(Hmf) Via Fructose Dehydration: Effect of Solvent and Salting-Out

Total Page:16

File Type:pdf, Size:1020Kb

(Hmf) Via Fructose Dehydration: Effect of Solvent and Salting-Out Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 32, No. 01, pp. 119 - 126, January - March, 2015 dx.doi.org/10.1590/0104-6632.20150321s00002914 PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF) VIA FRUCTOSE DEHYDRATION: EFFECT OF SOLVENT AND SALTING-OUT F. N. D. C. Gomes, L. R. Pereira, N. F. P. Ribeiro and M. M. V. M. Souza* Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco E, Sala 206, CEP: 21941-909, Rio de Janeiro - RJ, Brazil. Phone: + (55) (21) 39387598, Fax: + (55) (21)39387596 E-mail: [email protected] (Submitted: August 13, 2013 ; Revised: October 19, 2013 ; Accepted: October 30, 2013) Abstract - 5-Hydroxymethylfurfural (HMF) is a key renewable platform compound for production of fuels and chemical intermediates. The production of 5-hydroxymethylfurfural (HMF) from fructose dehydration was studied using H3PO4 as catalyst, in organic/water system with different solvents (acetone, 2-butanol and ethyl ether). The effect of fructose concentration, temperature and acid concentration was investigated in acetone/water medium. The increase in fructose concentration favors the formation of condensation products and rehydration products are favored at high acid concentration. The solvents exhibited similar performance when the volume ratio of organic to aqueous phase was 1:1, but when this ratio increases to 2:1, the HMF yield obtained with ether was much lower. NaCl addition to the aqueous phase promoted the extraction of HMF to the organic phase, with an HMF yield of 80% in the case of 2:1 acetone/water medium. Keywords: 5-hydroxymethylfurfural; Dehydration; Fructose; Biphasic system; Salting-out. INTRODUCTION 2007). HMF is a versatile and multi-functional com- pound used as intermediate for polymers, pharma- The interest in renewable resources as chemical ceuticals, fine chemicals, liquid fuels and for the feedstocks has grown considerably in recent years. synthesis of dialdehydes, ethers, amino alcohols and The production of fine chemicals, polymer precur- other organic derivatives (Boisen et al., 2009; Tong sors and petrol-derived commodities from biomass et al., 2010). can contribute to diminish our current dependence on Despite the versatile application profile of HMF- non-renewable energy sources. Furanic derivatives derived intermediate chemicals, HMF is not yet pro- can be used as the starting materials for new duced on an industrial scale, mainly because of the products as well as for replacement of oil-derived high production costs (Zakrzewska et al., 2011). HMF chemicals, establishing a new set of chemical com- can be obtained by acid-catalyzed dehydration of pounds based on biomass (Tong et al., 2010). In different carbohydrates such as fructose, glucose, particular, 5-hydroxymethylfurfural (HMF) has been sucrose, cellulose or inulin (Rosatella et al., 2011). considered an important platform chemical in a bio- Glucose, which is the most abundant and the cheapest refinery because it is a precursor for the production monosaccharide, has been considered as the preferred of various high-volume plastics and biofuels (Boisen feedstock for the production of HMF. However, et al., 2009; Bozell and Petersen, 2010; Corma et al., HMF is typically produced from glucose with low *To whom correspondence should be addressed 120 F. N. D. C. Gomes, L. R. Pereira, N. F. P. Ribeiro and M. M. V. M. Souza yields, which is attributed to the stable pyranoside extracted into an organic phase of methylisobu- ring structure of glucose (Hu et al., 2012). Thus, tylketone (MIBK) modified with 2-butanol to en- current technologies in general include an additional hance the partitioning from reactive aqueous solu- isomerization step of glucose to fructose, since de- tion. It was reported that an 80% HMF selectivity at hydration of fructose to HMF takes place with better 90% conversion was achieved for 30 wt% fructose selectivity and higher rates (Chheda et al., 2007; solution at 180 °C. Grande et al., 2012). The isomerization step can be The salting-out technique can be used to change done either enzymatically or by using aqueous bases the partition coefficient of HMF in a biphasic system or solid catalysts, such as hydrotalcites, zeolites and and thus improve the HMF yield (Roman-Leshkov different oxides. and Dumesic, 2009; Hansen et al., 2011). The use of Efficient HMF production requires the minimi- salting-out for carbohydrate dehydration has been zation of side reactions that yield soluble and in- known since the 1930s (Fulmer et al., 1935). The ions soluble polymers and HMF rehydration to levulinic in solution alter the intermolecular forces between and formic acids (Corma et al., 2007; Roman-Leshkov the liquids in equilibrium, resulting in an increased et al., 2006; Chheda et al., 2007; Roman-Leshkov and immiscibility. The decreased mutual solubility of the Dumesic, 2009). Dehydration of fructose in pure aqueous and organic phases enhances the extraction water using solid or mineral acids is generally non- of HMF from the aqueous phase (Roman-Leshkov selective due to degradation of HMF via rehydration and Dumesic, 2009). Roman-Leshkov and Dumesic reactions. Different strategies have been used in (2009) studied the effect of different inorganic salts HMF synthesis to decrease the formation of by- (LiCl, KCl, NaCl, CsCl, CaCl2, MgCl, KBr, NaBr and products. The use of aprotic solvents, such as di- Na2SO4) in biphasic systems using 1-butanol as the methylsulfoxide (DMSO), has been investigated by extracting solvent and HCl as catalyst. Na+ and K+ many authors to suppress unwanted side reactions showed the best combination of extracting power and generate high yields of HMF (Roman-Leshkov and HMF selectivity of the monovalent and divalent et al., 2006; Chheda et al., 2007; Musau and Munavu, chloride salts tested. Using NaCl an 82% HMF se- 1987). However, the separation of HMF from these lectivity at 87% fructose conversion was achieved at high-boiling point solvents is difficult, leading to 180 °C, with a partition coefficient of 3.1. Hansen et thermal degradation of the HMF product. Some in- al. (2011) also studied the effect of different salts in teresting results have been presented on the dehy- water:MIBK system, using boric acid as catalyst. dration of carbohydrates in ionic liquids, which have They reported 65% HMF selectivity at 70% fructose unique properties such as negligible vapor pressure conversion, using NaCl at 150 °C, with a partition and comparative thermal stability (Van Putten et al., coefficient of only 1.0. 2013; Zakrzewska et al., 2011). Nevertheless, the This paper studies the effect of different solvents high costs of ionic liquids, the limited data about and the use of the salting-out technique in HMF toxicity and complicated HMF separation and puri- production by dehydration of fructose. The solvents fication still limit their industrial application. chosen were acetone, 2-butanol and ethyl ether. Biphasic systems, in which a water-immiscible Acetone has the advantage of being a biomass-de- organic solvent is added to extract continuously rived solvent, 2-butanol showed the highest HMF HMF from the aqueous phase, offer an important selectivity of all solvents studied by Roman-Leshkov advantage in that the product is separated from the and Dumesic (2009), and ethyl ether is a very vola- reactant and reaction intermediates and is thereby tile solvent, favoring HMF separation by distillation protected against degradation reactions (Boisen et without degradation. The reaction conditions were al., 2009; Chheda et al., 2007; Roman-Leshkov et evaluated in the water/acetone system, and then these al., 2006; Van Putten et al., 2013). This extraction conditions were applied to the other solvents, with or shifts the equilibrium reaction to favor HMF pro- without NaCl addition to the aqueous phase. duction. However, this method requires a large amount of solvent due to the high HMF solubility in water and poor partitioning into the organic phase. Roman-Leshkov et al. (2006) reported a two-phase EXPERIMENTAL reaction system with HCl as the catalyst. In that work DMSO and poly(1-vinyl-2-pyrrolidine)(PVP) Fructose, phosphoric acid, organic solvents and were added to the aqueous phase to suppress the NaCl were obtained from Sigma-Aldrich in reagent undesired side reactions and HMF was continuously grade. Brazilian Journal of Chemical Engineering Production of 5-Hydroxymethylfurfural (HMF) Via Fructose Dehydration: Effect of Solvent And Salting-Out 121 All fructose dehydration reactions were carried levulinic and formic acids. Dehydration of fructose out in a 600 mL SS reactor (Parr) with 450 rpm of was carried out using H3PO4 as homogeneous catalyst. agitation and H3PO4 as catalyst, under autogeneous The choice of H3PO4 was based on its low corrosivity pressure. The reaction time was maintained constant towards stainless steel reactors, as compared to HCl, at 10 min. The first experiments were performed with and the good results presented by some authors in the 100 mL of water and 100 mL of acetone, varying literature using this catalyst. Takeuchi et al. (2008) -1 fructose concentration (25, 75 and 125 gL ), tem- compared HCl, H3PO4 and H2SO4 as catalysts for perature (120, 150, 180 and 200 °C), and H3PO4 con- glucose dehydration in water: the higher HMF yields centration (0.5, 1.0 and 1.5 wt%). were obtained using H3PO4. According to them, the Once the reaction conditions were defined, other use of a strong acid such as HCl accelerates the rehy- solvents were tested (2-butanol and ethyl ether), with dration of HMF to levulinic and formic acids. High the ratios of volumes of both phases (Vorg:Vaq) at HMF selectivities were also obtained when using 1:1 or 2:1 (100 mL of water and 100 or 200 mL of H3PO4 in glucose dehydration performed in biphasic organic solvent). In some experiments, NaCl was system (Chheda et al., 2007) and in fructose dehydra- added to saturate the water phase (300 g L-1).
Recommended publications
  • Synthesis of Terephthalic Acid Via Diels-Alder Reactions with Ethylene and Oxidized Variants of 5-Hydroxymethylfurfural
    Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural Joshua J. Pacheco and Mark E. Davis1 Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 Contributed by Mark E. Davis, May 7, 2014 (sent for review April 16, 2014) Terephthalic acid (PTA), a monomer in the synthesis of polyethylene can react to form PX in a one-pot Diels-Alder dehydration re- terephthalate (PET), is obtained by the oxidation of petroleum- action (7). This reaction has received much attention recently, derived p-xylene. There is significant interest in the synthesis of and it is catalyzed by homogeneous Lewis acids and a wide va- renewable, biomass-derived PTA. Here, routes to PTA starting riety of heterogeneous Brønsted acid-containing solids (7–12). from oxidized products of 5-hydroxymethylfurfural (HMF) that can Although nearly 100% PX yields from the Diels-Alder de- be produced from biomass are reported. These routes involve Diels- hydration reaction can be achieved, the reduction step to convert Alder reactions with ethylene and avoid the hydrogenation of HMF HMF to DMF requires expensive metal catalysts and a hydrogen to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with source, making this route challenging to commercially imple- ethylene over solid Lewis acid catalysts that do not contain strong ment (13). Therefore, the discovery of routes to PTA from HMF Brønsted acids to synthesize intermediates of PTA and its equally that avoid any hydrogenation steps could be useful. important diester, dimethyl terephthalate (DMT). The partially oxi- An oxidation route to PTA that has previously been consid- dized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with ered is the Diels-Alder dehydration reaction of ethylene with the high pressure ethylene over a pure-silica molecular sieve containing fully oxidized HMF, 2,5-furandicarboxylic acid (FDCA).
    [Show full text]
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • A Possible Emergent Cause of Honey Bee Mortality? Lara Zirbes, Bach Kim Nguyen, Dirk C
    Subscriber access provided by Université de Liège Review Hydroxymethylfurfural: a possible emergent cause of honey bee mortality? Lara Zirbes, Bach Kim Nguyen, Dirk C. de Graaf, Bruno De Meulenaer, Wim Paul Reybroeck, Eric Haubruge, and Claude Saegerman J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/jf403280n • Publication Date (Web): 15 Oct 2013 Downloaded from http://pubs.acs.org on October 21, 2013 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Dehydration of D-Fructose to 5-Hydroxymethyl-2-Furfural in DMSO
    www.nature.com/scientificreports OPEN Dehydration of d‑fructose to 5‑hydroxymethyl‑2‑furfural in DMSO using a hydrophilic sulfonated silica catalyst in a process promoted by microwave irradiation Sandro L. Barbosa1*, Milton de S. Freitas1, Wallans T. P. dos Santos1, David Lee Nelson1, Stanlei I. Klein2, Giuliano Cesar Clososki3, Franco J. Caires3, Adriano C. M. Baroni4 & Alexandre P. Wentz5 2 3 −1 + SiO2‑SO3H, with a surface area of 115 m /g, pore volumes of 0.38 cm g and 1.32 mmol H /g, was used as a 10% w/w catalyst for the preparation of 5‑hydroxymethyl‑2‑furfural (HMF) from fructose. A conversion of 100% was achieved in a microwave reactor during 10 min at 150 °C in DMSO, with 100% selectivity for HMF, at a molar ratio of fructose: DMSO equal to 1:56. The catalyst could be re‑used three times. 5-Hydroxymethyl-2-furfural (HMF), which can be obtained from the dehydration of sugars, has a high potential as renewable raw material for the production of a variety of important molecules containing or derived of the furan ring, including biofuels, solvents, drugs, and biopolymer monomers 1–3. Tus, several studies have described the synthesis of HMF by catalytic dehydration of fructose4–18, Fig. 1. Glucose is less efcient than fructose for the synthesis of HMF19–21; according to Kuster22,23 and Zakrzewska et al.24, this results from the diference in stability of the two cyclical sugar structures, which are composed of six atoms in glucose (pyranose form) and fve atoms in fructose (furanose form).
    [Show full text]
  • Supplementary Information Experimental Products (Furfurals) Were Calculated by Comparison with an Internal Standard Solvent As the Reference Sample (N-Octanol)
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Experimental products (furfurals) were calculated by comparison with an internal standard solvent as the reference sample (n-octanol). Chemicals The MLA and n-octanol relevant line equation is For this study, bamboo particles was collected from a local y=2.06543x–0.02107 (coefficient of correlation R2 =0.9998), farm in Jiangsu Province, China. All materials were passed the intermediate products (such as MMF) and n-octanol through a 250–425 μm sieve and dried to a constant weight for relevant line equation is y=1.9657x+0.0612 (coefficient of 24 h at 105 °C. The absolute-dried particles were kept in a correlation R2 = 0.9996). desiccator until used. The High Performance Liquid Chromatography HPLC instrument (Shimadzu LC–10ATVP, Aminex HPX–87H column) Analytic methods with a RID-20A detector was used to quantitative analyzed the Gas chromatography (GC) mass spectrometry (MS) (Agilent methyl pentose glycosides (C5-Gly) and methyl hexose 5975C VL MSD) analysis was used a HP-5 fused capillary glucosides (C6-Gly). Used 0.005 mmol sulfuric acid (sonication, column (l= 30 m, i d= 0.32 mm, t= 0.25 μm) with poly dimethyl deaeration) in water as the mobile phase and the flow rate siloxane with 5% phenyl methyl substitution as the stationary was of 0.5 mL/min, and the column temperature was kept at phase. The injection mode was split at a rate of 35. The carrier 45 °C for 30 min. The standard curve of concentration of −1 gas was He at a flow rate of 1.5 mL min .
    [Show full text]
  • Catalytic Conversion of Fructose, Glucose and Industrial Grade Sugar Syrups to 5-Hydroxymethylfurfural, a Platform for Fuels and Chemicals
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-17-2016 12:00 AM Catalytic Conversion of Fructose, Glucose and Industrial Grade Sugar Syrups to 5-Hydroxymethylfurfural, A Platform for Fuels and Chemicals Sadra Souzanchi The University of Western Ontario Supervisor Dr. Chunbao (Charles) Xu The University of Western Ontario Joint Supervisor Dr. Zhongchao (Chao) Tan The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Sadra Souzanchi 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Catalysis and Reaction Engineering Commons, Environmental Engineering Commons, Other Chemical Engineering Commons, and the Polymer and Organic Materials Commons Recommended Citation Souzanchi, Sadra, "Catalytic Conversion of Fructose, Glucose and Industrial Grade Sugar Syrups to 5-Hydroxymethylfurfural, A Platform for Fuels and Chemicals" (2016). Electronic Thesis and Dissertation Repository. 4070. https://ir.lib.uwo.ca/etd/4070 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract HydroxyMethylFurfural (HMF) as a versatile and poly-functional compound derived from dehydration of biomass has attracted increasing attentions in research over the past decades. HMF is an important intermediate and platform chemical, which can be converted into different useful chemicals as well as the promising biofuels. It can be obtained from acid- catalyzed dehydration of different C6-based carbohydrates such as glucose, fructose, sucrose and cellulose.
    [Show full text]
  • Valerolactone from Biomass-Derived Levulinic Acid Over Zr–Al-Beta Zeolite Catalyst
    catalysts Article Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst Clara López-Aguado 1, Marta Paniagua 1 , Juan A. Melero 1 , Jose Iglesias 1 , Pablo Juárez 1, Manuel López Granados 2 and Gabriel Morales 1,* 1 Chemical and Environmental Engineering Group, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, E28933 Madrid, Spain; [email protected] (C.L.-A.); [email protected] (M.P.); [email protected] (J.A.M.); [email protected] (J.I.); [email protected] (P.J.) 2 Energy and Sustainable Chemistry (EQS) Group, Institute of Catalysis and Petrochemistry, CSIC, Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-488-80-91 Received: 20 May 2020; Accepted: 15 June 2020; Published: 17 June 2020 Abstract: The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe the transfer hydrogenation of LA to GVL using isopropanol as a hydrogen donor over a Zr-modified beta zeolite catalyst in a continuous fixed-bed reactor. A stable sustained production of GVL was achieved from the levulinic acid, with both high LA conversion (ca. 95%) and GVL yield (ca. 90%), for over at least 20 days in continuous operation at 170 ◦C. Importantly, the small decay in activity can be advantageously overcome by the means of a simple in situ thermal regeneration in the air atmosphere, leading to a complete recovery of the catalyst activity.
    [Show full text]
  • Simultaneous Quantitative Assessment of Ochratoxin A
    foods Article Simultaneous Quantitative Assessment of Ochratoxin A, Patulin, 5-Hydroxymethylfurfural, and Bisphenol A in Fruit Drinks Using HPLC with Diode Array-Fluorimetric Detection Norfarizah Hanim Hassan 1, Haneen Ibrahim Ahmad Al Othman 1, Nur Rabiatutadawiah Abdul Malek 1, Musfirah Zulkurnain 2 , Bahruddin Saad 3 and Yong Foo Wong 1,* 1 School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; [email protected] (N.H.H.); [email protected] (H.I.A.A.O.); [email protected] (N.R.A.M.) 2 Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; musfi[email protected] 3 Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-4653-403-1; Fax: +60-4657-485-4 Received: 28 September 2020; Accepted: 31 October 2020; Published: 9 November 2020 Abstract: The analysis of regulated contaminants in fruit drinks often requires suitable validated and rapid analytical methods for cost-effective food control, and is of considerable interest among the fruit beverage industry. This study demonstrated a rapid and sensitive high-performance liquid chromatography approach for the simultaneous determination of ochratoxin A (OTA), patulin (PAT), 5-hydroxymethylfurfural (HMF), and bisphenol A (BPA) in various fruit drinks. The separations were achieved using a C18 core-shell column with both photo-diode array and fluorimetric detections connected in series. A gradient system consisting of methanol and 0.1% formic acid at a flow rate of 1 1.2 mL min− , thermostated at 35 ◦C, provided fast elution with run time <9 min.
    [Show full text]
  • Facile Conversion of Levulinicacid and Glucose to Γ- Valerolactone Over
    Facile conversion of levulinic acid and glucose to γ- valerolactone over Raney-Ni catalyst without an external hydrogen donor Runtian He a, Zhuang Ma a, Guodong Yao b and Jing Xu *a a School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China b State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China. *Corresponding author: Jing Xu; Tel & Fax: +0086-021-54745410; Email: [email protected] Abstract Finding sustainable resources has always been a strong research due to the current massive consumption of non-renewable fossil fuels on a global scale. Recently, the transformation of renewable biomass into value-added chemicals has become a crucial alternative to solve this problem. Levulinic acid (LA) and glucose are the most significant biomass-derived compounds and γ-valerolactone (GVL) is considered to be the important intermediate of chemicals and fuels. However, the safety and cost of external hydrogen are the main obstacles for the production of GVL from biomass and its derived chemicals by catalytic transfer hydrogenation process. Herein, we introduce the conversion of LA and glucose-derived LA into GVL without an external hydrogen donor, respectively. One process is the production of GVL from LA in a maximum yield of 99% at relatively mild conditions (150 oC) for 3 h with hydrogen, which is from the decarboxylation reaction of formic acid (FA) in water with Raney Ni. The other process is conversion of glucose into LA and GVL in two steps.
    [Show full text]
  • A Facile and Effective Method for Preparation of 2.5-Furandicarboxylic Acid Via Hydrogen Peroxide Direct Oxidation of 5-Hydroxymethylfurfural
    Polish Journal of Chemical Technology, 19, 1, 11—16,Pol. J. 10.1515/pjct-2017-0002 Chem. Tech., Vol. 19, No. 1, 2017 11 A facile and effective method for preparation of 2.5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural Shuang Zhang1,2, Long Zhang1* 1Changchun University of Technology, School of Chemical Engineering, Changchun 130012, P.R. China 2Jilin Institute of Chemical Technology, Institute of Petrochemical Technology, Jilin 132022, P.R. China *Corresponding author: e-mail: [email protected] In this paper, 2,5-furandicarboxylic acid (FDCA) was effi ciently prepared by the direct oxidation of 5-hydroxym- ethylfurfural (5-HMF) using hydrogen peroxide (H2O2) in alkaline conditions without any catalysts. The effects of reaction parameters on the process were systematically investigated and the optimal parameters were obtained as follows: molar ratio of 5-HMF:KOH:H2O2 was 1:4:8, reaction temperature and reaction time were determined as 70oC and 15 minutes, respectively. Under these conditions, the yield of FDCA was 55.6% and the purity of FDCA could reach 99%. Moreover, we have speculated the detailed oxidation mechanism of 5-HMF assisted by hydrogen peroxide in alkaline condition to synthesize FDCA. Keywords: 5-hydroxymethylfurfural, 2.5-furandicarboxylic acid, hydrogen peroxide, oxidation. INTRODUCTION the aldehyde side chain was fi rst oxidized to carboxylic acid, followed by the second oxidation process of the Due to its renewability and abundance, biomass re- hydroxymethyl side chain to produce FDCA18. Casanova sources have been considered as one type of potential et al. have investigated the effect of Au/TiO , Au/CeO , candidates to replace petroleum resources in producing 2 2 Au/C and Au/FeO catalysts on the oxidation of 5-HMF various kinds of chemicals1–3.
    [Show full text]
  • Synthesis, Chemistry and Applications of 5-Hydroxymethylfurfural and Its Derivatives
    General Papers ARKIVOC 2001 (i) 17-54 Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives Jarosław Lewkowski Department of Organic Chemistry, University of Łódź, Narutowicza 68, 90-136 Łódź, POLAND E-mail: [email protected] (received 26 Jun 05; accepted 31 Jul 01; published on the web 08 Aug 01) Contents Introduction PART A. 5-HYDROXYMETHYLFURFURAL (HMF) 1. A historical outline of studies on 5-hydroxymethylfurfural (HMF) 2. Aspects of the synthesis of HMF 2.1. The mechanism of the fructose dehydration 2.2. The kinetics of the HMF synthesis 3. Chemical conversions of HMF 3.1. Reactions of the Hydroxymethyl Group 3.1.1. The formation of esters 3.1.2. The formation of ethers 3.1.3. The formation of halides 3.1.4. The oxidation 3.2. Reactions of the Formyl Group 3.2.1. The reduction 3.2.2. Condensation reactions 3.2.3. Oxidation reactions 3.3. Reactions of the furan ring 3.4. The polymerisation of HMF 3.5. Electrochemical conversions of HMF PART B. 2,5-FURANDICARBALDEHYDE (FDC) 4. The Synthesis of 2,5-Furandicarbaldehyde (FDC) 5. The Chemistry and Applications of 2,5-Furandicarbaldehyde (FDC) PART C. 2,5-FURANDICARBOXYLIC ACID (FDCA) 6. Methods for Synthesis of 2,5-Furandicarboxylic Acid (FDCA) 7. The Chemistry and Applications of 2,5-Furandicarboxylic Acid (FDCA) Conclusions References ISSN 1424-6376 Page 17 ©ARKAT USA, Inc General Papers ARKIVOC 2001 (i) 17-54 Introduction The prospect of exciting research activity in the chemistry of furfural derived compounds such as 5-hydroxymethylfurfural (HMF), 2,5-furandicarbaldehyde and 2,5-furan-dicarboxylic acid prompted the writing of this article.
    [Show full text]
  • Is High Fructose Corn Syrup Bad for the Apple Industry? Bbyy Jefri C
    NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Is High Fructose Corn Syrup Bad for the Apple Industry? bbyy Jefri C. Bohlscheid, School of Food Science, University of Idaho, Moscow, ID Part I – Demise of the Hives Dad snapped shut his cell phone and his shoulders slumped. “Now we’ve got a real problem,” he sighed. Life as an apple farmer in Wenatchee, Washington, could be challenging, but Dad was looking particularly depressed. “What is it now?” Bruce asked. “Seems that the last beekeeper in the area has lost almost all of his hives,” Bruce’s dad replied. After a semester of introductory entomology at Washington State University and a childhood spent in an apple orchard, Bruce knew that this was bad. Bees were necessary to pollinate apple trees to produce the fruit. T ey pollinated over 130 diferent food crops, such as berries, beans, nuts, melons, and tree fruit. In fact, bees were responsible for over $15 billion in agricultural products in the United States alone. Without bees, there would be none of these foods. And that included apples—which were paying for Bruce’s college education! Bruce thought for a moment. “Can you call anyone from outside the area?” he asked. “If we can fnd someone—but, even if we could, it might be too late. We only have a window of a week for pollination,” Bruce’s dad answered. “With the loss of so many hives around here, beekeepers from outside the area might be reluctant to come up here.” Bruce pondered this. Colony Collapse Disorder (CCD), the phrase used to describe the unexplained death or disappearance of a hive, could have over 60 diferent factors involved.
    [Show full text]