Notes on Commutative Algebra
Notes on Commutative Algebra Dan Segal February 2015 1 Preliminary definitions etc. Rings: commutative, with identity, usually written 1 or 1R. Ring homomor- phisms are assumed to map 1 to 1. A subring is assumed to have the same identity element. Usually R will denote an arbitrary ring (in this sense). Polynomial rings I will always use t, t1,...,tn to denote independent indeterminates. Thus R[t] is the ring of polynomials in one variable over R, R[t1,...,tn] is the ring of polynomials in n variables over R, etc. The most important property of these rings is the ‘universal property’, which will frequently be used without special explanation: • Given any ring homomorphism f : R → S and elements s1,...,sn ∈ S, ∗ there exists a unique ring homomorphism f : R[t1,...,tn] → S such that ∗ ∗ f (r)= f(r) ∀r ∈ R and f (ti)= si for i = 1,...,n. Modules An R-module is an abelian group M together with an action of R on M. This means: for each r ∈ R, a −→ ar (a ∈ M) is an endomorphism of the abelian group M (i.e. a homomorphism from M to itself), and moreover this assignment gives a ring homomorphism from R into EndZ(M), the ring of all additive endomorphisms of M. In practical terms this means: for all a, b ∈ M and all r, s ∈ R we have (a + b)r = ar + br a1= a a(r + s)= ar + as a(rs)=(ar)s. 1 (Here M is a right R-module; similarly one has left R-modules, but over a commutative ring these are really the same thing.) A submodule of M is an additive subgroup N such that a ∈ N, r ∈ R =⇒ ar ∈ N.
[Show full text]