A Comparison of Radiation-Stress and Vortex-Force Representations

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Radiation-Stress and Vortex-Force Representations Under consideration for publication in J. Fluid Mech. 1 Wave-Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations By E M I L Y M. L A N E1 , J U A N M. R E S T R E P 02 A N D J A M E S C. Mc W I L L I A M S1;3 1Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567 U.S.A. 2Department of Mathematics and Department of Physics, University of Arizona, Tucson, AZ 85721 U.S.A. 3Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565 U.S.A. (Received 21 April 2005) The effects of wind-generated surface gravity waves on more slowly evolving long waves, currents and material distributions in stratified coastal waters are investigated using the wave-averaged, asymptotic equations developed in McWilliams et al. (2004), based on small wave slope and on scale separations in both time and horizontal space. Excluding non-conservative effects such as wave breaking, the lowest order radiation stress, intro- duced by Longuet-Higgins & Stewart (1960) and Hasselmann (1971), can be completely characterized in terms of wave set-up, forcing of long (infra-gravity) waves and an Eule- rian current whose divergence cancels that of the primary waves' Stokes drift. The vortex force of Craik & Leibovich (1976) and its generalization for inhomogeneous waves and Earth's rotation are shown to be the dominant wave-averaged effects on currents, and these effects can occur at higher order than the apparent leading order for the radiation stress. The leading-order, wave-averaged dynamical effects are completed with material advection by Stokes drift, modified pressure-continuity and kinematic surface bound- ary conditions, and parameterized representations of wave generation by the wind and breaking near the shoreline. 1. Introduction Surface gravity waves influence slowly evolving long waves, such as infra-gravity waves, as well as currents and material distributions in the ocean. This paper is an examination of the relation between two alternative representations of these wave-averaged effects in coastal waters in the absence of dissipative or forcing mechanisms. We denote the two representations as `radiation-stress' and `vortex-force.' The concept of radiation stress has helped explain such phenomena as wave set-up, surf beats, generation of longshore currents in the surf zone, and spectral transfers within the wave field. The vortex-force representation arose to explain Langmuir circulations through wave vorticity generation by the currents and vortex stretching by the waves' Lagrangian mean flow, the Stokes drift, but the representation is more generally germane. Formally the radiation-stress and vortex-force representations are equivalent, related through two alternative representations of the inertial acceleration (i.e., advection). The 2 E. M. Lane, J. M. Restrepo and J. C. McWilliams radiation-stress representation arises from the identity, U U = (UU) + U( U); (1.1) · r r · r · together with incompressibility, U = 0, while the vortex-force representation comes from the identity, r · U 2 U U = j j + ( U) U; (1.2) · r r 2 r × × where U is the Eulerian velocity vector. This leads to two ways of expressing the wave effects in an asymptotic framework based on a small wave slope and rapid wave oscillation. The radiation-stress representation views the wave-averaged effects of the waves on the current as the divergence of a stress tensor (hence the name) in some nominal way similar to how Reynolds stress enters time-averaged equations of turbulent fluid motion. The vortex-force representation decomposes the effect of the waves into two components, the gradient of a Bernoulli head and a vortex force. The Bernoulli head is essentially an adjustment to the pressure in accommodating incompressibility. After wave averaging, the vortex force is shown to represent an interaction between the vorticity of the flow and the Stokes drift. In McWilliams et al. (2004) (hereafter referred to as MRL04), we derived coupled equa- tions for wave-current interaction. These equations encompass all previous derivations within the vortex-force representation (Craik & Leibovich 1976; Leibovich 1977a,b, 1980; Huang 1979; Holm 1996; McWilliams & Restrepo 1999) when the asymptotic scaling is taken into account. The adoption of a specific asymptotic scaling, appropriate to coastal and open-ocean waters, is an important aspect of the derivation presented in MRL04, as is the decomposition of the complete dynamics into primary gravity waves, long waves with longer horizontal and temporal scales and the even more slowly evolving currents. This scaling is justified on the following premises: our intended setting is beyond the shoreline wave-breaking zone (i.e., the littoral or surf zone), in water where the typical depth times the primary wavenumber is not small. In the horizontal plane we assume that the dominant current and long-wave scales are kilometres or more and the time scales are hundreds of seconds or more (n.b., shelf currents have typical time scales of 1 days or weeks). We also assume that the currents' velocity ( 0:1 m s− ) and sea-level ∼ 1 fluctuation ( 0:1 m) are smaller than the waves' orbital motion ( 1 m s− ) and height ( 1 m). Thus,∼ in many situations and over most coastal and open-o∼ cean areas | strong tidal∼ flows and the surf zone being two of the few exceptions | there are clear sepa- rations between waves and currents in amplitude and horizontal space and time scales. This provides a rigorous basis for deriving the conservative wave-current interaction equa- tions without resorting to closure assumptions. Of course, any complete representation of wave-current interaction must also include their wind-generation as well as dissipative mechanisms such as wave breaking. Offshore, the wave breaking is a primary mechanism for conveying wind stress to currents, and nearshore it is a principal cause of littoral cur- rents. However, following MRL04, we focus here on conservative, unforced wave-current dynamics. The original work on radiation stress by Longuet-Higgins & Stewart (1960, 1961, 1962, 1964) and Hasselmann (1971) was done by averaging in an Eulerian reference frame, and it has an extensive subsequent literature (e.g., Bowen & Guza 1978; Longuet-Higgins 1970; Basco 1983; Mei 1989; Svendsen & Putrevu 1995). In this paper this representation will be compared with the vortex-force representation. Wave-current interactions have also been analysed using the Generalized Lagrangian Mean (GLM) (Andrews & McIntyre 1978a,b; Gjaja & Holm 1996) and in terms of other Wave-Current Interaction 3 averaging variants in a Lagrangian reference frame (Weber 1983; Jenkins 1987; Mellor 2003, 2004; Jenkins & Ardhuin 2004). In MRL04, we chose the Eulerian frame because of the conceptual simplicity of the Eulerian mean and because Eulerian means are now, and in the foreseeable future, more practical in relating to oceanic measurements and large-scale oceanic numerical models. If desired, the GLM velocity may be recovered from the Eulerian velocity to lowest order by the addition of Stokes drift. Because these are asymptotic quantities they will not exactly satisfy constraints such as conservation of total circulation, however this is of little consequence dynamically. Furthermore, regard- less of the choice of averaging, the question of how wave effects are represented is still pertinent. In the GLM frame, though, familiar vortex force terms may be hidden within the Lagrangian-averaged quantities. These two different reference frames (Eulerian and Lagrangian) lead to differences in the averages obtained. The Lagrangian mean velocity is equivalent to the Eulerian mean velocity plus a residual velocity, often identified as the Stokes velocity. Likewise, other Lagrangian averaged quantities differ from their Eulerian averaged counterparts, e.g., the pressure. Due to this difference, the evolution equation for the Lagrangian mean velocity encompasses the evolution equation for the Eulerian mean velocity but includes terms driving the evolution of the Stokes velocity in addition to wave forcing of the current. As shown in Section 4 this is analogous to the difference between the equations for the total transport T and the current transport Tc. When AndrewsD &E McIntyre (1978a) first developed the GLM formalism, they repre- sented wave-current effects in terms of the wave pseudomomentum p. GLM equations have also been derived where the wave effects are represented by the divergence of a radiation stress (Andrews & McIntyre 1978a; Groeneweg & Klopman 1998). For periodic waves, assuming time-averaging and a weak Coriolis force (all true in the MRL04 equa- tions), the wave pseudomomentum can be identified with the Stokes drift VSt (Leibovich 1980); (Andrews & McIntyre 1978a, Equation 3.8) may be converted to an equation for the Eulerian mean velocity. Leibovich (1980) showed that the conservative effects of this equation can be expressed as a vortex force and a pressure adjustment. In comparison, GLM equations that include stress divergence terms tend to be used for the Lagrangian- averaged velocity. When these equations are converted to Eulerian velocity, no stress divergence term is needed. This concurs with Section 5.2 that shows (at least in the vertically-integrated case) the divergence of the radiation stress is mainly the evolution of the Stokes drift. Mellor (2003) uses a wave-following coordinate system to calculate the three-dimensional equations for wave-current interactions. The average obtained this way is essentially a Generalized Lagrangian Mean. These equations are translated back into Cartesian coor- dinates in Mellor (2004). Mellor (2004) compares his equations with those in McWilliams & Restrepo (1999) (and thus by implication MRL04). There are obvious differences, such as a turbulent Reynolds stress closure and wind and surface pressure forcing, that simply are not included in the MRL04 analysis. The difference between the conservative wave effects in Mellor's equations compared to those in MRL04 is due to the different averaging techniques used.
Recommended publications
  • Acoustic Nonlinearity in Dispersive Solids
    ACOUSTIC NONLINEARITY IN DISPERSIVE SOLIDS John H. Cantrell and William T. Yost NASA Langley Research Center Mail Stop 231 Hampton, VA 23665-5225 INTRODUCTION It is well known that the interatomic anharmonicity of the propagation medium gives rise to the generation of harmonics of an initially sinusoidal acoustic waveform. It is, perhaps, less well appreciated that the anharmonicity also gives rise to the generation of a static or "dc" component of the propagating waveform. We have previously shown [1,2] that the static component is intrinsically linked to the acoustic (Boussinesq) radiation stress in the material. For nondispersive solids theory predicts that a propagating gated continuous waveform (acoustic toneburst) generates a static displacement pulse having the shape of a right-angled triangle, the slope of which is linearly proportional to the magnitude and sign of the acoustic nonlinearity parameter of the propagation medium. Such static displacement pulses have been experimentally verified in single crystal silicon [3] and germanium [4]. The purpose of the present investigation is to consider the effects of dispersion on the generation of the static acoustic wave component. It is well known that an initial disturbance in media which have both sufficiently large dispersion and nonlinearity can evolve into a series of solitary waves or solitons [5]. We consider here that an acoustic tone burst may be modeled as a modulated continuous waveform and that the generated initial static displacement pulse may be viewed as a modulation-confined disturbance. In media with sufficiently large dispersion and nonlinearity the static displacement pulse may be expected to evolve into a series of modulation solitons.
    [Show full text]
  • Nearshore Current Pattern and Rip Current Occurrence at Jungmun Beach, Jeju by Numerical Computation 1. Introduction
    한국항해항만학회지 제41권 제2호 J. Navig. Port Res. Vol. 41, No. 2 : 55-62, April 2017 (ISSN:1598-5725(Print)/ISSN:2093-8470(Online)) DOI : http://dx.doi.org/10.5394/KINPR.2017.41.2.55 Nearshore Current Pattern and Rip Current Occurrence at Jungmun Beach, Jeju by Numerical Computation Seung-Hyun An*․†Nam-Hyeong Kim *Coastal, Harbor and Disaster Prevention Research Institute, Sekwang Engineering Consultants Co., LTD. †Department of Civil Engineering, J eju National University, Jeju 63243, Korea Abstract : A nearshore current or a wave-induced current is an important phenomenon in a nearshore zone, which is composed of longshore, cross-shore, and rip currents. The nearshore current is closely related to the occurrence of coastal accidents by beachgoers. A considerable number of coastal accidents by beachgoers involving the rip current have been reported at Jungmun Beach. However, in studies and observations of the nearshore current of Jungmun Beach, understanding of the rip current pattern remains unclear. In this study, a scientific approach is taken to understand the nearshore current and the rip current patterns at Jungmun Beach by numerical computation for year of 2015. From results of numerical computation, the occurrence and spatial characteristics of the rip current, and the similarities between the rip current and incident wave conditions are analyzed. The primary results of this study reveal that the rip currents are frequently generated at Jungmun Beach, especially in the western parts of the beach, and that the rip currents often occur with a wave breaking height of around 0.5 ~ 0.7 m, a wave period of around 6 ~ 8 seconds, and a breaking angle of around 0 ~ 15 degrees.
    [Show full text]
  • CHAPTER 100 Another Approach to Longshore Current Evaluation M.A
    CHAPTER 100 Another approach to longshore current evaluation M.A. Losada, A. Sanchez-Arcilla and C. Vidal A simple model to predict the longshore current velocity at the breaker line on a beach with oblique wave incidence, is presented. The model balances driving and resistance terms (gradients of radiation and turbulent Reynolds stresses and bottom friction) to get a general expression for the velocity. This equation shows explicitely the influence of Iribarren's parameter on longshore current generation. It has been tested with field and laboratory data, obtaining a reasonable fit to measured values. The resulting (predictive) model is expected to be valid for any type of breakers though the calibration has been mainly done for spilling and plunging types, due to the scarcity of results for other breakers. 1.- INTRODUCTION Longshore currents in the surf zone have been acceptably modelled using the radiation stress concept (Longuet-Higgins,1970). The longshore-trust (Nw/m ) due to an oblique wave approach, given by the gradient of the radiation stress, is balanced (in stationary and longshore-uniform conditions) by bottom friction and horizontal mixing (Bowen, 1969), (Longuet-Higgins, 1970). The gradient of the radiation stress is evaluated using sinusoidal theory (as a first approximation for slowly varying depths) and turns out to be proportional to the local rate of energy dissipation, D (joules/(m x sec)), regardless of its origin. Inside the surf zone a significant fraction of D comes from wave breaking because the turbulence associated to the breaking process is responsible for most of the dissipated energy. Bottom friction plays a minor role in this context, being important only in special cases (e.g.
    [Show full text]
  • Chapter 187 Wave Breaking and Induced Nearshore
    CHAPTER 187 WAVE BREAKING AND INDUCED NEARSHORE CIRCULATIONS Ole R. S0rensen f, Hemming A. Schafferf, Per A. Madsenf, and Rolf DeigaardJ ABSTRACT Wave breaking and wave induced currents are studied in two horizontal dimen- sions. The wave-current motion is modelled using a set of Boussinesq type equations including the effects of wave breaking and runup. This is done with- out the traditional splitting of the phenomenon into a wave problem and a current problem. Wave breaking is included using the surface roller concept and runup is simulated by use of a modified slot-technique. In the environment of a plane sloping beach two different situations are studied. One is the case of a rip channel and the other concerns a detached breakwater parallel to the shoreline. In both situations wave driven currents are generated and circulation cells appear. This and many other nearshore physical phenomena are described qualitatively correct in the simulations. 1. INTRODUCTION State of the art models for wave driven currents are based on a splitting of the phenomenon into a linear wave problem, described e.g. by the mild-slope equation, and a current problem, described by depth-integrated flow equations including radiation stress. Wave-current interaction effects such as current re- fraction and wave blocking may be included in these systems by successive and iterative model executions. A more direct approach to the problem would be the use of a time do- main Boussinesq model which automatically includes the combined effects of wave-wave and wave-current interaction in shallow water without the need for explicit formulations of the radiation stress.
    [Show full text]
  • A Nonlinear Formulation of Radiation Stress and Applications to Cnoidal
    A Nonlinear Formulation of Radiation Stress and Applications to Cnoidal Shoaling Martin O. Paulsen Henrik Kalisch · g Abstract In this article we provide formulations of energy flux and radiation stress consistent with the scaling regime of the Korteweg-de Vries (KdV) equation. These quantities can be used to describe the shoaling of cnoidal waves approaching a gently sloping beach. The transformation of these waves along the slope can be described using the shoaling equations, a set of three nonlinear equations in three unknowns: the wave height H, the set-downη ¯ and the elliptic parameter m. We define a numerical algorithm for the efficient solution of the shoaling equations, and we verify our shoaling formulation by comparing with experimental data from two sets of experiments as well as shoaling curves obtained in previous works. Keywords: Surface waves KdV equation Conservation laws Radiation stress Set-down · · · · 1 Introduction In the present work, the development of surface waves across a gently sloping bottom is in view. Our main goal is the prediction of the wave height and the set-down of a periodic wave as it enters an area of shallower depth. This problem is known as the shoaling problem and has a long history, with contributions from a large number of authors going back to Green and Boussinesq. In order to reduce the problem to the essential factors, we make a number of simplifying as- sumptions. First, the bottom slope is small enough to allow the waves to continuously adjust to the changing depth without altering their basic shape or breaking up.
    [Show full text]
  • The Three-Dimensional Current and Surface Wave Equations
    1978 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 33 The Three-Dimensional Current and Surface Wave Equations GEORGE MELLOR Princeton University, Princeton, New Jersey (Manuscript received 26 April 2002, in ®nal form 4 March 2003) ABSTRACT Surface wave equations appropriate to three-dimensional ocean models apparently have not been presented in the literature. It is the intent of this paper to correct that de®ciency. Thus, expressions for vertically dependent radiation stresses and a de®nition of the Doppler velocity for a vertically dependent current ®eld are obtained. Other quantities such as vertically dependent surface pressure forcing are derived for inclusion in the momentum and wave energy equations. The equations include terms that represent the production of turbulence energy by currents and waves. These results are a necessary precursor for three-dimensional ocean models that handle surface waves together with wind- and buoyancy-driven currents. Although the third dimension has been added here, the analysis is based on the assumption that the depth dependence of wave motions is provided by linear theory, an assumption that is the basis of much of the wave literature. 1. Introduction pressure so that their results differ from mine and, after vertical integration, differ from the corresponding terms In the last several decades there has been signi®cant in Phillips (1977). They did not address three-dimen- progress in the understanding and numerical modeling sional effects on the wave energy equation. of ocean surface waves (e.g., Longue-Higgins 1953; To contrast the developments in this paper with con- Phillips 1977; WAMDI Group 1988; Komen et al.
    [Show full text]
  • 7 X 11 Long.P65
    Cambridge University Press 978-0-521-86028-4 - Waves in Oceanic and Coastal Waters Leo H. Holthuijsen Index More information Index absorption 294, 296 barrier 221 accelerometer 13 basin (wave-, tank) 181, 183 acquisition (spectrum) 51 Battjes method 101 action 221 Beaufort wind scale 190 balance (equation) 257, 261, 288, 335 Berkhoff mild-slope equation 217 density (spectrum) 261 Bernoulli equation 117 advective 111, 343 linearised 117 air 177 nonlinear 323 bubble 108 biphase 271, 273, 274 flow 178, 182, 183 blocking, current-induced 264 motion 182 Boltzmann integral 185 pressure 18, 178, 179 bore 281 airplane 19, 20, 21 bottom Airy (wave theory) 53, 107, 138 friction 109, 276, 295 aliasing 333 roughness 279, 296 alphabet, Greek 31 slope 74, 224, 243, 282 altimeter boundary condition 115, 116, 320, 323 acoustic 22 boundary condition laser 21 kinematic, bottom 115, 116, 320, 323 radar 22 kinematic, surface 114, 116, 319, 323 altimeter (radar) dynamic, surface, bottom 115, 117, 130, 142, 170, footprint (satellite) 22 320 wave height 22 boundary-element method 215, 240 amplitude boundary layer random 33, 45 atmospheric 147, 183 response 53, 54, 55 atmospheric (internal) 148 spectrum 34, 45 bottom 109, 276, 278 analysis Boussinesq (equations, model) 198, 241 cross-spectral 324 Bragg scatter 20, 270 spectral 324 breaking 188, 242, 276 Anderson–Darling test 89 criterion 189 anemometer, wind 146, 151 index 282 annual-maximum approach (long-term statistics) 85, wave types 242 98 breakwater 210, 213, 266, 288, 296 array breeze 151, 181 phase 17
    [Show full text]
  • Wave–Current Interaction: a Comparison of Radiation-Stress and Vortex-Force Representations
    1122 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 37 Wave–Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations E. M. LANE Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California J. M. RESTREPO Department of Mathematics, and Department of Physics, The University of Arizona, Tucson, Arizona J. C. MCWILLIAMS Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California (Manuscript received 10 May 2006, in final form 8 August 2006) ABSTRACT The vortex-force representation of the wave-averaged effects on currents is compared to the radiation- stress representation in a scaling regime appropriate to coastal and shelf waters. Three-dimensional and vertically integrated expressions for the conservative current equations are obtained in both representa- tions. The vortex-force representation decomposes the main wave-averaged effects into two physically understandable concepts—a vortex force and a Bernoulli head. The vortex force is shown to be the dominant wave-averaged effect on currents. This effect can occur at higher order than the apparent leading order for the radiation-stress representation. Excluding nonconservative effects such as wave breaking, the lowest-order radiation or interaction stress can be completely characterized in terms of wave setup, forcing of long (infragravity) waves, and an Eulerian current whose divergence cancels that of the primary wave Stokes drift. The leading-order, wave-averaged dynamical effects incorporate the vortex force together with material advection by Stokes drift, modified pressure-continuity and kinematic surface boundary condi- tions, and parameterized representations of wave generation by the wind and breaking near the shoreline.
    [Show full text]
  • Rogue Waves and Their Generating Mechanisms in Different Physical Contexts
    Physics Reports 528 (2013) 47–89 Contents lists available at SciVerse ScienceDirect Physics Reports journal homepage: www.elsevier.com/locate/physrep Rogue waves and their generating mechanisms in different physical contexts M. Onorato a,b, S. Residori c,∗, U. Bortolozzo c, A. Montina d, F.T. Arecchi e,f a Dipartimento di Fisica Generale, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino, Italy b INFN, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy c INLN, Université de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne, France d Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada e Dipartimento di Fisica, Università di Firenze, Italy f CNR-INO, largo E. Fermi 6, 50125 Firenze, Italy article info a b s t r a c t Article history: Rogue waves is the name given by oceanographers to isolated large amplitude waves, Accepted 19 December 2012 that occur more frequently than expected for normal, Gaussian distributed, statistical Available online 14 March 2013 events. Rogue waves are ubiquitous in nature and appear in a variety of different contexts. editor: G.I. Stegeman Besides water waves, they have been recently reported in liquid Helium, in nonlinear optics, microwave cavities, etc. The first part of the review is dedicated to rogue waves in the oceans and to their laboratory counterpart with experiments performed in water basins. Most of the work and interpretation of the experimental results will be based on the nonlinear Schrödinger equation, an universal model, that rules the dynamics of weakly nonlinear, narrow band surface gravity waves.
    [Show full text]
  • Numerical Simulation of Linear Wave Propagation, Wave-Induced Circulation, Sediment Transport and Beach Evolution Theofanis V. K
    Transactions on the Built Environment vol 40 © 1999 WIT Press, www.witpress.com, ISSN 1743-3509 Numerical simulation of linear wave propagation, wave-induced circulation, sediment transport and beach evolution Theofanis V. Karambas Aristotle University of Thessaloniki, Department of Civil Engineering, Division of Hydraulics and Environmental Eng. Thessaloniki, 54006, Greece Email: [email protected] Abstract In the present work two numerical models for linear wave propagation, wave induced circulation and sediment transport are presented. The wave model WAVE-L is based on the hyperbolic type mild slope equation and is valid for a compound wave field near coastal structures where the waves are subjected to the combined effects of shoaling, refraction, diffraction, reflection (total and partial) and breaking. Radiation stress components estimated from the hyperbolic wave model drive the depth averaged circulation model COAST for the description of the nearshore currents and sediment transport in the surf and swash zone. The model COAST is coupled with a 3D bed evolution model or with an one-line model to provide bathymetry or shoreline changes. 1. Introduction Many models exist for the evaluation of wave deformation in the coastal region but the most of them are based on the progressive wave assumption (period averaged refraction wave models) and employ elliptic or parabolic type differential equations which are in general difficult to numerically solve. Besides they are not valid for a compound wave field near coastal structures where the waves subject to the combined effects of shoaling, refraction, diffraction, reflection and breaking. Transactions on the Built Environment vol 40 © 1999 WIT Press, www.witpress.com, ISSN 1743-3509 264 Coastal Engineering and Marina Developments The evaluation of the wave field only is not sufficient for the design of coastal structures.
    [Show full text]
  • Formulation of the Undertow Using Linear Wave Theory
    Formulation of the undertow using linear wave theory Guannel, G., & Özkan-Haller, H. T. (2014). Formulation of the undertow using linear wave theory. Physics of Fluids, 26(5), 056604. doi:10.1063/1.4872160 10.1063/1.4872160 American Institute of Physics Publishing Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse PHYSICS OF FLUIDS 26, 056604 (2014) Formulation of the undertow using linear wave theory G. Guannel1,a) and H. T. Ozkan-Haller¨ 2 1School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon 97331, USA 2College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA (Received 6 September 2013; accepted 7 February 2014; published online 13 May 2014) The undertow is one of the most important mechanisms for sediment transport in nearshore regions. As such, its formulation has been an active subject of research for at least the past 40 years. Still, much debate persists on the exact nature of the forcing and theoretical expression of this current. Here, assuming linear wave theory and keeping most terms in the wave momentum equations, a solution to the undertow in the surf zone is derived, and it is shown that it is unique. It is also shown that, unless they are erroneous, most solutions presented in the literature are identical, albeit simplified versions of the solution presented herein. Finally, it is demonstrated that errors in past derivations of the undertow profile stem from inconsistencies between (1) the treatment of advective terms in the momentum equations and the wave action equation, (2) the expression of the mean current equation and the surface shear stress, and (3) the omission of bottom shear stress in the momentum equation.
    [Show full text]
  • Effect of Wave Radiation Stress in Storm Surge-Induced Inundation: a Case Study for the East Coast of India
    Pure Appl. Geophys. Ó 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-019-02379-x Pure and Applied Geophysics Effect of Wave Radiation Stress in Storm Surge-Induced Inundation: A Case Study for the East Coast of India 1 2 1 1 3 P. L. N. MURTY, A. D. RAO, K. SIVA SRINIVAS, E. PATTABHI RAMA RAO, and PRASAD K. BHASKARAN Abstract—Tropical cyclone-induced coastal inundation is a ecosystem and thickly populated coastal cities. Low- potential hazard for the east coast of India. In the present study, two lying coastal areas along the ECI are highly suscep- case studies are presented to examine the significance and impor- tance of wave radiation stress in storm surge modeling during two tible and vulnerable to the impact of storm surges due extreme weather events associated with the Phailin and Hudhud to landfalling tropical cyclones that originate in the cyclones. Model computations were performed using the advanced Bay of Bengal basin. The national weather agency circulation (ADCIRC) model and the coupled ADCIRC ? SWAN (Simulating Waves Nearshore) model for these two events. Mete- has categorized both Phailin and Hudhud cyclones as orological and astronomical forcing were used to simulate the very severe cyclonic storms (VSCS) that made hydrodynamic fields using the ADCIRC model run in a stand-alone landfall along the ECI near Gopalpur, Odisha and mode, whereas the coupled ADCIRC ? SWAN model also incorporated the wave radiation stress attributed from wave Visakhapatnam, Andhra Pradesh, respectively. These breaking effects. Cyclonic wind fields were generated using the two VSCS resulted in a trail of destruction during revised Holland model.
    [Show full text]