United States Patent (19) (11) 4,061,723 Feser Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11) 4,061,723 Feser Et Al United States Patent (19) (11) 4,061,723 Feser et al. 45) Dec. 6, 1977 (54 PROCESS FOR PREPARING 58) Field of Search ........................ 423/276, 240, 293 CONCENTRATED TETRAFLUOROBORIC (56) References Cited ACD U.S. PATENT DOCUMENTS Inventors: Manfred Feser, Frankfurt am Main; (75) 2,526,777 10/1950 Smith et al. ..................... 423/240 X Egon Joerchel, Hochheim, Main; 3,353,911 1 1/1967 Moller et al. .................... 423/240 X Jirgen Korinth, Hofheim, Taunus, all 3,920,825 1 1/1975 Becher et al. ........................ 423/276 of Germany 3,995,005 1 1/i976 Teller ............................... 423/240 X (73) Assignee: Hoechst Aktiengesellschaft, Primary Examiner-G. O. Peters Frankfurt am Main, Germany Attorney, Agent, or Firm-Curtis, Morris & Safford (21) Appl. No.: 741,399 57 ABSTRACT 22 Filed: Nov. 12, 1976 Process for the preparation of a concentrated tetra Foreign Application Priority Data fluoroboric acid from boron/oxygen compounds and (30) hydrogen fluoride by reacting a solid boron/oxygen Nov. 15, 1975 Germany ............................. 255433 compound with a hydrogen fluoride-containing gas. (51) Int. Cl’.............................................. CO1B 35/06 (52) U.S.C. .................................................... 423/276 10 Claims, 2 Drawing Figures U.S. Patent Dec. 6, 1977 Sheet 1 of 2 4,061,723 U.S. Patent Dec. 6, 1977 Sheet 2 of 2 4,061,723 u1 4,061,723 2 of hydrogen fluoride of the gases used is not critical for PROCESS FOR PREPARING CONCENTRATED the reaction. It may be in the range of 0.03 to 100% by TETRAFLUOROBORCACD volume. Surprisingly, the quantities of heat set free may readily be dissipated. Up to a content of 20% by volume The present invention relates to the preparation of 5 of HF the heat set free is absorbed by the residual gas concentrated tetrafluoroboric acid. and dissipated. The process may, consequently, be car Tetrafluoroboric acid is generally prepared by react ried out in especially good manner with contents of ing hydrofluoric acid of 40 to 50% strength with a hydrogen fluoride of this order of magnitude, especially slight excess over the calculated quantity of boric acid of about 0.05 to 10% by volume. External cooling with while intensively cooling according to the reaction 10 water is indicated for contents of hydrogen fluoride of equation: more than 20% by volume. w The form of the reaction vessel is not critical. Tubu HBO + 4 HF - HBF + 4 HO lar reactors are especially suitable. Horizontally ar The crude tetrafluoroboric acid containing consider ranged tubular reactors, for example, may be used, pro able quantities of water in said process is purified in 15 vided that they permit the withdrawal of the HBF4 complicated manner in most cases. In order to obtain produced through openings in the reactor shell at the tetrafluoroboric acid of high strength, there must be lowest portion of the bottom thereof. The process ac used as starting compounds reactants containing as little cording to the invention may be carried out especially water as possible, especially anhydrous hydrogen fluo advantageously when using vertical tubular reactors. ride, crystalline boric acid, metaboric acid, or boron 20 Thereby the hydrogen fluoride-containing gas is suit trioxide. As the reaction takes a highly exothermal ably introduced at the bottom. The gases liberated from course (27.7 Kcal are set free during the reaction of 1 HF leave the reactor at the upper part. The tetra mol of boric acid), difficulties arise for dissipating the fluoroboric acid is obtained as an aqueous solution, quantities of heat set free when adding solid boric acid which consequently, collects at the bottom. By intro to hydrofluoric acid. For this reason only absorption 25 ducing the hydrogen fluoride-containing gas at the top processes for HF using aqueous solutions of boric acid there is obtained a tetrafluoroboric acid containing con have been known hitherto. siderable quantities of hydroxyfluoroboric acids, as may In U.S. Pat. No. 3,353,911 there is disclosed a process be seen from the F/B ratio. in which a gaseous mixture consisting of hydrogen The dimensions of the reaction vessel are not critical chloride, hydrogen fluoride and hydrogen halide con 30 for the process of the invention either. They should pounds is reacted with a diluted aqueous boric acid however be such that they permit a control of the tem solution.U.S. Pat. No. 3,016,285 describes the selective ab perature increase caused by the quantity of hydrogen sorption of hydrogen fluoride from gas mixtures con fluoride introduced per unit of time. Aqueous concen 35 trated tetrafluoroboric acid begins to decompose at a taining SO, and HF by means of boric acid solutions in temperature of about 140 C. The reaction is therefore a spray tower. advantageously performed at a temperature below 140 According to French Pat. No. 1,427,940 potassium fluoride is added to the aqueous absorption solution of C, preferably below 110' C, especially below 80 C. A boric acid in order to improve the absorption of hydro temperature greater than 10 C, especially of 20' to 30 gen fluoride. 40 C is especially suitable. , Therefore, potassium tetrafluoroborate is formed. In The particle size of the corresponding boron/oxygen all cited processes there are formed only diluted solu compounds may vary within wide limits. Products hav tions of tetrafluoroboric acid containing moreover con ing a particle size of 0.5 to 5 mm may be used, for exam siderable quantities of an excess of free boric acid, ple. Greater particle sizes make a lengthening of the owing to the fact that the end of the reaction can only 45 reactor necessary, owing to the fact that the character be difficultly determined. istic reactivity of the compounds would be reduced in According to German Pat. No. 2,239,131 gases con this case. When the particle sizes are too small there is taining hydrogen fluoride are reacted with a solution of the danger of a blowing out of the reactive boron com solid boric acid in tetrafluoroboric acid of high pound by the gas current introduced. The reaction may strength. This process certainly permits preparation of 50 be carried out continuously or discontinuously. highly concentrated solutions of tetrafluoroboric acid, The invention will now be described, by way of ex but the forced circulation of hydroxyfluoroboric acid ample, with reference to the accompanying drawings makes necessary the use of specialized apparatus. which show diagrammatically an apparatus suitable for A process for the preparation of highly concentrated the carrying out the process of the invention. tetrafluoroboric acid has now been found that involves 55 FIG. 1 shows a possible arrangement of a vertical reacting hydrogen fluoride with boron/oxygen com tubular reactor for discontinuous operation. The reac pounds, which comprises reacting a solid boron/oxy tor is composed of a cylindrical tube 1 consisting of a gen compound directly with hydrogen fluoride-con material resistant to hydrogen fluoride, for example taining gases. Suitable boron/oxygen compounds are nickel, polyethylene or polypropylene, which contains especially boric acid, metaboric acid and boron oxide. a perforated plate 2, on which a charge 3 of the reacting The gas used may contain further components besides boron/oxygen compound, for example boron acid, is hydrogen fluoride, for example fluorine-containing hy placed. The hydrogen fluoride-containing gas is intro drocarbons, fluorochloro-alkanes, sulfur dioxide, hy duced into the reactor via conduit 4. The gases liberated drogen chloride or inert gases such as nitrogen. from HF leave at the top of the reactor via conduit 5. The process according to the invention permits both 65 Tetrafluoroboric acid formed during the reaction accu the preparation of highly concentrated tetrafluoroboric mulates in the lower part of the reactor as a liquid phase acid and a simultaneous substantially selective removal 6. It is withdrawn through a valve 7 continuously or of hydrogen fluoride from the gases used. The content discontinuously. The heat generated during the reaction 4,061,723 3 4. may be dissipated by a cooling jacket 8 provided with chamber the crude gas free from hydrogen fluoride, an inlet 9 for cooling water and an outlet 10 for heated which has been fed to the reactor via 17 meets with the cooling water. The reaction course may be observed by hydrochloric acid-containing tetrafluoroboric acid in a means of thermometers 11. When the diameter of the counter-current flow, is saturated with HCl and leaves cylinder is less than about 10 cm, the boron/oxygen the blowing chamber 15 at the upper part via conduit compound will not move downwardly. In this case an 20. Conduit 20 discharges into conduit 5. A body of increase of the temperature at the highest measuring HBF, 21 practically free from hydrochloric acid col point 11 indicates that the reactor must be charged lects at the lower bed of the blowing chamber 15. It is anew. The consumption of boric acid, boron trioxide or withdrawn continuously or discontinuously via the methaboric acid may also be previously calculated from 10 valve 12. the hydrogen fluoride content of the gases used. The invention may also be used when the gases con In the case of rather large tube diameters the charg taining hydrogen fluoride are obtained discontinuously, ing with boric acid and the formation of tetrafluorobo for example for the purification of receptacles, in which ric acid may also be carried out continuously. When HF had been stored. The purification may be carried working continuously two reactors may also be oper 15 out in such a way that air is drawn in through the recep ated alternately. tacle. The current of air containing hydrogen fluoride The process according to the invention permits re may then pass through the reactor as described above duction of the hydrogen fluoride content of the gases and be liberated from HF.
Recommended publications
  • Fluoboric Acid 48%
    Safety Data Sheet Fluoboric Acid 48% SECTION 1. IDENTIFICATION Product Identifier Fluoboric Acid 48% Other Means of Tetrafluoroboric acid Identification Product Code(s) FL1020 Product Family Inorganic solution Recommended Use Industrial. Restrictions on Use None known. Supplier Identifier Alphachem Limited, 2485 Milltower Court, Mississauga, Ontario, L5N 5Z6, (905) 821-2995 Emergency Phone No. CANUTEC CANADA, 613-996-6666, 24 Hours SDS No. 0841 SECTION 2. HAZARD IDENTIFICATION Classified according to Canada's Hazardous Products Regulations (WHMIS 2015) and the US Hazard Communication Standard (HCS 2012). Classification Skin corrosion - Category 1B; Serious eye damage - Category 1; Reproductive toxicity - Category 1B Label Elements Signal Word: Danger Hazard Statement(s): Causes severe skin burns and eye damage. May damage fertility or the unborn child. Precautionary Statement(s): Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Wash hands thoroughly after handling. Wear protective gloves/protective clothing/eye protection/face protection. Response: IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. IF ON SKIN: Wash with plenty of water. IF INHALED: Remove person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTRE or doctor. Storage: Store locked up. Disposal: Dispose of contents and container in accordance with local, regional, national and international regulations. Product Identifier: Fluoboric Acid 48% Date of Preparation: December 20, 2016 Page 01 of 06 Disposal: Dispose of contents and container in accordance with local, regional, national and international regulations. Other Hazards None known. SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS Mixture: Chemical Name CAS No. % Other Identifiers Fluoboric Acid 16872-11-0 40 - 60 Tetrafluoroboric acid Boric acid 10043-35-3 1 - 2.5 Boracic acid SECTION 4.
    [Show full text]
  • A Preliminary Screening and Characterization of Suitable Acids for Sandstone Matrix Acidizing Technique: a Comprehensive Review
    Journal of Petroleum Exploration and Production Technology (2019) 9:753–778 https://doi.org/10.1007/s13202-018-0496-6 REVIEW PAPER - PRODUCTION ENGINEERING A preliminary screening and characterization of suitable acids for sandstone matrix acidizing technique: a comprehensive review Leong Van Hong1 · Hisham Ben Mahmud1 Received: 23 January 2018 / Accepted: 4 June 2018 / Published online: 11 June 2018 © The Author(s) 2018 Abstract Matrix acidizing is a broadly developed technique in sandstone stimulation to improve the permeability and porosity of a bottom-hole well. The most popular acid used is mud acid (HF–HCl). It is a mixture of hydrofluoric acid and hydrochloric acid. However, one of the conventional problems in sandstone acidizing is that mud acid faces significant issues at high temperature such as rapid rate of reaction, resulting in early acid consumption. This downside has given a negative impact to sandstone acidizing as it will result in not only permeability reduction, but can even extend to acid treatment failure. So, the aim of this study is to provide a preliminary screening and comparison of different acids based on the literature to optimize the acid selection, and targeting various temperatures of sandstone environment. This paper has comprehensively reviewed the experimental works using different acids to understand the chemical reactions and transport properties of acid in sandstone environment. The results obtained indicated that fluoroboric acid(HBF 4) could be useful in enhancing the sandstone acidizing process, although more studies are still required to consolidate this conclusion. HBF4 is well known as a low damaging acid for sandstone acidizing due to its slow hydrolytic reaction to produce HF.
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Safety Data Sheet
    Safety Data Sheet Page 1/5 per OSHA HazCom 2012 Printing date 11/24/2015 Reviewed on 08/18/2014 1 Identification Product identifier Product name: Tetrafluoroboric acid, ca 50% w/w aqueous solution Stock number: L14037 Relevant identified uses of the substance or mixture and uses advised against. Identified use: SU24 Scientific research and development Details of the supplier of the safety data sheet Manufacturer/Supplier: Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Information Department: Health, Safety and Environmental Department Emergency telephone number: During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (866) 928-0789. 2 Hazard(s) identification Classification of the substance or mixture in accordance with 29 CFR 1910 (OSHA HCS) GHS06 Skull and crossbones Acute Tox. 3 H301 Toxic if swallowed. GHS05 Corrosion Skin Corr. 1B H314 Causes severe skin burns and eye damage. Hazards not otherwise classified No information known. Label elements GHS label elements The product is classified and labeled in accordance with 29 CFR 1910 (OSHA HCS) Hazard pictograms GHS05 GHS06 Signal word Danger Hazard-determining components of labeling: Tetrafluoroboric acid Hazard statements H301 Toxic if swallowed. H314 Causes severe skin burns and eye damage. Precautionary statements P260 Do not breathe dust/fume/gas/mist/vapours/spray. P301+P310 IF SWALLOWED: Immediately call a POISON CENTER/ doctor/… P303+P361+P353 If on skin (or hair): Take off immediately all contaminated clothing.
    [Show full text]
  • Acutely / Extremely Hazardous Waste List
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extemely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extemely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extemely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extemely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extemely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extemely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extemely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extemely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extemely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extemely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extemely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • From Natural Oils to Epoxy Resins: a New Paradigm in Renewable Performance Materials
    From Natural Oils to Epoxy Resins: A New Paradigm in Renewable Performance Materials Dragana Radojčić Pittsburg State University Jian Hong Pittsburg State University Zoran S. Petrovic ( [email protected] ) Pittsburg State University Research Article Keywords: Epoxidized oils, cationic polymerization, highly cross-linked epoxy resins Posted Date: May 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-518125/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Polymers and the Environment on July 16th, 2021. See the published version at https://doi.org/10.1007/s10924-021-02228-w. From Natural Oils to Epoxy Resins: A New Paradigm in Renewable Performance Materials Dragana Radojčić†, Jian Hong and Zoran S Petrović* Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS, USA †Current address: Johnson Controls Inc., Marinette, WI 54143, [email protected] *Corresponding author: [email protected] 1 Abstract The direct conversion of natural products to useful engineering materials is desirable from both economic and environmental considerations. We are describing the synthesis and properties of 100 % oil-based epoxy resins generated from three epoxidized oils. The catalyst, tris(pentafluorophenyl)borane (B(C6F5)3) in toluene, allowed for controlled cationic polymerization at a very low concentration. Epoxidized oils (derived from triolein, soybean, and linseed oil) had varying epoxy content, rendering resins of different cross-link density. The polymerization was carried out at room temperature followed by post-curing at elevated temperature to speed up conversion. Epoxy resins were amorphous transparent glasses with glass transitions below glass transitions and hard rubbers above.
    [Show full text]
  • A Case Study on 1,5-Diphenyl-3-(P-Iodophenyl)-Verdazyl Focusing on Magnetism, Electron Transfer and the Applicability of the Sonogashira-Hagihara Reaction
    molecules Article Verdazyls as Possible Building Blocks for Multifunctional Molecular Materials: A Case Study on 1,5-Diphenyl-3-(p-iodophenyl)-verdazyl Focusing on Magnetism, Electron Transfer and the Applicability of the Sonogashira-Hagihara Reaction Hannah Jobelius 1, Norbert Wagner 2, Gregor Schnakenburg 2 and Andreas Meyer 1,3,* ID 1 Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany; [email protected] 2 Institute of Inorganic Chemistry, University of Bonn, 53121 Bonn, Germany; [email protected] (N.W.); [email protected] (G.S.) 3 Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany * Correspondence: [email protected]; Tel.: +49-(0)551-201-1380 Received: 28 June 2018; Accepted: 16 July 2018; Published: 18 July 2018 Abstract: This work explores the use of Kuhn verdazyl radicals as building blocks in multifunctional molecular materials in an exemplary study, focusing on the magnetic and the electron transfer (ET) characteristics, but also addressing the question whether chemical modification by cross-coupling is possible. The ET in solution is studied spectroscopically, whereas solid state measurements afford information about the magnetic susceptibility or the conductivity of the given samples. The observed results are rationalized based on the chemical structures of the molecules, which have been obtained by X-ray crystallography. The crystallographically observed molecular structures as well as the interpretation based on the spectroscopic and physical measurements are backed up by DFT calculations. The measurements indicate that only weak, antiferromagnetic (AF) coupling is observed in Kuhn verdazyls owed to the low tendency to form face-to-face stacks, but also that steric reasons alone are not sufficient to explain this behavior.
    [Show full text]
  • Thai Nama Na Utuli Minuta U Mini
    THAI NAMA NAUS009903028B2 UTULI MINUTA U MINI (12 ) United States Patent (10 ) Patent No. : US 9 , 903 ,028 B2 Stahl et al. (45 ) Date of Patent: Feb . 27, 2018 5 , 889 ,054 A 3 / 1999 Yu et al. ( 54 ) NITROXYL -MEDIATED OXIDATION OF 6 , 261 ,544 B1 7 / 2001 Coury et al . LIGNIN AND POLYCARBOXYLATED 8 , 969 ,534 B2 3 /2015 Stahl et al. PRODUCTS 2013/ 0040031 AL 2 /2013 Stecker et al. (71 ) Applicant: WISCONSIN ALUMNI RESEARCH (Continued ) FOUNDATION , Madison , WI (US ) FOREIGN PATENT DOCUMENTS (72 ) Inventors : Shannon S . Stahl, Madison , WI (US ) ; EP 1 722 431 A2 11 /2006 Mohammad Rafiee , Madison , WI (US ) KR 10 2002 0095383 * 12 /2002 .. .. .. .. .. D21C 3 / 00 ( 73 ) Assignee : WISCONSIN ALUMNI RESEARCH OTHER PUBLICATIONS FOUNDATION , Madison , WI (US ) Rahimi et al . , " Chemoselective Metal- Free Aerobic Alcohol Oxi ( * ) Notice : Subject to any disclaimer , the term of this dation in Lignin ,” J . Am . Chem . Soc . (no month , 2013 ) , vol. 135 , patent is extended or adjusted under 35 pp . 6415 -6418 . * U . S . C . 154 ( b ) by 0 days . (Continued ) ( 21 ) Appl . No . : 15 / 167 , 053 Primary Examiner — Edna Wong (74 ) Attorney , Agent, or Firm - Daniel A . Blasiole ; ( 22 ) Filed : May 27, 2016 DeWitt Ross & Stevens S . C . (65 ) Prior Publication Data (57 ) ABSTRACT US 2017/ 0342574 A1 Nov . 30 , 2017 Methods of selectively modifying lignin , polycarboxylated products thereof, and methods of deriving aromatic com (51 ) Int . Ci. pounds therefrom . The methods comprise electrochemically C08H 7700 ( 2011. 01 ) oxidizing lignin using stable nitroxyl radicals to selectively C25B 3 / 00 ( 2006 .01 ) oxidize primary hydroxyls on ß - 0 - 4 phenylpropanoid units C25B 3 /02 (2006 .01 ) to corresponding carboxylic acids while leaving the second ( 52 ) U .
    [Show full text]
  • SDS Contains All of the Information Required by the HPR
    SAFETY DATA SHEET Preparation Date: 07/13/2015 Revision Date: 09/21/2018 Revision Number: G3 1. IDENTIFICATION Product identifier Product code: F1075 Product Name: FLUOBORIC ACID, REAGENT Other means of identification Synonyms: Borate(1-), tetrafluoro-, hydrogen Borofluoric acid Acide fluoborique (French) Ácido fluobórico (Spanish) Hydrofluoboric acid Hydrogen tetrafluoroborate Hydrogen tetrafluoroborate(1-) Fluoroboric acid CAS #: 16872-11-0 RTECS # ED2685000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Catalyst for acetal synthesis and cellulose esters. Metal surface cleaning agent. an aluminum electrolytic finishing agent. Stripping solution. Intermediate in making Fluoroborate salt. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Considered a dangerous substance or mixture according to the Globally Harmonized System (GHS) Acute toxicity - Oral Category 3 Skin corrosion/irritation Category 1 Sub-category B Serious eye damage/eye irritation Category 1 Label elements Product code: F1075 Product name: FLUOBORIC ACID, 1 / 12 REAGENT Danger Hazard statements Toxic
    [Show full text]
  • Fluoroboric Acid, 48-50% Purified
    Safety Data Sheet Fluoroboric Acid, 48-50% Purified 1. PRODUCT AND COMPANY IDENTIFICATION Product Name: Fluoroboric Acid, 48-50% Purified Synonyms/Generic Names: Tetrafluoroboric Acid Product Number: 2310 Product Use: Industrial, Manufacturing or Laboratory use Manufacturer: Columbus Chemical Industries, Inc. N4335 Temkin Rd. Columbus, WI. 53925 For More Information Call: 920-623-2140 (Monday-Friday 8:00-4:30) In Case of Emergency Call: CHEMTREC - 800-424-9300 or 703-527-3887 (24 Hours/Day, 7 Days/Week) 2. HAZARDS IDENTIFICATION OSHA Hazards: Corrosive Target Organs: None Other Hazards: Lachrymator Signal Word: Danger Pictograms: GHS Classification: Skin corrosion Category 1A Serious eye damage Category 1 GHS Label Elements, including precautionary statements: Hazard Statements: H314 Causes severe skin burns and eye damage. Precautionary Statements: P260 Do not breathe dusts or mists. P264 Wash hands thoroughly after handling. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301+P330+P331 IF SWALLOWED: Rinse mouth. Do not induce vomiting. P303+P361+P353 IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. Revised on 03/25/2015 Page 1 of 6 P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a POISON CENTER/doctor/physician. P363 Wash contaminated clothing before reuse. P405 Store locked up. P501 Dispose of contents/container in accordance with local regulations. Potential Health Effects Eyes Causes eye burns. Inhalation May be harmful if inhaled.
    [Show full text]
  • Aqueous Geochemistry at Gigapascal Pressures: NMR Spectroscopy of Fluoroborate Solutions
    UC Davis UC Davis Previously Published Works Title Aqueous geochemistry at gigapascal pressures: NMR spectroscopy of fluoroborate solutions Permalink https://escholarship.org/uc/item/0283b3h3 Authors Ochoa, G Pilgrim, CD Kerr, J et al. Publication Date 2019 DOI 10.1016/j.gca.2018.09.033 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 244 (2019) 173–181 www.elsevier.com/locate/gca Aqueous geochemistry at gigapascal pressures: NMR spectroscopy of fluoroborate solutions Gerardo Ochoa a, Corey D. Pilgrim a, Julia Kerr a, Matthew P. Augustine a William H. Casey a,b,⇑ a Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA b Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA Received 27 April 2018; accepted in revised form 29 September 2018; Available online 10 October 2018 Abstract Aqueous geochemistry could be extended considerably if nuclear-magnetic resonance (NMR) methods could be adapted to study solutions at elevated temperatures and pressures. We therefore designed an NMR probe that can be used to study aque- ous solutions at gigapascal pressures. Fluoride solutions were chosen for study because 19F couples to other nuclei in the solu- tions (31P and 11B) in ways that make peak assignments unequivocal. Correspondingly, NMR spectra of 19F- and 11B were 19 collected on aqueous HBF4-NH4PF6 solutions to pressures up to 2.0 GPa. At pressure, peaks in the F spectra were clear and À À À assignable to the BF4 (aq), F (aq) and BF3OH (aq) ions, and these aqueous complexes varied in signal intensity with pres- 11 À À sure and time, for each solution.
    [Show full text]
  • Investigation Into Alternative Sample Preparation Techniques for the Determination of Heavy Metals in Stationary Source Emission Samples Collected on Quartz Filters
    Sensors 2014, 14, 21676-21692; doi:10.3390/s141121676 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Investigation into Alternative Sample Preparation Techniques for the Determination of Heavy Metals in Stationary Source Emission Samples Collected on Quartz Filters Sharon L. Goddard * and Richard J. C. Brown Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-20-8943-6272. External Editor: Ki-Hyun Kim Received: 26 September 2014; in revised form: 4 November 2014 / Accepted: 5 November 2014 / Published: 17 November 2014 Abstract: Monitoring stationary source emissions for heavy metals generally requires the use of quartz filters to collect samples because of the high temperature and high moisture sampling environment. The documentary standard method sample preparation technique in Europe, EN 14385, uses digestion in hydrofluoric acid and nitric acid (HF/HNO3) followed by complexing with boric acid (H3BO3) prior to analysis. However, the use of this method presents a number of problems, including significant instrumental drift during analysis caused by the matrix components, often leading to instrument breakdown and downtime for repairs, as well as posing significant health and safety risks. The aim of this work was to develop an alternative sample preparation technique for emissions samples on quartz filters. The alternative techniques considered were: (i) acid digestion in a fluoroboric acid (HBF4) and HNO3 mixture and (ii) acid extraction in an aqua regia (AR) mixture (HCl and HNO3). Assessment of the effectiveness of these options included determination of interferences and signal drift, as well as validating the different methods by measurement of matrix certified reference materials (CRMs), and comparing the results obtained from real test samples and sample blanks to determine limits of detection.
    [Show full text]