Baltika Excels in Arctic Ice Trials

Total Page:16

File Type:pdf, Size:1020Kb

Baltika Excels in Arctic Ice Trials Arctic Passion News No 10 September 2015 Baltika excels in Arctic ice trials The world's first oblique icebreaker surpassed all expectations Baltika surpassed all design criteria, even though the ice was stronger than typical when she was tested in ice in March–April 2015. Although sea ice. The oblique mode, which had Baltika was designed to operate primarily in the Gulf of Finland, never been tested before in real life, also she was taken to the Gulf of Ob, where the ice conditions are worked extremely well and the vessel more challenging than in the Baltic Sea, for ice trials. fulfilled all the design requirements. Baltika's maiden voyage began at her home port, St. Petersburg, on 6 March 2015. While on her way to Murmansk off the coast of Norway, the vessel encountered rough seas and winds up to 30 m/s. The seakeeping characteristics of the oblique icebreaker were good, and the owner was convinced thatBaltika is able to take part in rescue operations even in harsh weather. Ice trials "We departed for the ice trials from Murmansk on 20 March 2015 and sailed around the northern tip of Novaya Zemlya to the Gulf of Ob and close to the Sabetta terminal area," project manager Mika Hovilainen says. "Our purpose was firstly to demonstrate the vessel's abilities Ice trials were conducted in the Gulf of Ob during the worst winter conditions. The during the worst part of the year, and voyage took three weeks in total. secondly to perform official ice trials." The Aker Arctic team consisted of Mika The testing programme consisted of The thickness and strength of the ice was Hovilainen, research engineer Teemu performance tests in three ice measured in the areas where tests were Heinonen, and project engineers Esko thicknesses in ahead and astern carried out using both temperature and Huttunen and Tuomas Romu. In addition, directions as well as in the oblique mode. salinity profiles as well as beam tests. An there were representatives from the Various operational tests were also automatic measurement system was set builders, Arctech Helsinki Shipyard and carried out in order to determine the up to record ice loads on the ship's hull Yantar Shipyard JSC, as well as from the manoeuvrability and operational throughout the three-week voyage, which ship owner. capability of the vessel. concluded in Murmansk on1 0 April 2015. 10 Arctic Passion News No 10 September 2015 The testing programme consisted of performance tests in three ice thicknesses in ahead and astern directions as well as in the oblique mode. Teemuand Esko are measuring Temperature was about -10 degrees Celsius. Mika Hovilainen measuring temperature and salinity profiles from core the ice thickness. samples in order to determine the flexural In addition to ice measurements, the Aker sideways, the relatively small oblique strength of the ice. Arctic team used a remotely operated icebreakercould create a wide channel quadcopter to record unique video in ice. footage ofBaltika 's journey as well as to "We tested the oblique icebreaking first “We tested the vessel in level look for passages through particularly in ice 10 to 15 cm thick in order to learn ice 40 cm, 90 cm and 1.2 difficult ice fields. The quadcopter allowed how the navigation system works and the team to get an overview of the ice how the vessel behaves," Mr Hovilainen metres thick. She surpassed conditions ahead of the vessel from an explains. "Navis Engineering Oy has the required performance altitude of 500 metres. created a special joystick function to use targets by a great margin in The video footage can be found at with the Dynamic Positioning (DP) https://www.youtube.com/user/akerarctic system for this purpose. The oblique both ahead and astern angle and speed are entered into the directions, even though the ice Oblique mode in real life computer and then the DP system takes strength properties were The oblique mode, which had never been care of maintaining the heading. While tested before in real life, also worked the joystick function worked really well, double the specified ones," extremely well and the vessel fulfilled all we also tried navigating manually but it Mr Hovilainen emphasises. the design requirements. By moving was challenging without any practice. 11 Arctic Passion News No 10 September 2015 Thus, a DP system is essential for Half the propulsion power oblique icebreaking." According to Mika Hovilainen,Baltika 's In ice 40 cm thick, the vessel was voyage to the Gulf of Ob proves the capable of achieving a speed of two exceptional operational capability of the knots when the angle of attack – the oblique icebreaker concept in very difference between course and heading difficult ice conditions. – was 85 degrees. In ice 90 cm thick, a “The vessel was able to operate in ice small oblique angle of about 15 degrees conditions that exceeded the design was still possible. criteria used as the basis of the vessel "The angle can be selected individually; concept.Baltika carried out the same there are no pre-set choices," Mr operations as conventional icebreakers Hovilainen adds. "With a smaller angle of with just half of the propulsion power, as attack, the channel width is reduced but well as performed manoeuvres that are the vessel speed increases – and vice not possible for any other vessel versa.” currently in service.” Rubble clearing and ice management "This is a big step in the direction we performance were also tested in the port want to go: more efficient icebreaking of Sabetta.Baltika demonstrated operations that use less fuel and produce excellent manoeuvrability and capability reduced emissions, thus taking the Baltika carried out the same in both tasks. environment into consideration. This operations as conventional icebreakers concept proves that we have succeeded with just half of the propulsion power, as in reaching a new level of icebreaking well as performed manoeuvres that are efficiency," Mr Hovilainen says. not possible for any other vessel currently in service. Level Ice Thickness versus Speed Oblique angle versus speed 16 90 80 14 70 26.3.2015, 45 cm Level Ice 28.3.2015, 94 cm Level Ice 60 12 50 Requirement 40 10 Ahead 30 Astern 8 20 Oblique angle [deg] 10 Speed [kn] 6 0 0 0,5 1 1,5 2 2,5 3 3,5 Speed [kn] 4 The oblique angle can be chosen individually ; there are no pre-set choices. The vessel moves more slowly with a wide 2 angle in order to create a wide channel. - 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 Ice Thickness [m] Baltika was teste d in level ice 40 cm, 90 cm and 1.2 metres thick. She surpassed the demands in both ahead and asterndirections . Oblique icebreaker began with an innovation contest The oblique icebreaker more than 40 metres would be concept was the result of an used for transporting oil, internal innovation contest in escorted by at least two the late 1990s. New oil icebreakers due to their large terminals were planned for the size unless other solutions Gulf of Finland, and an could be found. analysis was conducted of how The innovation contest the transport situation in the resulted in the first version of Baltic Sea would develop. The the sideways-moving conclusion was that Aframax- icebreaker. sized tankers with a beam of The first model was constructed in 1997. 12 Arctic Passion News No 10 September 2015 By moving sideways, the icebreaker can extremely well and the vessel fulfilled all Arctic is currently developing. The heavy- create a wide channel for big tankers. The the design requirements. duty oblique icebreaker, Aker ARC 100 first model tests were carried out in 1997 Aker ARC 130 A, the new icebreaker HD, will be updated based on and the invention was patented. The design for the Novy Port project, does not experiences fromBaltika 's full-scale ice decision to build the Primorsk oil terminal have an asymmetric hull form, but trials as well as from the icebreaker was made in 1999, and later that year the otherwise shares a number of features concept for the Novy Port project. oblique icebreaker's hull was updated and with a heavy-duty oblique icebreaker Aker ice model tests continued. Then came the idea to use the ship to help in recovering spilled oil, and the oil spill response patent was received in 2002. Systematic further development took place jointly with the Finnish Maritime Administration, the Finnish Environment Institute (SYKE), ABB and Aker Arctic, partly funded by Tekes, the Finnish Funding Agency for Innovation. Decision to construct In 2003, the newly developed project was introduced to the authorities in Finland Technical specifications Three 2.5 MW Steerprop SP60PULL and Russia. The vessel received azimuth thrusters, two in the stern and Built by Arctech Helsinki Shipyard widespread attention due to the one in the bow (Helsinki, Finland) in co-operation with exceptional concept, but it was not Shipyard Yantar JSC (Kaliningrad, Dynamic positioning system developed realised until 2010, when Sovcomflot's Russia) by Navis Engineering CEO Sergey Frank finally made the initiative for a memorandum of Based on Aker Arctic's oblique Classification by the Russian Maritime cooperation on the further development of icebreaker design, Register of Shipping with ice class the oblique icebreaker vessel. Aker ARC 100. Icebreaker6 However, the Russian Ministry of Length: 76.4 metres Built-in oil recovery system Transport became the contractor of the Beam: 20.5 metres Owner: Federal Agency for Maritime and ship, and in October 2011 Arctech Helsinki Draft: 6.3 metres Shipyard and Yantar JSC were jointly River Transport of Russia awarded the contract to build the first Diesel-electric power plant consisting of (Rosmorrechflot) oblique icebreaker based on Aker Arctic's three Wärtsilä 9L26 generating sets with Operator: Russian Marine Emergency design, Aker ARC 100.
Recommended publications
  • Seatec International Maritime Review 2/2014
    International Maritime Review The French Connection Finnish companies are actively involved in building Oasis 3 Mein Schiff 3 First TUI cruiser delivered from STX’s Turku shipyard seatec.fi/magazine smm-hamburg.com 53° 33‘ 47“ N, 9° 58‘ hamburg 33“ E keeping the course 9 – 12 september 2014 HAMBURG the leading international maritime trade fair new in 2014: THE3-- THEMEDAYS SEPT fi nance day SEPT environmental protection day SEPT security and defence day SEPT offshore day SEPT recruiting day scan the QR code and view the trailer or visit smm-hamburg.com/trailer DNV GL In the maritime industry DNV GL is the world’s leading classification society and a recognized advisor for the maritime industry. We enhance safety, quality, energy efficiency and environmental performance of the global shipping industry – across all vessel types and offshore structures. We invest heavily in research and development to find solutions, together with the industry, that address strategic, operational or regulatory challenges. SAFER, SMARTER, GREENER editorial seatec 2/2014 COME TOGETHER PUBLISHER The Finnish marine cluster is certainly an interesting industry. Presently, PubliCo Oy it has been reported that the German shipyard Meyer Werft is looking Pälkäneentie 19 A FI-00510 Helsinki to buy the Turku shipyard from its South Korean owner, STX Europe. Finland According to the plans, also the State of the Finland would be involved Phone +358 9 686 6250 [email protected] in a small ownership role, helping to secure the deal. www.publico.com The Finnish marine cluster is finding other ways to cope in a brave new world, too.
    [Show full text]
  • Read Arctic Passion News
    Aker Arctic Technology Inc Newsletter September 2014 Arctic PassionNews 2 / 2014 / 8 LNG First Arctic LNG is a Icebreaking Module Carrier clean option trimaran family page 4 page 12 grows page 7 New methods for measuring ice ridges page 16 Ice Simulator reduces risks page 8 Arctic Passion News No 8 September 2014 In this issue Page 2 From the Managing Director From the Managing Director Page 3 Design agreement for Aker ARC 121 Page 4 First Arctic module carrier The year 2014 has been interesting and Page 7 Trimaran icebreaker challenging in many ways. The recent family grows changes in the political atmosphere have also affected the business environment. Page 8 Ice simulator reduces risks Specifically, this also concerns the oil Page 10 New era in Antarctic vessels industry, which is one of the main drivers Page 12 LNG machinery is for the recent icebreaker projects and for a clean option arctic development in general. Page 15 Optimised friction However, we all must hope the situation saves money will not escalate and both developers Page 16 New methods for measuring and operators can continue to work in sustainable way in the arctic develop- ice ridges ment projects. Page 17 9th Arctic Passion Seminar We at Aker Arctic have been very active Page 18 What's up in the projects with our clients. The Page 20 Training programme development of the first-ever arctic class graduation heavy cargo carrier has been a very Coming events interesting project technically. With the shipowner, we have developed a vessel for high arctic requirements and created Announcements interesting technical solutions, all within My first eight months as the managing a very tight time schedule.
    [Show full text]
  • Seatec International Maritime Review 1/2013
    International Maritime Review M/S Viking Grace A luxurious LNG ship seatec.fi/magazine Royal Caribbean International The making of world’s greatest cruise vessels The Cruise Industry’s Premier Global Event March 11–14, 2013 | Miami Beach Convention Center | Miami Beach, Florida For close to 30 years, Cruise Shipping Miami has been the cruise industry’s premier global exhibition, bringing together buyers and suppliers for a week of networking, sourcing, and education. Our 2013 program promises to be an exciting, newly redeveloped event, offering our guests 360 degrees of ground-breaking content based on industry feedback. Book Now! www.cruiseshippingevents.com/miami Cruise Shipping Miami is exclusively supported by GLOBAL EXPERIENCE ©Scanpix/Jens Rydell THE POWER TO EXCEL %/7JTMFBEJOH DNV provides services throughout the entire LNG value chain, from gas production, processing, and liquefaction, UIFEFWFMPQNFOU through shipping and re-gasification, to downstream PG-/(GVFMMFE consumption, including the use of LNG as a fuel for ships. 4IJQDMBTTJGJDBUJPOt4BGFUZ IFBMUIBOE FOWJSPONFOUBMSJTLNBOBHFNFOU t&OUFSQSJTFSJTLNBOBHFNFOUt"TTFUSJTLNBOBHFNFOUt5FDIOPMPHZ ships RVBMJGJDBUJPOt7FSJGJDBUJPOt4IJQ DMBTTJGJDBUJPOt0GGTIPSFDMBTTJGJDBUJPO www.dnv.com editorial seatec 1/2013 ONCE UPON A TIME THERE WAS A COUNTRY... PUBLISHER PubliCo Oy Pälkäneentie 19 A If you have total belief on the quality and knowledge base of the po- FI-00510 Helsinki litical decision-makers who are making decisions that influence indus- Finland Phone +358 9 686 6250 tries, I have to issue a warning here. If that is, indeed, the case, I rec- [email protected] ommend that you stop reading any further. www.publico.com But if you are somewhat skeptical of politicians and you do not believe that cruise shipping is a sunset business, please read this edito- EDITOR-IN-CHIEF rial.
    [Show full text]
  • Ice Trials in Antarctica • New Rules on the Northern Sea Route • Processing Barge to the Arctic • Equipment for the Navy in This Issue
    Arctic Passion News No. 1 | 2020 | issue 19 • Ice trials in Antarctica • New rules on the Northern Sea Route • Processing barge to the Arctic • Equipment for the Navy In this issue Page 4 Page 8 Page 11 Page 16 New rules on the Northern Xue Long 2 in Equipment for the Navy Barge for mining project Sea Route ice trials Table of contents From the Managing Director.................................. 3 Front cover New regime and regulations on the NSR...............4 Sami Saarinen spent six weeks travelling to Antarctica Xue Long 2 in successful ice trials.......................... 8 and back, onboard both of China’s icebreakers Xue Equipment for Navy corvettes.......................... ….11 Long and Xue Long 2. Read about his voyage and Safe and reliable shipping of crude oil................. 12 Xue Long 2’s ice trials on page 8. Feasibility study for Qilak LNG.........................….14 Aalto Ice Tank opens.............................................15 Contact details Pavlovskoe mining project.....................................16 AKER ARCTIC TECHNOLOGY INC Reducing ice friction since 1969 ...........................18 Merenkulkijankatu 6, FI-00980 HELSINKI Active Heeling systems.........................................20 Tel.: +358 10 323 6300 News in brief.........................................................21 www.akerarctic.fi Announcements....................................................23 Study tour to Gothenburg.....................................24 Join our subscription list Our services Please send your message to www.akerarctic.fi
    [Show full text]
  • Icebreaker Polaris Begins Work Page 10
    Aker Arctic Technology Inc Newsletter March 2017 Arctic Passion News 1 / 2017 / 13 Icebreaker Polaris begins work Page 10 Icebreaking needs and Model testing of Ice Harmonising model tests plans on the Northern Strengthened Lifeboat for power requirements Sea Route Page 11 Page 14 Page 4 Aker Arctic Technology Inc Newsletter March 2017 In this issue Page 2 From the Managing Director Dear Reader, Page 3 Finland to chair the Arctic Council Page 4 Icebreaking needs on the NSR The year 2017 is quite significant for Page 8 Will EEDI become tighter Finland when it comes to Arctic matters, Page 9 Polar Code training as Finland is taking the chairmanship in Page 10 Polaris begins work the Arctic Council, and the same year Page 11 Ice strengthened lifeboat celebrating the nation's centenary of testing independence. This results in a number Page 12 Basics about ice part 1 of special events that also affect our Page 14 Harmonising model tests businesses in the Arctic region. Although Page 16 Intelligent de-icing Aker Arctic is focusing on technical Page 17 News in brief matters and development of the Page 20 Christmas party in Åland solutions to be used in both Arctic and Meet us here other icebreaking vessels, administrative actions are of much interest to us. This year will show how the major and Announcements pioneering Arctic project, Sabetta Regulatory issues are developing. terminal, the first ever real Arctic LNG Alexey Shtrek has This is the first year of polar code project, is coming onstream. This project joined Aker Arctic as development implementation, and we also see is a great showcase of how the new manager.
    [Show full text]
  • Peer Review of the Finnish Shipbuilding Industry Peer Review of the Finnish Shipbuilding Industry
    PEER REVIEW OF THE FINNISH SHIPBUILDING INDUSTRY PEER REVIEW OF THE FINNISH SHIPBUILDING INDUSTRY FOREWORD This report was prepared under the Council Working Party on Shipbuilding (WP6) peer review process. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of OECD member countries. The report will be made available on the WP6 website: http://www.oecd.org/sti/shipbuilding. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. © OECD 2018; Cover photo: © Meyer Turku. You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for commercial use and translation rights should be submitted to [email protected]. 2 PEER REVIEW OF THE FINNISH SHIPBUILDING INDUSTRY TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 EXECUTIVE SUMMARY ............................................................................................................................. 4 PEER REVIEW OF THE FINNISH MARITIME INDUSTRY ....................................................................
    [Show full text]
  • 50 Years of Ice Model Testing
    SHIP CONSULTING ICE MODEL OFFSHORE Design & Engineering & Project Development & Full Scale Testing Development 50 Years of Ice Model Testing Topi Leiviskä Head of Research and Testing Aker Arctic Technology inc 28.2.2019 4 March, 2019 Slide 1 Manhattan project (ESSO) ¡ Mid 1960s large oil reservuars were localized in the Alaskan Noth Slope ¡ It could be feasibly transported to the market through the Northwest Passage ¡ A decision was taken to modify an existing 106,000 DWT tanker, SS Manhattan ¡ Manhattan was refitted for the arctic voyage with an icebreaker bow in 1968–69 ¡ During the retrofit process, the oil company Esso (Humble Oil) suggested to study the performance in ice of the newly designed bow in model-scale ¡ Esso decided to invest in construction of the first ice model testing facility in Finland ¡ The first ice model test basin in Finland was ready for testing at the end of 1969 4 March, 2019 Slide 2 Icebreaker design in Finland 1933-1970 Name (previous names) Year Name (previous names) Year Louhi (ex-Sisu) 1939 Kiev 1965 Voima 1954 Askiplios (ex-Hanse) 1966 Kapitan Belousov 1954 Murmansk 1968 Kapitan Voronin 1955 Varma 1968 Kapitan Meheklov 1956 Vladivostok 1969 Oden 1957 Polar Star (ex-Njord) 1969 Karu (ex-Karhu) 1958 Dudinka (ex-Apu) 1970 Murtaja 1959 Ale 1973 Moskva 1960 Mega (ex-Aatos, Teuvo) 1973 Sampo 1961 Ermak 1974 Leningrad 1961 Atle 1974 Tor 1964 Urho 1975 4 March, 2019 Slide 3 WIMB Presentation Video 4 March, 2019 Slide 4 Time line of the ice model testing facilities (Kværner) Wärtsilä Masa-Yards Wärtsilä Arctic
    [Show full text]
  • Finnish Marine Industries' Member Directory
    Finnish Marine Industries’ Member Directory CONTENTS ABB Oy ..........................................................................................................5 AirD Fin Oy ...................................................................................................5 Aker Arctic Technology Oy ..........................................................................5 Alfa Laval Aalborg Oy ..................................................................................6 Allstars Engineering Oy ..............................................................................6 ALMACO Group Oy .......................................................................................6 Antti-Teollisuus Oy ......................................................................................7 APX-Metalli Oy .............................................................................................7 Arctech Helsinki Shipyard Inc. ...................................................................7 Atexor Oy ......................................................................................................8 Beacon Finland Ltd Oy ................................................................................8 Bluetech Finland Ltd ...................................................................................8 CADMATIC Oy ...............................................................................................9 Caverion Suomi Oy ......................................................................................9 Comatec
    [Show full text]
  • Accelerated Icebreaker Development
    Accelerated icebreaker development Imagine a ship owner having the right to refuse to take delivery of a new container vessel if it does not sail at 2 knots in 1.5-meter thick ice. Would anyone guarantee the performance of a new, innovative vessel in advance? 2 generations 1|13 his is not a theoretical example but a real- organization has a long history in researching and life situation. Aker Arctic Technology Inc. developing maritime ice technologies and a unique is probably one-of-a-kind in giving such a set of groundbreaking achievements to go with it. guarantee. The owner is Norilsk Nickel, the Tworld’s largest exporter of nickel and palladium and “Computer simulations estimate how much power a in need of an ice-breaking container ship. vessel will need to meet specific ice conditions,” says Uuskallio, adding that these need to be verified in As a so-called double acting ship, this type of vessel model testing. is designed to lead the way in open water and thin ice, then turn around and proceed astern (back- Model testing is done in our ice tank, which is 75 wards) in heavy ice conditions, sucking the ice in meters long and 8 meters wide, with a water depth under the ship with its Azipod® thrusters. Such ships of up to 2.1 meters. We can also do tests in Aalto can operate independently in severe ice conditions University’s ice tank, which is 40 by 40 meters and without icebreaker assistance, while performing more suitable for testing maneuverability. better in open waters compared with traditional ice- breaking vessels.
    [Show full text]
  • Finnish Solutions for the Entire Icebreaking Value Chain
    FINNISH SOLUTIONS FOR THE ENTIRE ICEBREAKING VALUE CHAIN AN AMERICAN-FINNISH PARTNERSHIP 2 3 4 FINNISH SOLUTIONS FOR THE ENTIRE ICEBREAKING VALUE CHAIN TABLE OF 6 ICEBREAKING SOLUTIONS DELIVERED ON TIME AND ON BUDGET CONTENTS 8 THE POLAR MARITIME NETWORK IN FINLAND 12 RESEARCH 12 AALTO UNIVERSITY 14 DESIGN 14 AKER ARCTIC 18 BUILD 18 RAUMA MARINE CONSTRUCTIONS 22 OPERATE 22 ARCTIA 26 EQUIPMENT & SYSTEM SUPPLIERS / DIGITAL SERVICE PROVIDERS 28 LAMOR 30 ABB 32 NESTIX 34 WÄRTSILÄ 38 TRAFOTEK 40 MARIOFF 42 STARKICE 44 ICEYE 46 CRAFTMER 48 PEMAMEK 50 STEERPROP 52 NAVIDIUM 54 DANFOSS 56 POLARIS: THE FIRST LNG-POWERED ICEBREAKER IN THE WORLD 58 BENEFITS OF AN AMERICAN-FINNISH PARTNERSHIP PHOTO BY TIM BIRD 4 5 Finnish companies have designed about 80 percent of the world’s icebreakers, and about 60 percent of them have been built by Finnish shipyards. We have a creative and FINNISH agile polar maritime network that is known for delivering on schedule and on budget. We are also known for delivering sustainable, innovative and effective solutions SOLUTIONS for demanding tasks in Arctic conditions. Finland is the only nation in the world that offers ice- proven products and services with a solid, cost-effective FOR THE ENTIRE value chain. This value chain covers R&D, education, ship design, engineering, building, operation, program management and life cycle support services. Globally ICEBREAKING recognized Finnish companies and shipyards offer icebreaking solutions for the U.S polar icebreaker program that can be considered as a complete package or VALUE CHAIN configured as individual options to suit specific needs.
    [Show full text]
  • Built to Break the Larger Classes of Container Project Manager at Arctech
    TECHNOLOGY For more technology stories, visit newscientist.com/technology centre of gravity for optimal ice- ctech AR breaking. The idea is for the ship to be able to make headway in ice up to 60 centimetres thick, while carving a channel 50 metres wide – enough for large container ships to follow. The asymmetric hull has a major drawback, though. Modelling shows that it will pitch and roll irregularly at sea, and “Rotating thrusters allow the asymmetric ship to swing round and attack the ice at an angle” pilots will have to learn how to sail the vessel to compensate. “There are lots of different operational modes for the ship, –Well, steer me sideways– all of which had to be addressed when working out how to use able to punch channels about the power from each of the three 25 metres wide – too narrow for thrusters,” says Mika Willberg, Built to break the larger classes of container project manager at Arctech. ships. Doubling the escort widens “But, finally, after having trained A new breed of icebreaker will accelerate the the channel, but at greater cost. on a simulator, you end up being At 76 metres long by 20 metres able to drive this vessel with a development of global shipping lanes in the Arctic wide, the Baltika will use its unique joystick system.” asymmetric hull to cut swathes The Baltika is expected to Olivier Dessibourg, Helsinki 46 ships were granted passage through the ice. Each of the three stay in the Gulf of Finland, but by Russia’s Northern Sea Route engine pods mounted around the subsequent boats of its design THE clank of hammers, the Administration.
    [Show full text]
  • Reform, Foreign Technology, and Leadership in the Russian Imperial and Soviet Navies, 1881–1941
    REFORM, FOREIGN TECHNOLOGY, AND LEADERSHIP IN THE RUSSIAN IMPERIAL AND SOVIET NAVIES, 1881–1941 by TONY EUGENE DEMCHAK B.A., University of Dayton, 2005 M.A., University of Illinois, 2007 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of History College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Abstract This dissertation examines the shifting patterns of naval reform and the implementation of foreign technology in the Russian Empire and Soviet Union from Alexander III’s ascension to the Imperial throne in 1881 up to the outset of Operation Barbarossa in 1941. During this period, neither the Russian Imperial Fleet nor the Red Navy had a coherent, overall strategic plan. Instead, the expansion and modernization of the fleet was left largely to the whims of the ruler or his chosen representative. The Russian Imperial period, prior to the Russo-Japanese War, was characterized by the overbearing influence of General Admiral Grand Duke Alexei Alexandrovich, who haphazardly directed acquisition efforts and systematically opposed efforts to deal with the potential threat that Japan posed. The Russo-Japanese War and subsequent downfall of the Grand Duke forced Emperor Nicholas II to assert his own opinions, which vacillated between a coastal defense navy and a powerful battleship-centered navy superior to the one at the bottom of the Pacific Ocean. In the Soviet era, the dominant trend was benign neglect, as the Red Navy enjoyed relative autonomy for most of the 1920s, even as the Kronstadt Rebellion of 1921 ended the Red Navy’s independence from the Red Army.
    [Show full text]