Anti-Malarial Drug Discovery from Australian Flora

Total Page:16

File Type:pdf, Size:1020Kb

Anti-Malarial Drug Discovery from Australian Flora Anti-malarial Drug Discovery from Australian Flora Author Robertson, Luke Published 2018-09 Thesis Type Thesis (PhD Doctorate) School School of Environment and Sc DOI https://doi.org/10.25904/1912/3530 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/381516 Griffith Research Online https://research-repository.griffith.edu.au Anti-malarial Drug Discovery from Australian Flora Luke Robertson B. Sc (Hons) Submitted in the fulfilment of the requirements of the degree of Doctor of Philosophy School of Environment and Science Griffith University, Australia September 2018 ABSTRACT Malaria is a mosquito-borne disease caused by the parasitic protozoan Plasmodium that is responsible for approximately half a million deaths every year. The vast majority of these deaths are caused by P. falciparum in Sub-Saharan Africa (SSA). Although most cases of P. falciparum malaria can currently be treated effectively using artemisinin-based combination therapies (ACTs), resistance to ACTs is beginning to emerge in South-East Asia. This resistance is likely to proliferate and spread into SSA, after which a public health catastrophe is likely to follow. There is currently no drug poised to replace ACTs as the front-line treatment for malaria and there is a need for the discovery of new drugs. Historically, natural products from plants have been our best source of anti-malarial drugs: the alkaloid quinine (from the bark of the Cinchona tree) and the sesquiterpene lactone artemisinin (from the leaves of Artemisia annua) have formed the backbone of anti-malarial chemotherapeutics for centuries. The primary goal of this thesis was to respond to the need for new anti-plasmodial compounds. This was achieved by collecting and screening a library of Australian Rutaceae species against P. falciparum, selecting species that showed high bioactivity and performing large-scale natural product purification. Isolated natural products were screened against chloroquine-resistant and sensitive P. falciparum and human embryonic kidney (HEK-293) cells to evaluate bioactivity and parasite selectivity. This forms the majority of the thesis (Chapters 2-6). Chapter 2 reports the initial collection, screening and fingerprinting of a library of 30 Australian Rutaceae species. Chemical fingerprinting using LC-MS was used to identify species that were most likely to contain new natural products. From these results, four species were selected for investigation: Clausena brevistyla (Chapter 2) Flindersia pimenteliana (Chapters 3-4), Acronychia pubescens (Chapter 5) and Pitaviaster haplophyllus (Chapter 6). This chapter also reports the isolation of two known pyranocoumarins from C. brevistyla. One of the pyranocoumarins showed potent and selective activity against P. falciparum, with IC50 values between 466 – 822 nM. Chapter 3 reports the chemical investigation of F. pimenteliana leaf material. From this plant, a new class of ascorbic-acid adduct indole alkaloids, pimentelamines A-C, were isolated along with one new indole alkaloid, 2-isoprenyl-N,N-dimethyltryptamine. Five known compounds were also isolated. Although the new natural products did not show strong bioactivity, three of the isolated bis-indole alkaloids, borreverine, 4-methylborreverine and dimethylisoborreverine, showed potent activity with IC50 values between 190 – 670 nM against P. falciparum. i Chapter 4 reports the isolation of three new isoborreverine-type alkaloids, 10,10’- dimethoxydimethylisoborreverine, 10-methoxydimethylisoborreverine and 10’- methoxydimethylisoborreverine from the bark of F. pimenteliana. Two known borreverine- type alkaloids were also isolated. The moderate anti-plasmodial activity of these alkaloids is reported, with IC50 values ranging from 959 – 2407 ng/mL. Further insights into structure- activity relationships of borreverine-type alkaloids are also discussed. Chapter 5 reports the chemical investigation of the roots of A. pubescens, from which a highly unusual oxidized furo[2,3-c]xanthene, acrotrione, was isolated along with two known acetophenones. Acrotrione is the first natural product of its class to be isolated. Moderate anti-plasmodial activity for the natural products is reported, with IC50 values ranging from 1.7 to 4.7 µM. Chapter 6 reports the isolation of one new quinoline alkaloid, leptanoine D, from P. haplophyllus. Nine known alkaloids were also isolated. The chemotaxonomic relationships between the monotypic Pitaviaster genus and the related Australian genera Euodia, Melicope and Acronychia are discussed. The secondary goal of this thesis was to investigate the factors that influence diversity of natural products in Australian plants. In recent years, natural product-driven drug discovery has seen a decrease in popularity in the pharmaceutical industry, part of which has been caused by the repeated isolation of known natural products. In response to this, there is a requirement for the development of new ideas that expedite the discovery of new natural products. Some recent publications have noted that natural product diversity is positively correlated with diversity of plant-herbivore communities. This may suggest that plants in regions of high biotic stress (i.e. rainforests) should be the focal point of terrestrial plant natural product drug discovery. We aimed to validate this hypothesis by using the Australian Rutaceae genus Flindersia as a case study. Contrary to expectations, our results showed that Flindersia species growing in arid regions of central Australia produced a significantly higher number of structurally unique alkaloids than rainforest species. These unexpected results highlight the potential of the Australian arid zone as a source of new natural products. ii STATEMENT OF ORIGINALITY This work has not previously been submitted for a degree or diploma at any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. X Luke P. Robertson (Signed) (Date) 20/11/2018 iii Table of Contents ABSTRACT ....................................................................................................................................... i STATEMENT OF ORIGINALITY ........................................................................................................ iii ABBREVIATIONS ............................................................................................................................ vi ALL PAPERS INCLUDED ARE CO-AUTHORED ................................................................................ vii ACKNOWLEDGEMENTS ................................................................................................................. ix Chapter 1 – Introduction ............................................................................................................... 1 1.1 Introduction to Malaria ....................................................................................................... 1 1.2 Current Malaria Chemotherapeutics .................................................................................. 4 1.2.1 Amino-alcohols (quinine, mefloquine, lumefantrine) .................................................. 5 1.2.2 4-Aminoquinolines (chloroquine, amodiaquine, piperaquine, pyronaridine, naphthoquine) ....................................................................................................................... 7 1.2.3 8-Aminoquinolines (primaquine) ............................................................................... 10 1.2.4 Sesquiterpene lactones (artemisinin, dihydroartemisinin, artemether, artesunate, arteether) ............................................................................................................................ 11 1.2.5 Diaminopyrimidines (pyrimethamine) ....................................................................... 14 1.2.6 Sulfonamides (sulfadoxine) ........................................................................................ 14 1.2.7 Biguanides (proguanil) ............................................................................................... 15 1.2.8 Napthoquinones (atovaquone) .................................................................................. 17 1.2.9 Antibiotics (doxycycline, tetracycline, clindamycin) .................................................. 18 1.3 Artemisinin Resistance ...................................................................................................... 19 1.4 Anti-malarial Drug Discovery............................................................................................. 22 1.4.1 Current and Future Efforts ......................................................................................... 22 1.4.2 The Role of Natural Products in Drug Discovery ........................................................ 23 1.5 Natural Product Drug Discovery: Challenges .................................................................... 26 1.5.1 Discovering Novel Structures ..................................................................................... 26 1.5.2 Ecology as a Plant Selection Tool ............................................................................... 27 1.5.3 Sampling from Harsh Environments .......................................................................... 27 1.6 Natural Products from Plants ...........................................................................................
Recommended publications
  • NSW Weeds Conference Program
    16th NSW Weeds Conference Proceedings 18th - 21st of July, 2011 Pacific Bay Conference Centre, Coffs Harbour Proudly hosted by Thank you to our Gold Sponsors Silver Sponsor Bronze Sponsors Introduction: The NSW Weeds Conference held in Coffs harbour 18-22 June 2011, is the 16th in a series organised by NSW Department of Primary Industries in partnership with various other organisations. The 2011 Conference was organised in partnership with Coffs Harbour City Council, NSW North Coast Weeds Advisory Committee, The Weed Society of NSW Inc. and NSW Weed Officers Association. Organising Committee: Rod Ensbey, NSW Department of Primary Industries Birgitte Verbeek, NSW Department of Primary Industries Tony Cook, NSW Department of Primary Industries Warwick Felton, Weeds Society of New South Wales Inc. Tim Scanlon, National Parks & Wildlife Service Reece Luxton, Clarence Valley Council David Merrikin, Northern Rivers Catchment Management Authority Ian Turnbull, Bellingen Shire Council Barry Powells, Coffs Harbour City Council Conference organiser: Michelle Aubert, Coffs Harbour City Council Citation: Proceedings of 16th NSW Weeds Conference, Coffs Harbour, July 2011 Disclaimer: The contents of these proceedings have undergone limited editorial or peer review. Papers have been critiqued (reviewers) for incorrect information, excessively controversial content and politically sensitive or libellous information prior to their publication. Paper Reviewers: Rod Ensbey Birgitte Verbeek Elissa van Oosterhout Phillip Blackmore Alan Maguire Peter Gray Tony Cook ISBN 978 1 74256 211 7 Monday 18th of July Registration from 4.30pm – Foyer Pacific Bay Conference Centre. Welcome Reception 5.30pm – 7.00pm Amongst the trade display, Pacific Bay Conference Centre. Day 1 – Tuesday 19th of July Opening Session - Auditorium Chair Bruce Christie, Principal Director Biosecurity NSW DPI 8.30 Welcome to Country 8.35 Conference Welcome – Mayor Keith Rhoades, Coffs Harbour City Council, President of the Local Government Association 8.45 Conference Opening - Minister for Primary Industries, Hon.
    [Show full text]
  • June 2019 Number 191
    June 2019 Number 191 In this issue... June Excursion..................................1 9 June - World Swallowtail Day.............................................................2 Orchard Swallowtail.............2 Ulysses Swallowtail.................3 Cairns Birdwing........................3 Amorphophallus - Camouflagued or just pretty? .......................................................................4 In flower this month......................5 What's Happening.........................6 The rare Megahertzia amplexicaulis in cultivation at Bayview Heights. Photo by Anthony Lagois via Facebook. Cairns Branch.............................6 Townsville Branch....................6 Tablelands Branch...................6 June Excursion June's excursion will take us to the private garden of Anthony Lagois and Brian Moran. Situated on the Cairns hillslopes in Bayview Heights, the garden contains a unique and expanding collection of native rainforest plants. Many things grown here are rarely seen in cultivation. This month's excursion will commence a little earlier than usual - 10 a.m. See the last page for directions and parking instructions. Page 1 SGAP Cairns Branch - Newsletter 191 9 June - World Swallowtail Day The British "Swallowtail and Birdwing Butterfly Trust" have declared 9 June 2019 to be the World Swallowtail Day. This British conservation initiative provides an opportunity to discuss some of our native swallowtail butterflies, and the native plants they eat. Britain's swallowtail butterfly, Papilio machaon is the island nation's
    [Show full text]
  • Ripple-Leaf Muttonwood (Rapanea Species a Richmond River) July 2004 © NSW Department of Environment and Conservation, 2004
    Approved NSW & National Recovery Plan Ripple-leaf Muttonwood (Rapanea species A Richmond River) July 2004 © NSW Department of Environment and Conservation, 2004. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from NSW Department of Environment and Conservation. NSW Department of Environment and Conservation 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 9585 6444 www.nationalparks.nsw.gov.au Requests for information or comments regarding the recovery program for the Ripple-leaf Muttonwood (Rapanea species A Richmond River) are best directed to: The Ripple-leaf Muttonwood Recovery Co-ordinator Threatened Species Unit, North East Branch NSW Department of Environment and Conservation Locked Bag 914 Coffs Harbour NSW 2450 Tel: 02 6651 5946 Cover illustrator: Kersten Tuckey This plan should be cited as follows: NSW Department of Environment and Conservation (2004), Approved Recovery Plan for the Ripple-leaf Muttonwood (Rapanea species A Richmond River), NSW Department of Environment and Conservation, Hurstville. ISBN 1741221382 Approved Recovery Plan Ripple-leaf Muttonwood Recovery Plan for the Ripple-leaf Muttonwood (Rapanea species A Richmond River) Executive Summary This document constitutes the formal National and New South Wales State Recovery Plan for the Ripple-leaf Muttonwood (Rapanea species A Richmond River (J.H. Maiden & J.L. Boorman NSW 26751)) and, as such, considers the conservation requirements of the species across its known range.
    [Show full text]
  • A Study Investigating the Biodiversity Value of a Native Timber Plantation Landscape in Papua New Guinea
    ResearchOnline@JCU This file is part of the following reference: Pryde, Elizabeth Clare (2014) Tropical production landscapes and conservation: a study investigating the biodiversity value of a native timber plantation landscape in Papua New Guinea. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/43784/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/43784/ Tropical production landscapes and conservation: a study investigating the biodiversity value of a native timber plantation landscape in Papua New Guinea Thesis submitted by Elizabeth Clare Pryde B.Sc.Hons. (University of Melbourne) On 29th August 2014 For the Degree of Doctor of Philosophy In the College of Marine and Environmental Sciences James Cook University, Cairns To my magical daughter Amelia STATEMENT OF THE CONTRIBUTION OF OTHERS Research funding • The Australian Pacific Science Foundation (APSF) • Oregon State Zoo • Skyrail Rainforest Foundation • Wentworth Group of Concerned Scientists • James Cook University, Australia Stipend • Australian Postgraduate Award Supervision • Professor Steve Turton • Dr James Moloney Study design and analytical support • Dr John Kanowski (vegetation data collection) • Guy Dutson (bird data collection) • Dr Dale Nimmo (Chapter
    [Show full text]
  • Specified Protected Matters Impact Profiles (Including Risk Assessment)
    Appendix F Specified Protected Matters impact profiles (including risk assessment) Roads and Maritime Services EPBC Act Strategic Assessment – Strategic Assessment Report 1. FA1 - Wetland-dependent fauna Species included (common name, scientific name) Listing SPRAT ID Australasian Bittern (Botaurus poiciloptilus) Endangered 1001 Oxleyan Pygmy Perch (Nannoperca oxleyana) Endangered 64468 Blue Mountains Water Skink (Eulamprus leuraensis) Endangered 59199 Yellow-spotted Tree Frog/Yellow-spotted Bell Frog (Litoria castanea) Endangered 1848 Giant Burrowing Frog (Heleioporus australicus) Vulnerable 1973 Booroolong Frog (Litoria booroolongensis) Endangered 1844 Littlejohns Tree Frog (Litoria littlejohni) Vulnerable 64733 1.1 Wetland-dependent fauna description Item Summary Description Found in the waters, riparian vegetation and associated wetland vegetation of a diversity of freshwater wetland habitats. B. poiciloptilus is a large, stocky, thick-necked heron-like bird with camouflage-like plumage growing up to 66-76 cm with a wingspan of 1050-1180 cm and feeds on freshwater crustacean, fish, insects, snakes, leaves and fruit. N. oxleyana is light brown to olive coloured freshwater fish with mottling and three to four patchy, dark brown bars extending from head to tail and a whitish belly growing up to 35-60 mm. This is a mobile species that is often observed individually or in pairs and sometimes in small groups but does not form schools and feed on aquatic insects and their larvae (Allen, 1989; McDowall, 1996). E. leuraensis is an insectivorous, medium-sized lizard growing to approximately 20 cm in length. This species has a relatively dark brown/black body when compared to other Eulamprus spp. Also has narrow yellow/bronze to white stripes along its length to beginning of the tail and continuing along the tail as a series of spots (LeBreton, 1996; Cogger, 2000).
    [Show full text]
  • TELOPEA Publication Date: 26 September 1990 Til
    Volume 4(1): 33–35 TELOPEA Publication Date: 26 September 1990 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19904915 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) 33 A new species and new combinations in Melicope (Rutaceae) in New South Wales T.G. Hartley Abstract Hartley, T.G. (Australian National Herbarium, Division of Plant Industry, CSIRO, G.P.O. Box 1600, Canberra, A.CT. 2601) 1990. A new species and new combinations in Melicope (Rutaceae) in New South Wales. Telopea 4(1): 33-35. Melicope hayesii T. Hartley is described as new and new combi­ nations in Me/icope are made for three species previously included in Euodia. Melicope J.R. & G. Forster and Euodia J.R. & G. Forster are being revised. The notes that follow are provided so that the names are available for use in the forthcoming Flora of New South Wales. The new classification of Melicope and Euodia has been discussed by Hartley (1981) and Hartley and Stone (1989). Melicope hayesii T. Hartley, sp. nov. Arbor 5-18 malta; ramulis et foliis glabris; foliis trifoliolatis, 6.5-16 cm longis; petiolo, 2-6 cm longo; lamina foliolorum lateralium ovato-elliptica, anguste ovato-elliptica, elliptica, vel anguste elliptica lamina terminali elliptica vel anguste elliptica, 3.7-9 x 1.2-4 cm; inflorescentiis axillaribus, multifloris, 2.5-6 x 2.5-5 cm, axe et ramis glabris vel fere glabris, pedicellis glabris vel sparse et minute puberulis, 2-4.5 mm longis; floribus bisexualibus; petalis albis, abaxialiter glabris, adaxialiter in 1/2 proximali villosis, 3-3.5 mm longis, caducis; staminibus 4; gynoecio glabro; carpellis fructificantibus in 1/5 proximali connatis, divergentibus, c.
    [Show full text]
  • New Plant Records for the Hawaiian Islands 2010–20111
    Records of the Hawaii Biological Survey for 2011. Edited by 27 Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 113: 27 –54 (2012) New plant records for the Hawaiian Islands 2010 –2011 1 DANielle FRoHliCH 2 & A lex lAU 2 O‘ahu Early Detection, Bishop Museum, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704; emails: [email protected]; [email protected] o‘ahu early Detection here documents 26 new naturalized records, 8 new state records, 31 new island records, 1 range extension, and 2 corrections found by us and other indi - viduals and agencies. in addition, several species showing signs of naturalization are men - tioned. A total of 42 plant families are discussed. information regarding the formerly known distribution of flowering plants is based on the Manual of the flowering plants of Hawai‘i (Wagner et al . 1999) and information subse - quently published in the Records of the Hawai ‘i Biological Survey . Voucher specimens are deposited at Bishop Museum’s Herbarium Pacificum (BiSH), Honolulu, Hawai‘i. Acanthaceae Megaskepasma erythroclamys lindau New island record This species, which was previously found naturalizing on o‘ahu, can be distinguished by its 1 –2" long showy burgundy bracts and white, tubular, 2-lipped corollas with 2 fertile stamens (Staples & Herbst 2005). Parker & Parsons (this volume) report this species as naturalized on Hawai‘i island. Material examined . KAUA ‘I: Hā‘ena, in neighborhood makai of highway, near Tunnels Beach, UTM 442390, 2457621. Coastal residential setting; sparingly-branched shrub to 6 ft tall, growing out of a hedge. inflorescence bracts magenta. Species is planted as an ornamental and sparingly natural - ized in the area, 9 Mar 2010, OED 2010030904.
    [Show full text]
  • Biodiversity Assessment of the PNG LNG Upstream Project Area, Southern Highlands and Hela Provinces, Papua New Guinea
    Biodiversity assessment of the PNG LNG Upstream Project Area, Southern Highlands and Hela Provinces, Papua New Guinea Edited by Stephen Richards ISBN: 978-0-646-98050-8 (PDF version) Suggested citation: Richards, S.J. (Editor) 2017. Biodiversity Assessment of the PNG LNG Upstream Project Area, Southern Highlands and Hela Provinces, Papua New Guinea. ExxonMobil PNG Limited. Port Moresby. © 2017 ExxonMobil PNG Cover image: Formerly considered a bird-of-paradise, the Crested Satinbird (Cnemophilus macgregorii) is now known to belong to a small family of birds that occurs only in New Guinea’s central cordillera. Not previously reported from the PNG LNG Project Area, an isolated population of this restricted range species was found in the higher elevation forests at the western end of Hides Ridge. This bird was banded and released as part of the bird survey. PNG LNG is operated by a subsidiary of ExxonMobil in co-venture with: Biodiversity Assessment of the PNG LNG Upstream Project Area, Southern Highlands and Hela Provinces, Papua New Guinea Stephen Richards (Editor) TABLE OF CONTENTS Participants ...........................................................................................................................................................................................i Acknowledgements ............................................................................................................................................................................i Acronyms and Abbreviations ...........................................................................................................................................................ii
    [Show full text]
  • Report on the Vegetation of the Proposed Blue Hole Cultural, Environmental & Recreation Reserve
    Vegetation Report on the Proposed Blue Hole Cultural, Environmental & Recreation Reserve Report on the Vegetation of the Proposed Blue Hole Cultural, Environmental & Recreation Reserve 1.0 Introduction The area covered by this report is described as the proposed Lot 1 on SP144713; Parish of Alexandra; being an unregistered plan prepared by the C & B Group for the Douglas Shire Council. This proposed Lot has an area of 1.394 hectares and consists of the Flame Tree Road Reserve and part of a USL, which is a small portion of the bed of Cooper Creek. It is proposed that the Flame Tree Road Reserve and part of the USL be transferred to enable the creation of a Cultural, Environmental and Recreation Reserve to be managed in Trust by the Douglas Shire Council. The proposed Cultural, Environmental and Recreation Reserve will have an area of 1.394 hectares and will if the plan is registered become Lot 1 of SP144713; Parish of Alexandra; County of Solander. It is proposed that three Easements A, B & C over the proposed Lot 1 of SP144713 be created in favour of Lot 180 RP739774, Lot 236 RP740951, Lot 52 of SR537 and Lot 51 SR767 as per the unregistered plan SP 144715 prepared by the C & B Group for the Douglas Shire Council. 2.0 Trustee Details Douglas Shire Council 64-66 Front Street Mossman PO Box 357 Mossman, Qld, 4873 Phone: (07) 4099 9444 Fax: (07) 4098 2902 Email: [email protected] Internet: www.dsc.qld.gov.au 3.0 Description of the Subject Land The “Blue Hole” is a local name for a small pool in a section of Cooper Creek.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]
  • Rutaceae) for the Austral Islands
    A peer-reviewed open-access journal PhytoKeys 39: 77–86 (2014)Melicope balgooyi Appelhans, W.L. Wagner & K.R. Wood... 77 doi: 10.3897/phytokeys.39.7691 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Melicope balgooyi Appelhans, W.L. Wagner & K.R. Wood, a new species and new record in Melicope section Melicope (Rutaceae) for the Austral Islands Marc S. Appelhans1, Warren L. Wagner2, Kenneth R. Wood3 1 Department of Systematic Botany, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany 2 Department of Botany, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA 3 National Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, HI 96741, USA Corresponding author: Marc S. Appelhans ([email protected]) Academic editor: H. Schaefer | Received 10 April 2014 | Accepted 21 July 2014 | Published 25 July 2014 Citation: Appelhans MS, Wagner WL, Wood KR (2014) Melicope balgooyi Appelhans, W.L. Wagner & K.R. Wood, a new species and new record in Melicope section Melicope (Rutaceae) for the Austral Islands. PhytoKeys 39: 77–86. doi: 10.3897/phytokeys.39.7691 Abstract Melicope balgooyi, a new species of Melicope (Rutaceae) is described. It is known only from the Austral Islands in the South Pacific (French Polynesia). However, it is not closely related to the other two species previously known from the Austral Islands, which are part of Melicope section Vitiflorae. The new spe- cies belongs to Melicope section Melicope and is most closely related to species from New Zealand, the Kermadec Islands, and the Society Islands.
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]