPS) in hydrogenation of LA to GVL is discussed. Catalyst 5%-Ru/HPS is shown to be highly active and selective in hydrogenation of LA in aqueous medium (yield of GVL more than 99%) at mild reaction conditions (90 °C, 2 MPa of hydrogen partial pressure) and the absence of co-catalysts. 1. Introduction Global petro-chemical market faces increasing competition and a dependency on external sources, and is under considerable cost and ecological pressure. Biomass has received considerable attention as a sustainable feedstock that can replace diminishing fossil fuels for the production of energy, especially for the transportation sector.
    [Show full text]
  • Safety Assessment of Levulinic Acid and Sodium Levulinate As Used in Cosmetics
    Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: February 16, 2021 Panel Meeting Date: March 11-12, 2021 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. Previous Panel member involved in this assessment: James G. Marks, Jr., M.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Preethi S. Raj, M.Sc., Senior Scientific Analyst/Writer, CIR. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons From: Preethi S. Raj, M.Sc. Senior Scientific Analyst/Writer, CIR Date: February 16, 2021 Subject: Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics Enclosed is the Draft Tentative Report of the Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics (identified as levaci032021rep in the pdf). This is the second time the Panel is seeing a safety assessment of these cosmetic ingredients. At the September 2020 Panel Meeting, the Panel issued an Insufficient Data Announcement (IDA), and the following data were requested.
    [Show full text]
  • Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems
    catalysts Review Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems Chen Liu 1, Xuebin Lu 1,2,*, Zhihao Yu 1 , Jian Xiong 2, Hui Bai 1 and Rui Zhang 3,* 1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] (C.L.); [email protected] (Z.Y.); [email protected] (H.B.) 2 Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa 850000, China; [email protected] 3 School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China * Correspondence: [email protected] (X.L.); [email protected] (R.Z.) Received: 2 August 2020; Accepted: 17 August 2020; Published: 3 September 2020 Abstract: The reasonable and effective use of lignocellulosic biomass is an important way to solve the current energy crisis. Cellulose is abundant in nature and can be hydrolyzed to a variety of important energy substances and platform compounds—for instance, glucose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), etc. As a chemical linker between biomass and petroleum processing, LA has become an ideal feedstock for the formation of liquid fuels. At present, some problems such as low yield, high equipment requirements, difficult separation, and serious environmental pollution in the production of LA from cellulose have still not been solved. Thus, a more efficient and green catalytic system of this process for industrial production is highly desired. Herein, we focus on the reaction mechanism, pretreatment, and catalytic systems of LA from cellulose and cellulosic biomass, and a series of existing technologies for producing LA are reviewed.
    [Show full text]
  • Selective Synthesis of Furfuryl Alcohol from Biomass-Derived Furfural Using Immobilized Yeast Cells
    catalysts Article Selective Synthesis of Furfuryl Alcohol from Biomass-Derived Furfural Using Immobilized Yeast Cells Xue-Ying Zhang 1, Zhong-Hua Xu 1, Min-Hua Zong 1, Chuan-Fu Wang 2 and Ning Li 1,* 1 School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; [email protected] (X.-Y.Z.); [email protected] (Z.-H.X.); [email protected] (M.-H.Z.) 2 National Institute of Clean-and-Low-Carbon Energy, Future Science Park, Beijing 102211, China; [email protected] * Correspondence: [email protected] Received: 19 December 2018; Accepted: 6 January 2019; Published: 10 January 2019 Abstract: Furfuryl alcohol (FA) is an important building block in polymer, food, and pharmaceutical industries. In this work, we reported the biocatalytic reduction of furfural, one of the top value-added bio-based platform chemicals, to FA by immobilized Meyerozyma guilliermondii SC1103 cells. The biocatalytic process was optimized, and the tolerance of this yeast strain toward toxic furfural was evaluated. It was found that furfural of 200 mM could be reduced smoothly to the desired product FA with the conversion of 98% and the selectivity of >98%, while the FA yield was only approximately 81%. The gap between the substrate conversion and the product yield might partially be attributed to the substantial adsorption of the immobilization material (calcium alginate) toward the desired product, but microbial metabolism of furans (as carbon sources) made a negligible contribution to it. In addition, FA of approximately 156 mM was produced within 7 h in a scale-up reaction, along with the formation of trace 2-furoic acid (1 mM) as the byproduct.
    [Show full text]
  • Synthesis of Furfuryl Alcohol from Furfural
    Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors Maïté Audemar, Yantao Wang, Deyang Zhao, Sébastien Royer, François Jerome, Christophe Len, Karine de Oliveira Vigier To cite this version: Maïté Audemar, Yantao Wang, Deyang Zhao, Sébastien Royer, François Jerome, et al.. Synthesis of Furfuryl Alcohol from Furfural: A Comparison between Batch and Continuous Flow Reactors. Energies, MDPI, 2020, 13 (4), pp.1002. 10.3390/en13041002. hal-03015037 HAL Id: hal-03015037 https://hal.archives-ouvertes.fr/hal-03015037 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Communication 2 Synthesis of furfuryl alcohol from furfural: a 3 comparison between batch and continuous flow 4 reactors 5 Maïté Audemar 1, Yantao Wang 2,3, Deyang Zhao 2,4, Sébastien Royer,5 François Jérôme,1 6 Christophe Len 2,4 and Karine De Oliveira Vigier 1,* 7 1 Université de Poitiers, IC2MP, UMR CNRS 7285, 1 rue Marcel Doré, 86073 Poitiers Cedex 9; 8 [email protected] 9 2 Sorbonne universités, Université de Technologie de Compiègne, Centre de recherche Royallieu, CS 60 319, 10 F-60203 Compiègne cedex, France 11 3 School of Resources Environmental & Chemical Engineering, Nanchang university, Nanchang, 12 330031,China.
    [Show full text]
  • Hydrogenation of 2-Methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-2020 Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts Matthew J. Kline University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Catalysis and Reaction Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Kline, Matthew J., "Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts" (2020). Electronic Theses and Dissertations. 3284. https://digitalcommons.library.umaine.edu/etd/3284 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR OVER BIFUNCTIONAL NICKEL CATALYSTS By Matthew J. Kline B.S. Seton Hill University, 2018 A THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master oF Science (in Chemical Engineering) The Graduate School The University of Maine December 2020 Advisory Committee: M. Clayton Wheeler, Professor of Chemical Engineering, Advisor Thomas J. Schwartz, Assistant ProFessor oF Chemical Engineering William J. DeSisto, ProFessor oF Chemical Engineering Brian G. Frederick, ProFessor oF Chemistry
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,350,056 B2 FOO Et Al
    USOO835.0056B2 (12) United States Patent (10) Patent No.: US 8,350,056 B2 FOO et al. (45) Date of Patent: *Jan. 8, 2013 (54) FUNCTIONALIZED N-SUBSTITUTED 2010, 0140166 A1* 6, 2010 Erdner-Tindall et al. ..... 210,603 2010.0143992 A1* 6, 2010 Erdner-Tindall et al. ..... 435,160 PYRROLIDONIUM IONIC LIOUIDS 2010.0143993 A1* 6, 2010 Erdner-Tindall et al. ..... 435,160 2010.0143994 A1* 6, 2010 Erdner-Tindall et al. ..... 435,160 (75) Inventors: Thomas Foo, Wilmington, DE (US); 2010.0143995 A1 6, 2010 Erdner-Tindall et al. ..... 435,160 Mark Andrew Harmer, Landenberg, 2010.0143999 A1* 6, 2010 Erdner-Tindall et al. ..... 435,161 2010/0.144000 A1* 6, 2010 Erdner-Tindall et al. ..... 435,161 PA (US); Keith W. Hutchenson, Lincoln 2010, 0145073 A1 6, 2010 Foo University, PA (US); Christopher P. 2010, O152465 A1 6, 2010 Davis Junk, Wilmington, DE (US); Berlyn R. Mellein, Wilmington, DE (US); Aaron FOREIGN PATENT DOCUMENTS Minter, Wilmington, DE (US) WO O3O48078 A2 6, 2003 WO 201OO65816 6, 2010 WO 201OO65841 6, 2010 (73) Assignee: E I du Pont de Nemours and WO 2010.065873 6, 2010 Company, Wilmington, DE (US) WO WO 2010.065606 A2 * 6, 2010 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Cardoso et al., Synthesis, Characterization, and Thermal and Dielec U.S.C. 154(b) by 136 days. tric Properties of Three Different Methacrylate Polymers With Zwit terionic Pendant Groups, J. Polymer Sci., Part B: Polymer Physics, This patent is Subject to a terminal dis 1997, vol.
    [Show full text]
  • Chemical Compatibility Chart
    Appendix D Chemical Compatibility Chart Below is a chart adapted from the CRC Laboratory Handbook which groups various chemicals into 23 groups with examples and incompatible chemical groups. This chart is by no means complete but it will aid in making decisions about storage. For more complete information please refer to the MSDS for the specific chemical. Group Name Example Incompatible Groups Group Inorganic Hydrochloric acid 2,3,4,5,6,7,8,10,13,14,16,17,18,19,21,22,23 1: Acids Hydrofluoric acid Nitric acid Sulfuric acid Group Organic acids Acetic acid 1,3,4,7,14,16,17,18,19,22 2: Butyric acid Formic acid Propionic acid Group Caustics Sodium hydroxide 1,2,6,7,8,13,14,15,16,17,18,20,23 3: Ammonium hydroxide solution Group Amines and Aminoethylethanolamine 1,2,5,7,8,13,14,15,16,17,18,23 4: Alkanolamines Aniline Diethanolamine Diethylamine Ethylenediamine Monoethanolamine Triethanolamine Triethylamine Triethylenetetramine Group Halogenated Carbon tetrachloride 1,3,4,11,14,17 5: Compounds Chlorobenzene Chloroform Methylene chloride Carbon Tetrachloride 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane Trichloroethylene Trichlorofluoromethane Group Alcohols 1,4-Butanediol 1,7,14,16,20,23 6: Butanol (iso, n, sec, tert) Glycols Diethylene glycol Ethyl alcohol Ethyl butanol Glycol Ether Ethylene glycol Furfuryl alcohol Isoamyl alcohol Methyl alcohol Propylene glycol Group Aldehydes Acrolein 1,2,3,4,6,8,15,16,17,19,20,23 7: Acetaldehyde Butyraldehyde Formaldehyde Paraformaldehyde Propionaldehyde Appendix D Page 1 of 2 Group Ketones Acetone 1,3,4,7,19,20
    [Show full text]