Structural Biology: Doors Open at the European XFEL Vivien Marx

Total Page:16

File Type:pdf, Size:1020Kb

Structural Biology: Doors Open at the European XFEL Vivien Marx TECHNOLOGY FEATURE Structural biology: doors open at the European XFEL Vivien Marx X-ray beams at 27,000 pulses per second promise high-resolution views of macromolecules. As of September 1, 2017, scientists can and square in the beam are quite rare,” says come to the European X-ray free-electron Chapman. laser (EuXFEL) for structural biology pur- Around the world, a number of XFELs suits. They can collect diffraction data on are operational or almost there (Box 2, protein nanocrystals and particles such as “Some X-ray free-electron lasers”), and viruses, protein complexes and single mol- more are being built, for example, in China. ecules. They might create dynamic virus Accelerator-driven FELs and the new ‘movies’ from a series of individual snap- EuXFEL offer scientists exposures on a shots. After 15 years of development, con- femtosecond (10–15 seconds) or even atto- struction and testing, EuXFEL has ‘lased’: second (10–18 seconds) timescale so they Mancuso Jessica it generated a beam brighter than those can measure the structure, variability and Earlier this year, the EuXFEL’s first laser beam produced by all other existing X-ray sourc- dynamics of the experimental objects of their reached the ‘hutch’. es (see Box 1, “EuXFEL at a glance”). In choice1–5. more testing, a beam was successfully sent Strictly speaking, biological objects are developer at the University of Wisconsin to a ‘hutch’, one of several lead-and-steel- never identical to one another, says Janos in Milwaukee, and his colleagues made encased rooms at the facility. Some hutches Hajdu, a biophysicist now at Uppsala movies of a virus (published in this issue6). hold gratings, filters and other beam-tun- University who spent much of his career at Such movies can reveal biologically impor- ing equipment; others have instruments the University of Oxford. Macromolecular tant information, says Ourmazd. In the for measuring samples. From nearby con- structures adopt various conformations. future, the EuXFEL could help researchers trol rooms researchers interact with instru- “Since biology wiggles, it’s all about motion,” map energy landscapes of biological mol- ments in the hutches. he says. This plasticity enables these mole- ecules, identify functional routes along The EuXFEL’s big selling point is its high cules’ biological functions. Some movements those landscapes and make movies of those repetition rate, says Henry Chapman, a happen in milliseconds, some atomic vibra- routes, all of which could, he says, “provide researcher at the Center for Free-Electron tions last only 10 femtoseconds. a multi-lane highway between experiment Laser Science in Hamburg, Germany, which Experiments at the EuXFEL offer the and molecular dynamics.” With EuXFEL is jointly run by the Max Planck Society, opportunity to capture movements down to data it’s possible to get a detailed view of the University of Hamburg and DESY, the the timescale of atomic vibrations. “We are ligand-binding, which underlies all signal- German Electron Synchrotron. With 27,000 living our dream,” says Hajdu. He is part of ing and regulatory processes. X-ray laser pulses per second, the EuXFEL’s a team of early EuXFEL users who will use Chapman sees a way to capture play- pulse rate will make beamtime for nanocrystallography and stud- by-play events, such as those during an it possible to com- ies of single particles such as viruses. One day, enzymatic reaction, on a femtosecond plete an experiment he says, single-cell studies might be possible. timescale by applying XFEL-based time- more quickly and Hajdu has long actively made the scientif- resolved crystallography with hundreds, with less sample ic case for XFELs, including both the Linac even thousands, of microcrystals. Usually than previously Coherent Light Source (LCLS) at Stanford such experiments involve light-triggered possible. “It could University—the world’s first XFEL, which reactions, but there are other fast impulses also help for single- began lasing in 2009—and the EuXFEL. He to try, he says. He and colleagues do fast particle diffractive and many other researchers can now devise sample mixing: a solution with crystals S. Bajt imaging, which has experiments and strategize about looming meets a solution with a ligand or other been hampered challenges. reactant as the sample courses through The EuXFEL is the place for single- by the fact that the microfluidic channels on its way to an molecule diffraction really good shots XFEL possibilities injection device. “Fast in that context experiments, says where the virus or Using single-particle LCLS–XFEL data, might be as quick as 0.1 milliseconds,” he Henry Chapman. whatever is hit fair Abbas Ourmazd, a physicist and algorithm says. Separately, he notes, research groups NATURE METHODS | VOL.14 NO.9 | SEPTEMBER 2017 | 843 TECHNOLOGY FEATURE BOX 1: EUXFEL AT A GLANCE The facility is 3.4 kilometers long and generates high-luminosity X-rays at a repetition rate of 27,000 pulses per second. Pulses have been produced at 0.15-nanometer wavelength—atomic dimensions—and the EuXFEL’s design could get it to 0.05 nanometers. Information for users is here. The EuXFEL is set up as a nonprofit company and has involved collaborating researchers and funding agencies from 11 countries: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden and Switzerland. The UK was part of the project and then dropped out owing to budget constraints, but it is considering rejoining. The EuXFEL has received UK funding—the UK is, for example, part of the SFX user consortium, as are Sweden, Germany and Slovakia. The facility’s accelerator whips electrons to nearly the speed of EuXFEL, H. Müller-Elsner light. Then, under the sway of magnets with alternating north and south poles, the electrons undulate and emit X-ray flashes. Electrons reach nearly the speed of light in the superconducting The X-rays and electrons travel together, which pushes the accelerator modules, shown in yellow. electrons into bunches, with each bunch behaving like a single large charged particle. A micro-bunch of 100,000 electrons can experimenters need and then sent to such experiment instrument emit ten billion more X-rays than a single electron. ‘hutches’ as the Femtosecond X-ray Experiments instrument Early users will begin collecting data during their approved (FXE) or the Single Particles, Cluster and Biomolecules and Serial beamtime this fall at the research campus in Schenefeld, Femtosecond Crystallography instrument (SPB/SFX). Germany, near Hamburg. The beam can be tuned as Sources: Henry Chapman, DESY; Janos Hajdu, Uppsala University. use pulse electric fields to find flexible­ to XFELs. Traditionally, they use optical work has been limited to virus particles that parts of a protein. microscopy to find workable crystals. Now are relatively large, she says. The EuXFEL is the place for single- that researchers experiment with “invisibly The high pulse rate enables high-through- molecule diffraction experiments, says small crystals,” it’s faster to deliver a sample put explorations of different states in the Chapman. “And we have a crazy idea on into a beam to see whether it diffracts, says molecules’ energy landscape; researchers how to use the fluorescence light from the Chapman. In less than an hour, thousands can monitor protein complexes in action sample to get structure,” he says. Hundreds of crystallization conditions can be tested. in previously impossible ways. It’s a highly more X-ray photons are absorbed by atoms Large combinatorial studies can reveal how time-resolved view also of energetically disfa- in the sample than actually scatter to form the structure changes at different tempera- vored transition states that are of great inter- a diffraction pattern. These photo-excited tures or pH levels. est in drug discovery and that help scientists atoms will fluoresce as X-rays with differ- explore function. ent wavelengths, depending on the element Combining techniques Uetrecht leads a project called in question. He and his colleagues want to To date, research at LCLS has pioneered VISAVIX, which combines mass spec- measure this fluorescence by using pulses to single-molecule imaging and serial trometry and XFEL-based work. The obtain a diffraction pattern. crystallography studies, says Charlotte approach lets her deepen research into Chapman and others want to automate Uetrecht, a scientist at the Heinrich Pette something mass spec has revealed: no sample delivery to the XFEL so that in Institute, which is linked to the Leibniz protein complex, as she says, “comes less than 10 seconds researchers could Institute for Experimental Virology in in a single flavor.” Each one has a vari- obtain a single structure or a snapshot of Hamburg. The EuXFEL will be more intense ety of modifications or flexible regions, a structure in a series. “So we could have in that it lets researchers look at smaller sys- which can lead to broad conformational huge throughput,” he says. This throughput tems and, she says, drive methods for explor- ensembles and different binding equilib- could support fragment screening in drug ing single protein complexes. XFEL-based ria. With VISAVIX, structural analysis is development, improve the research-orient- ed structural biology pipeline and address crystallization and screening bottlenecks. BOX 2: SOME X-RAY FREE-ELECTRON LASERS Fragment screening at the XFEL could EuXFEL “vastly increase” the speed of tasks done FERMI facility at synchrotrons, allowing bigger libraries Linac Coherent Light Source at Stanford (LCLS) of fragments and reducing the amount of Pohang Accelerator Laboratory (PAL) X-ray Free-Electron Laser protein needed. SPring-8 Angstrom Compact Free Electron Laser (SACLA) Researchers can begin to transfer tech- Swiss Free-Electron Laser (SwissFEL) niques from conventional crystallography 844 | VOL.14 NO.9 | SEPTEMBER 2017 | NATURE METHODS TECHNOLOGY FEATURE that hold more than 50,000 crystals. If they Another issue is background scattering, can scan the chip at 1 kHz, data for a solved which should be lower than it is in most structure could be collected in less than a XFEL-based experiments, says Meents.
Recommended publications
  • The High Energy-Density Instrument at the European XFEL U
    The High Energy-Density instrument at the European XFEL U. Zastrau1, K. Appel1, C. Baehtz2, N. Biedermann1, T. Feldmann1, S. Göde1, Z. Konôpková1, M. Makita1, E. Martens1, W. Morgenroth4, M. Nakatsutsumi1, A. Pelka2, T. Preston1, A. Schmidt1, M. Schölmerich1, C. Strohm4, K. Sukharnikov1, I. Thorpe1, T. Toncian2, and the HIBEF user consortium4 1European XFEL, Germany 2HZDR, Germany 3Univ. Frankfurt, Germany 4http:\\www.hibef.de Science case The science scope of the HED instrument focuses on states of matter at high density, temperature, pressure, electric and/or magnetic field. Major applications are high- pressure planetary physics, warm- and hot- dense matter, laser-induced relativistic plasmas and complex solids in pulsed magnetic fields. These extreme states can be reached by different types of optical lasers, the X-ray FEL beam and pulsed coils. User operation at the HED instrument is foreseen to start in Q2 2019. Properties of XFEL undulator for HED (SASE2) X-ray diagnostics available at HED SASE2 undulator X-ray diffraction Hard X-ray source 3 – 25 keV photon energy, 10-3 SASE bandwidth, 10-5 self-seeded IC1: gain-switching in-vacuum tiled detectors (ePIX 100, Jungfrau), motorized Repetition rate 10 Hz bunch trains with up to 2700 pulses IC1 and IC2: large area detectors in air (or in air pocket in vacuum): Perkin-Elmer Pulse energy 108 – 1013 X-ray photons per pulse / 100 nJ – few mJ GaAs AGIPD on detector bench with central hole (220-ns framing to record bunch pattern) Pulse duration 2 to 100 fs (correlates with bunch charge)
    [Show full text]
  • The European X-Ray Free-Electron Laser Technical Design Report
    XFEL X-Ray Free-Electron Laser The European X-Ray Free-Electron Laser Technical design report Editors: Massimo Altarelli, Reinhard Brinkmann, Majed Chergui, Winfried Decking, Barry Dobson, Stefan Düsterer, Gerhard Grübel, Walter Graeff, Heinz Graafsma, Janos Hajdu, Jonathan Marangos, Joachim Pflüger, Harald Redlin, David Riley, Ian Robinson, Jörg Rossbach, Andreas Schwarz, Kai Tiedtke, Thomas Tschentscher, Ivan Vartaniants, Hubertus Wabnitz, Hans Weise, Riko Wichmann, Karl Witte, Andreas Wolf, Michael Wulff, Mikhail Yurkov DESY 2006-097 July 2007 Publisher: DESY XFEL Project Group European XFEL Project Team Deutsches Elektronen-Synchrotron Member of the Helmholtz Association Notkestrasse 85, 22607 Hamburg Germany http://www.xfel.net E-Mail: [email protected] Reproduction including extracts is permitted subject to crediting the source. ISBN 978-3-935702-17-1 Contents Contents Authors ...................................................................................................................... vii Foreword .................................................................................................................. xiii Executive summary .....................................................................................................1 1 Introduction ..........................................................................................................11 1.1 Accelerator-based light sources..................................................................11 1.2 Free-electron lasers ....................................................................................13
    [Show full text]
  • European Xfel: Accelerating Module Repair at Desy D
    19th Int. Conf. on RF Superconductivity SRF2019, Dresden, Germany JACoW Publishing ISBN: 978-3-95450-211-0 doi:10.18429/JACoW-SRF2019-MOP034 EUROPEAN XFEL: ACCELERATING MODULE REPAIR AT DESY D. Kostin, J. Eschke, B.v.d. Horst, K. Jensch, N. Krupka, D. Reschke, S. Saegebarth, J. Schaffran, M. Schalwat, P. Schilling, M. Schmoekel, S. Sievers, N. Steinhau-Kuehl, E. Vogel, H. Weise, M. Wiencek, Deutsches Elektronen-Synchrotron, Hamburg, Germany. Abstract MODULE HISTORY The European XFEL is in operation since 2017. The de- Module XM50 was delivered to DESY in January 2016 sign projected energy of 17.5 GeV was reached, even with after the assembly at CEA (Saclay). In the Table 1 CM SRF the last 4 main linac accelerating modules not yet installed. cavities are listed. During the CM assembly following 2 out of 4 not installed modules did suffer from strong cav- problems were identified: ity performance degradation, namely increased field emis- Leak at the angle valve; sion, and required surface processing. The first of two Beam line leak; modules is reassembled and tested. The module test results Beam line was pumped accidentally before warm cou- confirm a successful repair action. The module repair and pler parts were installed. test steps are described together with cavities performance Module XM50 first test in February 2016 showed a deg- evolution. radation of the cavities’ performance compared with VT results – mostly with strong gamma radiation – dark cur- INTRODUCTION rent caused by field emission (see Fig. 2, 3). Decision was The European XFEL linac is based on the TESLA SRF taken not to install and use the module XM50 in the E- technology [1, 2] and is built with accelerating Cryo-Mod- XFEL machine and re-assemble it after cavities’ re-treat- ules (CM) having 8 SRF cavities each.
    [Show full text]
  • Commissioning of the European Xfel Accelerator*
    Proceedings of IPAC2017, Copenhagen, Denmark MOXAA1 COMMISSIONING OF THE EUROPEAN XFEL ACCELERATOR* W. Decking†, H. Weise, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany on behalf of the European XFEL Accelerator Consortium and Commissioning Team Abstract km downstream at the bifurcation point into the beam The European XFEL uses the world's largest supercon- distribution lines. The beam distribution provides space ducting RF installation to drive three independent SASE for 5 undulators (3 being initially installed), each feeding FELs. After eight years of construction the facility is now a separate beamline so that a fan of 5 almost parallel tun- brought into operation. First experience with the super- nels with a distance of about 17 m enters the experimental conducting accelerator as well as beam commissioning hall 3.3 km away from the electron source. results will be presented. The path to the first user exper- The European XFEL photo-injector consists of a nor- iments will be laid down. mal-conducting 1.3 GHz 1.6 cell accelerating cavity [4]. A Cs2Te-cathode is illuminated by a Nd:YLF laser oper- INTRODUCTION ating at 1047 nm and converted to UV wavelength in two conversion stages. The European XFEL aims at delivering X-rays from The photo-injector is followed by a standard supercon- 0.25 to up to 25 keV out of 3 SASE undulators [1, 2]. The ducting 1.3 GHz accelerating module and a 3rd harmonic radiators are driven by a superconducting linear accelera- linearizer, consisting of 3.9 GHz module – also supercon- tor based on TESLA technology [3].
    [Show full text]
  • Materials Imaging and Dynamics Instrument X-Ray
    International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL European Synchrotron Radiation Facility (ESRF), Grenoble, France October 28-29, 2009 Report of Working Group II on X-ray Photon Correlation Spectroscopy (June 2010) Authors: Gerhard Grübel, DESY, Hamburg (Germany) Christian Schüssler-Langeheine, Universität zu Köln, Köln (Germany) with contributions from: Christian Gutt, DESY, Hamburg (Germany) Peter Wochner, MPI-MF, Stuttgart (Germany) Brian Stephenson, APS-ANL, Chicago (USA) Bogdan Sepiol, University of Vienna, Wien (Austria) Anders Madsen, ESRF, Grenoble (France) Mikhail Yurkov, DESY, Hamburg (Germany) 1 I Introduction The first International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL was held at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France on October 28-29, 2009. The scientific program started out with a general overview about the European XFEL project, followed by an introduction to the Materials Imaging and Dynamics (MID) Instrument that is supposed to address the needs of two communities: the coherent X-ray diffraction imaging community interested in materials science questions and the X-ray photon correlation spectroscopy (XPCS) community interested in time domain studies. The two fields were reviewed in tutorial introductory talks by C. Gutt (XPCS) and I. Vartaniants (CXDI) in order to facilitate the discussions. The scientific cases were then re-iterated and complemented by three presentations on CXDI (S. Ravy, A. Beerlink and E. Vlieg) and on XPCS (P. Wochner, B. Stephenson and L. Cipelletti). A subsequent session on instrumentation covered X-ray optics and beam transport, and the status of area detector developments for CXDI and XPCS.
    [Show full text]
  • HED Science: Experiments Using X-Ray Heating
    HED science: Experiments using X-ray Heating Thomas Preston HED instrument at the European XFEL and HIBEF user consortium of the HED instrument XFEL User Meeting, Schenefeld, Germany 22nd January 2018 XFEL User Meeting, Schenefeld, Germany Thomas Preston, European XFEL, 22nd January 2019 2 The scientific agenda Laser Compression Relativistic Laser-Plasmas Advanced methods Shock & ramp compression Electron transport, Spectrometers Instabilities and filamentation, Advanced focusing NIF Particle acceleration, IXS, SAXS High EM fields Phase contrast imaging XRD, IXS, XES Long-pulse ns lasers Multi-100 TW fs lasers Diamond Anvil Cells Isochoric X-ray excitation Further projects Fast dynamic piezo DAC Transport properties, Pulsed laser heated DAC Hollow atoms, rates Double-stage DAC Isobaric heating X-ray backlighters X-ray detectors & EMP High-purity polarimetry XES, IXS, XRD … Hard XFELs Soft and hard XFELs XFEL User Meeting, Schenefeld, Germany Thomas Preston, European XFEL, 22nd January 2019 3 Isochoric heating relies on rapid energy deposition by ultrafast X-rays Energy deposition on timescale of 100fs, faster than hydrodynamic expansion (> 1ps). Electron temperatures much higher than ion temperatures. Ion density remains constant. Can determine electron density from temperature and ionization stage. For low-Z elements (Al, Mg, etc.) can heat to over 100eV accessing HDM. Create degenerate, highly-coupled plasmas. S. M. Vinko, J Plasma Physics 81, 365810501 (2015) XFEL User Meeting, Schenefeld, Germany Thomas Preston, European XFEL, 22nd January 2019 4 Absorption by focusing X-rays and probing around atomic edges and resonances Higher absorption above edges. With small focal spots, ~1um, can absorb many photons per atom. Rapid heating is achieved by thermalisation of fast Auger electrons.
    [Show full text]
  • Annual Report
    ANNUAL REPORT European X-Ray Free-Electron Laser Facility GmbH T 2014 R PO E R AL ANNU GmbH XFEL European IMPRINT European XFEL Annual Report 2014 Published by European XFEL GmbH Editor in chief Massimo Altarelli Managing editor Bernd Ebeling Copy editors Kurt Ament Ilka Flegel, Textlabor, Jena Joseph W. Piergrossi Image editor Frank Poppe Coordination Joseph W. Piergrossi Frank Poppe Layout and graphics blum design und kommunikation GmbH, Hamburg Photos and graphs Anton Barty, CFEL/DESY (p. 16); BINP, Novosibirsk (p. 76); A. Ferrari, HZDR (p. 125); FHH, Landesbetrieb Geoinf. und Vermessung (aerial views pp. 20–21); DESY, Hamburg (pp. 6, 12–13, 50–53, 60–61, 70–71, 77, 79, 80, 85–90, 92, 98, 184–185); DTU, Kongens Lyngby (p. 10); EMBL-EBI, Hinxton, Cambridge (p. 152); Ettore Zanon S.p.A., Schio (p. 80); JJ X-Ray, Lyngby (p. 78); R. P. Kurta et al. (p. 106); PSI, Villigen (p. 78); University of Rostock (pp.15, 46) All others: European XFEL Printing Heigener Europrint GmbH, Hamburg Available from European XFEL GmbH Notkestrasse 85 22607 Hamburg Germany +49 (0)40 8998-6006 [email protected] www.xfel.eu/documents Copy deadline 31 December 2014 www.xfel.eu Copying is welcomed provided the source is acknowledged and an archive copy sent to the European XFEL GmbH. The European XFEL is organized as a non-profit company with limited liability under German law (GmbH) that has international shareholders. ANNUAL REPORT European X-Ray Free-Electron Laser Facility GmbH CONTENTS 6 FOREWORD 6 Foreword by the Management Board 10 Foreword by the Council
    [Show full text]
  • Technical Document 1 Attached to the European XFEL Convention Executive Summary of the Technical Design Report (Part A) and Sc
    May 30, 2007 Technical Document 1 attached to the European XFEL Convention Executive Summary of the Technical Design Report (Part A) and Scenario for the Rapid Start-up of the European XFEL Facility (Part B) Introduction The XFEL Technical Design Report (TDR), adopted by the XFEL Steering Committee in July 2006, foresees a facility comprising an accelerator complex for an electron energy of up to 20 GeV (17.5 GeV in the standard operation mode), five undulator branches with ten experimental stations, and various office, laboratory and general utility buildings distributed over three different sites. An executive summary of the TDR is given in part A of this Annex to the “Convention concerning the construction and operation of a European X-ray Free- Electron Laser Facility” (XFEL Convention). The total project cost of the XFEL Facility as set out in the Technical Design Report (TDR) and in Annex 3 to the XFEL Convention amounts to 1081.6 M€, out of which 38.8 M€ for the preparation, 986.4 M€ for construction and 56.4 M€ for commissioning (all in 2005 prices). In order to begin the construction as early as possible, the Contracting Parties agreed that the facility be realised in steps, with initial commitments covering only the costs of the first step. The construction costs for the first step were set at approximately 850 M€ (instead of 986.4 M€). In part B of this Annex the characteristics of the rapid start-up scenario of the XFEL project are briefly outlined. A reference configuration, corresponding to a construction cost of 850 M€ is described; this configuration is not unique and alternative ones, all of which have construction costs not exceeding 850 M€, are also exemplified.
    [Show full text]
  • Commissioning of the European XFEL Accelerator Winfried Decking, Hans Weise - DESY for the European XFEL Accelerator Consortium and Commissioning Team
    Commissioning of the European XFEL Accelerator Winfried Decking, Hans Weise - DESY for the European XFEL Accelerator Consortium and Commissioning Team IPAC 2017, Copenhagen Commissioning of the European XFEL Accelerator 2 IPAC ‘17, 15.5.2017 Winni Decking, DESY Commissioning of the European XFEL Accelerator European XFEL at a Glance 3 International project realised in Hamburg area, Germany 17.5 GeV superconducting linac, 500 kW beam power 27000 pulses per second in 10 Hz burst mode Three variable gap undulators for hard and soft X-rays Initially 6 equipped experiments All accelerator and beamlines in tunnels 6 -25 m below surface Experimental Hall Photon Beam Lines Beam Dumps Undulators Electron Beam Distribution Collimation Linear Accelerator Bunch Compressors Injector IPAC ‘17, 15.5.2017 Winni Decking, DESY Commissioning of the European XFEL Accelerator Covers photon energies from 0.25 keV to 25 keV 4 SASE3 SASE 1& SASE 2 17.5 Soft X-rays 0.25 – ≥ 3 keV Hard X-rays 3.0 – ~25 keV 14.0 Electron 12.0 Energy [GeV] 8.5 0.2 1 2 10 20 Photon Energy [keV] IPAC ‘17, 15.5.2017 Winni Decking, DESY Commissioning of the European XFEL Accelerator Project History 5 2000: First lasing at 109 nm at the Tesla Test Facility (TTF), now FLASH 2001: TESLA Linear Collider TDR with XFEL appendix 2002: TESLA TDR supplement with stand-alone XFEL 2006: European XFEL TDR 2009: Foundation of the European XFEL GmbH Start of underground construction 2010: Formation of the Accelerator Consortium: 16 accelerator institutes under the coordination of DESY 2012: End of tunnel construction Start of underground installation M.
    [Show full text]
  • Materials Imaging and Dynamics Workshop
    Materials Imaging and Dynamics Workshop ESRF, Grenoble October 28‐29, 2009 http://www.xfel.eu/events/workshops/mid_workshop_2009/ The Materials Imaging and Dynamics (MID) instrument aims at the investigation of nanosized structure and nanoscale dynamics using coherent radiation. Applications to a wide range of materials from hard to soft condensed matter and biological structures are envisaged A. Madsen, ESRF 4th XFEL User Meeting, Jan. 27, 2010 Place and time: ESRF, October 28‐29, 2009 Organizers: I. Gimbales & T. Tschentscher (XFEL), E. Jahn & A. Madsen (ESRF) 65 registered participants from Europe, USA and Japan Day 1: plenary session; Day 2 parallel sessions (CXDI and XPCS) and discussions Day 1: Plenary session 8.30 – 9.00 Registration Session I. X-Ray FELs and MID instrument CXDI: 9.00 – 9.05 H. Reichert Welcome note I. Vartaniants (DESY) 9.05 – 9.20 M. Altarelli Status of the European XFEL 9.20 – 9.45 Th. Tschentscher The MID instrument at the European XFEL S. Ravy (Soleil) 9.45 – 10.15 I. Vartaniants Coherent Diffraction Imaging using X-ray FELs A. Beerlink (Salditt, Göttingen) 10.15 – 10.45 C. Gutt Photon Correlation Spectroscopy using X-ray FELs 10.45 – 11.00 General discussion: MID instrument scope XPCS: 11.00 – 11.20 Coffee break Session II. Coherent Diffraction Imaging C. Gutt (DESY) 11.20 – 11.50 S. Ravy Coherent diffraction for condensed matter physics B. Stephenson (ANL) 11.50 – 12.20 T. Salditt imaging of supported bio-objects 12.20 – 12.50 E. Vlieg Study of the initial stages of crystallization L. Cipelletti (Montpellier) 12.50 – 14.00 Lunch Session .
    [Show full text]
  • Commissioning and First Lasing of the European Xfel*
    38th International Free Electron Laser Conference FEL2017, Santa Fe, NM, USA JACoW Publishing ISBN: 978-3-95450-179-3 doi:10.18429/JACoW-FEL2017-MOC03 COMMISSIONING AND FIRST LASING OF THE EUROPEAN XFEL* H. Weise†, W. Decking, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany on behalf of the European XFEL Accelerator Consortium and the Commissioning Team Abstract FACILITY LAYOUT The European X-ray Free-Electron Laser (XFEL) in The complete facility is constructed underground, in a Hamburg, Northern Germany, aims at producing X-rays 5.2 m diameter tunnel about 25 to 6 m below the surface in the range from 0.25 up to 25 keV out of three undula- level and fully immersed in the ground water. The 50 m tors that can be operated simultaneously with up to long injector is installed at the lowest level of a 7 stories 27,000 pulses per second. The XFEL is driven by a underground building whose downstream end also serves 17.5-GeV superconducting linac. This linac is the world- as the entry shaft to the main linac tunnel. Next access to wide largest installation based on superconducting radio- the tunnel is only about 2 km downstream, at the bifurca- frequency acceleration. The design is using the so-called tion point into the beam distribution lines. The beam TESLA technology which was developed for the super- distribution provides space for in total 5 undulators – conducting version of an international electron positron 3 being initially installed. Each undulator is feeding a linear collider. After eight years of construction the facili- separate beamline so that a fan of 5 almost parallel tun- ty is now brought into operation.
    [Show full text]
  • Accelerator Beam Dynamics at the European X-Ray Free Electron Laser
    Accelerator beam dynamics at the European X-ray Free Electron Laser Igor Zagorodnov and Martin Dohlus Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany Sergey Tomin The European X-Ray Free-Electron Laser Facility GmbH, 22869 Schenefeld, Germany We consider the collective beam dynamics in the accelerator of the European X-ray Free Electron Laser for electron bunches with charges of 250 and 500 pC. The dynamics has been studied numerically with different computer programs, and we struggle to include properly the whole beam physics with collective effects. Several scenarios of the longitudinal dynamics are considered for the peak currents of 5 and 10 kA. A procedure for the choice of the machine parameters is described, and the tolerances of radio frequency parameters of accelerating modules along the accelerator are calculated. The bunch properties at the end of the accelerator before the undulator line are analyzed. A comparison between measurements and simulations for the beam energy loss due to wakefields is presented. DOI: 10.1103/PhysRevAccelBeams.22.024401 I. INTRODUCTION Our studies are carried out for the current state of the A free electron laser (FEL) in the x-ray wavelength European XFEL facility. We show with beam dynamics requires well-conditioned electron bunches with a small simulations that there are working points which produce the emittance, small energy spread, and high peak current. In electron bunches with the design parameters at the entrance order to prepare such bunches, the modern FEL facilities of the undulator lines and which will provide a high level of include very complicated accelerators based on radio self-amplified spontaneous emission (SASE) radiation at frequency (rf) technology with several stages of beam hard x-ray wavelengths.
    [Show full text]