Zulassungen Aktuell

Total Page:16

File Type:pdf, Size:1020Kb

Zulassungen Aktuell Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Bundesamt für Zivilluftfahrt Luftfahrtentwicklung Lärmklassierung der Propellerflugzeuge Classement en fonction du bruit des avions à hélice Noise classification of propeller driven aircraft (MTOM < 8'618 kg) Mühlestrasse 2, 3096 Bern (Schweiz) Telefon +41 31 325 8039/40 Fax +41 31 325 9212 FOCA Noise Type / 09. Jan. 18 Seite 1 von 35 Luftfahrzeug Motor Schalldämpfer PropellerMTOM [kg] Klasse AERO SP.z o.o AT-3 R100Rotax 912 S2 Elprop 3-1-1P 582 D Aircraft Industries, a.s. L 410 UVP-E20Walter M 601 E Original Avia Propeller Ltd. V 510 6600 A Alenia Aermacchi S.p.A F260Lycoming O-540-E4A5 Hartzell HC-C2YK-1BF/F8477-8R 1102 C Alenia Aermacchi S.p.A F260CLycoming O-540-E4A5 MT-Propeller MTV-9-B/188-50 1102 D Alenia Aermacchi S.p.A F260CLycoming IO-540-D4A5 MT-Propeller MTV-9-B/188-50 1102 D Alenia Aermacchi S.p.A F260CLycoming O-540-E4A5 Hartzell HC-C2YK-1BF/F8477-8R 1102 B Alenia Aermacchi S.p.A F260DLycoming O-540-E4A5 Hartzell HC-C2YK-1BF/F8477-8R 1100 B Alenia Aermacchi S.p.A S205-18FLycoming O-360-A1A Hartzell HC-C2YK-1B 1200 C Alenia Aermacchi S.p.A S205-22/RFranklin 6A-350-C1 Hartzell HC-C2YK-1B 1350 A Alenia Aermacchi S.p.A S208Lycoming O-540-E4A5 Hartzell HC-C2YK-1B/F8477-8R 1350 C American Champion Aircraft Corporation 7ACContinental C-90-8F Sensenich M76AK-2-46 554 D American Champion Aircraft Corporation 7ECAContinental O-200-A McCauley 1A100/ACM6948 748 A American Champion Aircraft Corporation 7GCAALycoming O-320-B2B Sensenich 74DM6S8-0-56 794 C American Champion Aircraft Corporation 7GCBCSuperior O-360-A3A2 Sensenich 76EM8S8-0-58 818 C American Champion Aircraft Corporation 8KCABLycoming AEIO-360-H1A Hartzell C2YR-4CF/FC7666A-4 816 B American Champion Aircraft Corporation 8KCABLycoming AEIO-360-H1A MT-Propeller MTV-9-B-C/C188-18b 885 A Antonov AN-2TD PZL ASz-62 PZL AW-2/02 5500 B Apex Aircraft CAP 10 B Lycoming AEIO-360-B2F Hoffmann HO-29-HM-180-170 830 B Apex Aircraft CAP 20L/S200Lycoming AEIO-360A1B Hartzell HC-C2YK-4 750 A Aquila AT01 Rotax 912 S3 MT-Propeller MTV-21-A/175-05 750 D Aquila AT01-100 Rotax 912 S3 MT-Propeller MTV-21-A/170-05 750 D Auster PLUS D Lycoming O-235-C Sensenich 76AM6-2-48 635 C Auster V Lycoming O-290-D2 McCauley 1A170/GM7448 840 A Auster V Lycoming O-290-D2 McCauley 1A170/GM7450 840 A Auster V/J.1. Cirrus MINOR II Fairey FR-32 499 840 B Aviamilano F-14 Lycoming O-360-A1A Hartzell HC-92ZK-8D 1140 C Beagle B121 Lycoming O-320-A2B Sensenich M74DMS-0-60 873 B Beech 100 Pratt & Whitney PT6A-28 Hartzell B3TN-3 4808 C Binder 14-13-3 Franklin 6A4-150-B3 McCauley 1A170/DM7456 975 B Binder CP301S Continental C-90-12F McCauley 1B90/CM7150 680 C Binder CP301S "SMARAGD"Continental O-200-A McCauley 1A100/MCM6758 680 B Binder Motorenbau GmbH ASH 25 EB 28Solo Kleinmotoren GmbH 2 625 02 ROTAX 535C Technoflug KS-1G-160-R-120 810 D Boelkow 207 Lycoming O-360-A1A Hartzell HC-92ZK-8D/8447-12A 1200 D Boelkow 207 T Lycoming O-360-A1A Hartzell HC-92ZK-8D/8447-12A 1200 D FOCA Noise Type / 09. Jan. 18 Seite 2 von 35 Luftfahrzeug Motor Schalldämpfer PropellerMTOM [kg] Klasse Boelkow BO-208C "JUNIOR"Teledyne Continental O-200-A McCauley 1A100/MCM6758 630 C Boelkow BO-208C "JUNIOR"Rolls-Royce O-200-A McCauley 1A100/MCM6955 630 C Boelkow BO-209 Lycoming IO-320-D1A Hartzell HC-C2YL-1B 820 C Boelkow BO-209-MONSUNLycoming AIO-320-C1B Hartzell HC-C2YL-1B 820 B Borowski PICCOLO Solo 2350B Borowski KS-118-3-S 297 D Britisch Aerospace JETSTREAM 3100Garrett TPE 331-1OUR Dowty Rotol R333/4-82-F/12 6900 D Britisch Aerospace JETSTREAM 3200Garrett TPE331-12UAR-701H Dowty Rotol (C)R333/4-82-F/12 7350 D Britten Norman BN-2A Lycoming O-540-E Hartzell HC-C2YK-2B 2724 A Britten Norman BN2B-20 IslanderLycoming IO-540-K1B5 Gomolzig BN2-606500 Hartzell HC-C2YK-2CF/FC8477-6 2994 C Bücker 133 Bramo SH-14A4 K+W D220/S148 640 D CERVA CERVA CE 43 Lycoming IO-540-C4B5 Hartzell HC-C2YK-1BF/F8477-7 1460 C Cessna Aircraft Company 140Continental C-90-12F Sensenich M76-AK 660 C Cessna Aircraft Company 140Lycoming O-235-K2A Sensenich 72CK-0-56 660 A Cessna Aircraft Company 140Cont./Rolls-Royce O-200-A Sensenich M69CK52 660 A Cessna Aircraft Company 140Continental C-85-12F McCauley 1A90/CF7150 660 A Cessna Aircraft Company 140Cont./Rolls-Royce O-200-A McCauley 1A90/CF7154 660 A Cessna Aircraft Company 140Lycoming O-235-K2A Hoffmann HO-14-178-115 660 A Cessna Aircraft Company 140 AContinental C-90-12F McCauley 1B90/CM7146 680 C Cessna Aircraft Company 150 DCont./Rolls-Royce O-200-A Sensenich 69CK-0-52 726 C Cessna Aircraft Company 150 DCont./Rolls-Royce O-200-A McCauley 1A100/MCM 6950 726 C Cessna Aircraft Company 150 DLycoming O-360-A4A Hoffmann HO-4/27HM-170 125 799 D Cessna Aircraft Company 150 JLycoming O-320-E2A Sensenich 74DM6-0-56 750 C Cessna Aircraft Company 150LLycoming O-320-E2A Sensenich 74DM6S5-0-58 798 C Cessna Aircraft Company 152Lycoming O-235-L2C McCauley 1A103/TCM6958 758 D Cessna Aircraft Company 170 ALycoming O-340-A1A Hartzell HC-A2XL-1 998 B Cessna Aircraft Company 170 ALycoming O-340-A1A Hartzell HC-82XL-1D 998 B Cessna Aircraft Company 170 BLycoming O-360-A1A Hartzell HC-C2YK-1 998 B Cessna Aircraft Company 170,-A,-BContinental C-145-2 McCauley 1A170/DM7653 1000 B Cessna Aircraft Company 172Franklin 6A-335-B McCauley 2A31C21/84S-8 1043 A Cessna Aircraft Company 172Continental O-300-A McCauley 1A170/DM7653 998 C Cessna Aircraft Company 172 KLycoming O-320-E2D Gomolzig McCauley 1C160/DTM7553 1043 D Cessna Aircraft Company 172 LLycoming O-320-E2D Gomolzig McCauley 1C160/DTM7553 1043 D Cessna Aircraft Company 172 MLycoming O-320-H2D Gomolzig McCauley 1C160/.TM7553 1043 D Cessna Aircraft Company 172 NLycoming O-320-H2AD McCauley 1C160/DTM7557 1043 C Cessna Aircraft Company 172 NThielert TAE-125 MT-Propeller MTV-6-A/187-129 1043 C FOCA Noise Type / 09. Jan. 18 Seite 3 von 35 Luftfahrzeug Motor Schalldämpfer PropellerMTOM [kg] Klasse Cessna Aircraft Company 172 PLycoming O-360-A4M Sensenich 76EM8SPY-0-60 1157 C Cessna Aircraft Company 172 QLycoming O-360-A4N McCauley 1A170/JFA7660 1157 B Cessna Aircraft Company 172 RGLycoming O-360-F1A6 McCauley B3D36C429/82NPA-6 1202 C Cessna Aircraft Company 172 RGLycoming O-360-F1A6 McCauley B2D34C220/80VHA-3.5 1202 C Cessna Aircraft Company 172 RGLycoming O-360-F1A6 MT-Propeller MTV-12-B/183-17 1198 C Cessna Aircraft Company 172...Lycoming O-360-... McCauley 1A170... 998 B Cessna Aircraft Company 175Continental GO-300-C-D McCauley 1B175/MFC8467 1066 D Cessna Aircraft Company 175Lycoming O-360-A1D Hartzell HC-C2YK-1 1066 C Cessna Aircraft Company 175Franklin 6A-335-B McCauley 2A31C21/84S-6 1066 A Cessna Aircraft Company 175Franklin 6A-350-C2 McCauley 2A31C21/84S-6 1066 A Cessna Aircraft Company 175Franklin 6A-335-B McCauley 2A31C21/84S-8 1066 C Cessna Aircraft Company 175 BLycoming O-360-A1D McCauley 2D36C14/78KM-4 1066 C Cessna Aircraft Company 175 CContinental GO-300-E McCauley 2A31C21/84S-0 1110 D Cessna Aircraft Company 177Lycoming O-360-A1D Hartzell HC-C2YK-1BF 1066 C Cessna Aircraft Company 177 BLycoming O-360-A1F6 McCauley 2D34C202/82PA-6 1134 C Cessna Aircraft Company 177 RGLycoming IO-360A1B6D McCauley B2D34C207/78TA 1270 B Cessna Aircraft Company 177 RGLycoming IO-360A1B6D Original McCauley C3D36C415/82NGA-8 1270 D Cessna Aircraft Company 180Continental O-470-J Hartzell HC-82XF-1-DB 1157 C Cessna Aircraft Company 180Continental O-470-J McCauley 2A34C203/90DCA-8 1157 C Cessna Aircraft Company 180Continental O-470-J Hartzell HC-82XF-1-DB 1157 B Cessna Aircraft Company 182SMA SR 305-230 MT-Propeller MTV-9-BS/198-58B 1338 D Cessna Aircraft Company 182...Continental O-470-L Hartzell HC-82XF-1DB 1203 C Cessna Aircraft Company 182...,-PContinental O-470-R McCauley D3A32C411C/G82NDA-4 1338 B Cessna Aircraft Company 182EContinental O-470-R McCauley 2A34C50 1270 C Cessna Aircraft Company 182FContinental O-470-R McCauley 2A34C66-()/()-90AT-8 1270 C Cessna Aircraft Company 182FContinental O-470-R McCauley 2A34C50 1270 C Cessna Aircraft Company 182HContinental O-470-R Hartzell BHC-G2YF-1BF/F8468A-2R 1270 C Cessna Aircraft Company 182HContinental O-470-U McCauley C2A34C204/90DCB-8 1338 D Cessna Aircraft Company 182HContinental O-470-R McCauley 2A34C66/90AT-8 1270 C Cessna Aircraft Company 182HContinental O-470-U McCauley C2A34C204/90DCB-8 1270 D Cessna Aircraft Company 182LContinental O-470-R McCauley 2A34C66/90AT-8 1270 C Cessna Aircraft Company 182MContinental O-470-R McCauley 2A34C203/90DCA-8 1270 C Cessna Aircraft Company 182PContinental IO-550-D Gomolzig C182-606500 Hartzell PHC-L3YF-1RF/F7691 1338 D Cessna Aircraft Company 182PContinental O-470-R McCauley 2A34C203/90DCA-8 1338 B Cessna Aircraft Company 182PContinental O-470-S McCauley 2A34C203/90DCA-8 1338 B FOCA Noise Type / 09. Jan. 18 Seite 4 von 35 Luftfahrzeug Motor Schalldämpfer PropellerMTOM [kg] Klasse Cessna Aircraft Company 182PContinental O-470-S McCauley 2A34C201-()/()-90D(C)A-8 1338 B Cessna Aircraft Company 182QContinental IO-550-D IAW Gomolzig Kit C182-606650 Hartzell PHC-L3YF-1RF/F7691 1338 D Cessna Aircraft Company 182QContinental IO-550-F McCauley D3A34C401 1338 D Cessna Aircraft Company 182QContinental IO-550-D IAW Gomolzig Kit C182-606600 Hartzell PHC-L3YF-1RF/F7691 1338 C Cessna Aircraft Company 182Q PORSCHEPorsche PFM 3200 NO3 MT-Propeller MTV-9D/200-1 1338 D Cessna Aircraft Company 182Q,RContinental O-470-U McCauley C2A34C204/90DCB-8 1338 D Cessna Aircraft Company 182Q,RContinental O-470-U McCauley C2A34C204/90DCB-8 1406 D Cessna Aircraft Company 182RGLycoming O-540-J3C5D Cessna McCauley B2D34C218 1406 D Cessna Aircraft Company 182SLycoming IO-540-AB1A5 McCauley B2D34C235/90DKB-8 1406 C Cessna Aircraft Company 182SLycoming IO-540-AB1A5 Gomolzig C182-606550 McCauley B2D34C235/90DKB-8 1406 D Cessna Aircraft Company 185 AContinental IO-470-F McCauley D2A36C33 1450 A Cessna Aircraft Company 185 AContinental IO-470-F McCauley D2A36C33 1450 B Cessna Aircraft Company 206HLycoming IO-580-130X McCauley B3D36C432/80VSA-1 1633 D Cessna Aircraft Company 206HLycoming IO-580-130X McCauley B3D36C432/80VSA-1 1633 A Cessna Aircraft Company 207Continental IO-520-F McCauley D3A32C90 1724 A Cessna Aircraft Company 207..
Recommended publications
  • Aeroshell Book
    THE AEROSHELL BOOK Twentieth Edition 2021 Issued by: Shell Aviation Shell International Petroleum Co. Ltd. Shell Centre York Road London SE1 7NA www.shell.com/aviation 3 COPYRIGHT STATEMENT All rights reserved. Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owner. The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document the expressions “Shell”, “Group” and “Shell Group” are sometimes used for convenience where references are made to Group companies in general. Likewise, the words “we”, “us” and “our” are also used to refer to Group companies in general or those who work for them. These expressions are also used where there is no purpose in identifying specific companies. © 2021 Shell International Petroleum Company Limited. 4 DEFINITIONS & CAUTIONARY NOTE The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this The AeroShell Book, “Shell”, “Shell Group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. ‘‘Subsidiaries’’, “Shell subsidiaries” and “Shell companies” as used in this The AeroShell Book refer to entities over which Royal Dutch Shell plc either directly or indirectly has control.
    [Show full text]
  • Heavy-Fueled Intermittent Ignition Engines: Technical Issues
    Publications 9-2009 Heavy-Fueled Intermittent Ignition Engines: Technical Issues Jeffrey Arthur Schneider Embry-Riddle Aeronautical University Timothy Wilson Embry-Riddle Aeronautical University, [email protected] Christopher Griffis Peter Pierpont Follow this and additional works at: https://commons.erau.edu/publication Part of the Aeronautical Vehicles Commons, and the Propulsion and Power Commons Scholarly Commons Citation Schneider, J. A., Wilson, T., Griffis, C., & Pierpont,. P (2009). Heavy-Fueled Intermittent Ignition Engines: Technical Issues. , (). Retrieved from https://commons.erau.edu/publication/145 This Report is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. DOT/FAA/AR-08/42 Heavy-Fueled Intermittent Air Traffic Organization NextGen & Operations Planning Ignition Engines: Office of Research and Technology Development Technical Issues Washington, DC 20591 September 2009 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J.
    [Show full text]
  • Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights
    JOURNAL OF PROPULSION AND POWER Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights Daniele Cirigliano,∗ Aaron M. Frisch,† Feng Liu,‡ and William A. Sirignano‡ University of California, Irvine, California 92697 DOI: 10.2514/1.B36547 Comparisons are made for propulsion systems for unmanned flights with several hundred kilowatts of propulsive power at moderate subsonic speeds up to 50 h in duration. Gas-turbine engines (turbofans and turboprops), two- and four-stroke reciprocating (diesel and spark-ignition) engines, and electric motors (with electric generation by a combustion engine) are analyzed. Thermal analyses of these engines are performed in the power range of interest. Consideration is given to two types of generic missions: 1) a mission dominated by a constant-power requirement, and 2) a mission with intermittent demand for high thrust and/or substantial auxiliary power. The weights of the propulsion system, required fuel, and total aircraft are considered. Nowadays, diesel engines for airplane applications are rarely a choice. However, this technology is shown to bea very serious competitor for long-durationunmanned air vehicle flights. The two strongest competitors are gas-turbine engines and turbocharged four-stroke diesel engines, each type driving propellers. It is shown that hybrid-electric schemes and configurations with several propellers driven by one power source are less efficient. At the 500 KW level, one gas-turbine engine driving a larger propeller is more efficient for durations up to 25 h, whereas several diesel engines driving several propellers become more efficient at longer durations. The decreasing efficiency of the gas-turbine engine with decreasing size and increasing compression ratio is a key factor.
    [Show full text]
  • THE INCOMPLETE GUIDE to AIRFOIL USAGE David Lednicer
    THE INCOMPLETE GUIDE TO AIRFOIL USAGE David Lednicer Analytical Methods, Inc. 2133 152nd Ave NE Redmond, WA 98052 [email protected] Conventional Aircraft: Wing Root Airfoil Wing Tip Airfoil 3Xtrim 3X47 Ultra TsAGI R-3 (15.5%) TsAGI R-3 (15.5%) 3Xtrim 3X55 Trener TsAGI R-3 (15.5%) TsAGI R-3 (15.5%) AA 65-2 Canario Clark Y Clark Y AAA Vision NACA 63A415 NACA 63A415 AAI AA-2 Mamba NACA 4412 NACA 4412 AAI RQ-2 Pioneer NACA 4415 NACA 4415 AAI Shadow 200 NACA 4415 NACA 4415 AAI Shadow 400 NACA 4415 ? NACA 4415 ? AAMSA Quail Commander Clark Y Clark Y AAMSA Sparrow Commander Clark Y Clark Y Abaris Golden Arrow NACA 65-215 NACA 65-215 ABC Robin RAF-34 RAF-34 Abe Midget V Goettingen 387 Goettingen 387 Abe Mizet II Goettingen 387 Goettingen 387 Abrams Explorer NACA 23018 NACA 23009 Ace Baby Ace Clark Y mod Clark Y mod Ackland Legend Viken GTO Viken GTO Adam Aircraft A500 NASA LS(1)-0417 NASA LS(1)-0417 Adam Aircraft A700 NASA LS(1)-0417 NASA LS(1)-0417 Addyman S.T.G. Goettingen 436 Goettingen 436 AER Pegaso M 100S NACA 63-618 NACA 63-615 mod AerItalia G222 (C-27) NACA 64A315.2 ? NACA 64A315.2 ? AerItalia/AerMacchi/Embraer AMX ? 12% ? 12% AerMacchi AM-3 NACA 23016 NACA 4412 AerMacchi MB.308 NACA 230?? NACA 230?? AerMacchi MB.314 NACA 230?? NACA 230?? AerMacchi MB.320 NACA 230?? NACA 230?? AerMacchi MB.326 NACA 64A114 NACA 64A212 AerMacchi MB.336 NACA 64A114 NACA 64A212 AerMacchi MB.339 NACA 64A114 NACA 64A212 AerMacchi MC.200 Saetta NACA 23018 NACA 23009 AerMacchi MC.201 NACA 23018 NACA 23009 AerMacchi MC.202 Folgore NACA 23018 NACA 23009 AerMacchi
    [Show full text]
  • Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine Using JET-A Fuel
    Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine using JET-A Fuel by Sean Christopher Underwood B.S. Aerospace Engineering, Georgia Institute of Technology, 2005 B.S. Mathematics, Georgia Southwestern State University, 2005 Submitted to the Department of Aerospace Engineering and the Faculty of the Graduate School of Engineering at the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Committee: ________________________________ Dr. Ray Taghavi, Committee Chairman ________________________________ Dr. Saeed Farokhi, Committee Member ________________________________ Dr. Mark Ewing, Committee Member ___________________ Date Thesis Defended The Thesis Committee for Sean Christopher Underwood certifies that this is the approved Version of the following thesis: Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine using JET-A Fuel Committee: ________________________________ Dr. Ray Taghavi, Committee Chairman ________________________________ Dr. Saeed Farokhi, Committee Member ________________________________ Dr. Mark Ewing, Committee Member ___________________ Date Approved i Abstract Performance and emission data was acquired by testing an aircraft turbo diesel engine with JET-A at the Mal Harned Propulsion Laboratory of the University of Kansas. The performance data was analyzed and compared to the presented data of the manufacturer. The performance test data of the engine was similar to those reported in the handbook of the engine. The emission data was collected in percent of volume, mass, and part per million units. The different types of pollutants that were evaluated were NOx, CO, CO2, and HC. The emission investigation demonstrates that the aircraft turbo diesel emission data (g/kg fuel) was close to other turbine engines reported in the literature.
    [Show full text]
  • Aeroshell Piston Engine Oils
    AEROSHELL PISTON ENGINE OILS AEROSHELL PISTON ENGINE OILS For many years the performance of aircraft piston engines was such that they could be lubricated satisfactorily by means of straight mineral oils, blended from specially selected petroleum base stocks. However, demand for oils with higher degrees of thermal and oxidation stability necessitated ‘fortifying’ them with the addition of small quantities of non-petroleum materials. The first additives incorporated in straight mineral piston engine 3.1 oils were based on the metallic salts of barium and calcium. In highly-rated engines the performance of these oils with respect to oxidation and thermal stability was excellent, but the combustion chambers of the majority of engines could not tolerate the presence of the ash deposits derived from these metal-containing additives. PISTON ENGINEPISTON OILS To overcome the disadvantages of harmful combustion chamber deposits, a non-metallic, i.e. non-ash forming, polymeric additive was developed which was incorporated in blends of selected mineral oil base stocks, to give the range of AeroShell W Oils. Following extensive operational success in a wide range of civil engines, military specifications based on the general characteristics of AeroShell W Oils were prepared and issued. AeroShell W Oils were in service with the world’s airlines and aircraft operators for many years when they operated big transport piston-engined aircraft, during which time these oils became virtually the standard for all aircraft piston engines. Nevertheless, supplies of straight AeroShell Oils remained available primarily for running-in the aircraft piston engine and for the few operators who required them. Today these oils (both AeroShell W Oils and AeroShell Oils) are still required for the smaller piston-engined aircraft flying in air taxi operations, flying clubs or flown by private pilots.
    [Show full text]
  • Dieselcykel För Flygmotorer Av C
    1 Dieselcykel för flygmotorer Av C. Eriksson Dieselmotorn har kommit tillbaka som flygplansmotor. Dess höga termiska verkningsgrad på grund av dess mycket höga expansionsförhållande ihop med precisionsstyrd bränsleinsprutning under högt tryck m h a ”common rail teknologi” och med piezoelektrisk styrning av insprutningen ihop med turboladd- ning har förbättrat dagens dieselmotorer. Lågvarvade dieselmotorer (som används i fartyg och andra tillämpningar där den totala motorvikten är relativt oviktig) kan nå verkningsgrader på upp till 55 %. Dieselmotorns höga verkningsgrad framgår av diagrammet Jumo 207 producerades för Junkers Ju 86P och -R höghöjds nedan: spaningsflygplan och sexmotoriga Blohm & Voss BV 222 Wi- king flygbåt. BV 222 Bild Economist Den högsta verkningsgraden får man i en stationär kombi- Dessa motorer använde alla en två-taktscykel med tolv kolvar, cykel gasturbin beroende på att man kan använda avgasvär- som delade sex cylindrar i en motsatt kolvkonfiguration. men för en efterföljande värmemotor. Bl a Siemens STAL- Denna ovanliga konfiguration krävde två vevaxlar, en längst Laval säljer dessa. ner på cylinderblocket och den andra i toppen, som var ihop- kopplade med drev. Kolvarna rörde sig mot varandra under Ett antal tillverkare byggde flygplansdieselmotorer redan på driftscykeln. Intag och avgasgrenrör duplicerades på båda 1920- och 1930-talet; Packards luftkylda radialmotor DR-980 sidor av blocket. Det fanns två kamdrivna insprutningspumpar blev inte populär pga dess vibrationer och avgaserna, Junkers per cylinder, var och en matade två munstycken, för 4 mun- Jumo 205 var den mest kända av en serie flygplansdieselmoto- stycken per cylinder totalt. rer. Det var den första, och för mer än ett halvt sekel den enda framgångsrika flygplansdieselmotorn, men visade sig olämplig Som är typiskt för tvåtaktare, använde Jumon inga ventiler, för strid i andra världskriget.
    [Show full text]
  • Annual Report 2006 Important Figures
    AnnuAl report 2006 ImPORTANT FIgUREs ACC o r DI n g t o I F r s in EUR ’000 2006 2005 in % Thielert At A Glance Revenues 59,940 37,579 59.5 › Europe (including Germany) 12,588 13,088 -3.8 › USA and rest of the world 47,352 24,491 93.3 EBITDA 13,281 16,116 -17.6 EBIT 9,251 13,143 -29.6 EBT 7,775 9,109 -14.6 Consolidated net profit for the year 5,230 7,666 -31.8 Balance sheet total 171,385 123,410 38.9 Equity 103,645 99,155 4.5 Capital expenditures 20,390 7,194 183.4 Depreciation, amortization 4,030 2,974 35.5 Liquid funds 5,208 18,213 -71.4 Debt 1 37,668 12,213 208.4 Net debt 2 32,460 -6,000 -641.0 Net working capital 3 77,348 60,889 27.0 Capitalized development cost 11,408 5,250 117.3 EBITDA, adjusted for capitalized R&D expenses -2,327 10,866 -121.4 EBIT, adjusted for capitalized R&D expenses 1,703 7,893 -78.4 Share Data Earnings per share (EUR) 0.26 0.55 -52.7 Employees 320 252 27.0 For the entire Annual Report percentage figures refer to unrounded Euro values. Figures have been rounded off where appropriate. 1 Liabilities against banks, silent shareholders, shareholders and group companies as well as finance leases 2 Debt less liquid funds 3 Inventory plus trade receivables, less payments on account and less trade payables r e v e n u e D I s t r I b u t I o n A C C o r DI n g t o r e g I o n 21% Europe 35% Europe (including Germany) (including Germany) 2006 2005 79% USA and rest of the world 65% USA and rest of the world K e y s e g m e n t D AtA AI r C r AF t e n g I n e s in EUR ’000 The business unit Aircraft Engines increased by 41.9 2006 % 2005 % percent compared to 2005.
    [Show full text]
  • Notification of a Proposal to Issue an Airworthiness Directive
    EASA PAD No.: 21-100 Notification of a Proposal to issue an Airworthiness Directive PAD No.: 21-100 Issued: 13 July 2021 Note: This Proposed Airworthiness Directive (PAD) is issued by EASA, acting in accordance with Regulation (EU) 2018/1139 on behalf of the European Union, its Member States and of the European third countries that participate in the activities of EASA under Article 129 of that Regulation. In accordance with the EASA Continuing Airworthiness Procedures, the Executive Director is proposing the issuance of an EASA Airworthiness Directive (AD), applicable to the aeronautical product(s) identified below. All interested persons may send their comments, referencing the PAD Number above, to the e-mail address specified in the ‘Remarks’ section, prior to the consultation date indicated. Design Approval Holder’s Name: Type/Model designation(s): ALEXANDER SCHLEICHER GmbH & Co. Ka 6, K 7, K 8, AS-K 13 and ASK 18 sailplanes Segelflugzeugbau and ASK 16 powered sailplanes Effective Date: [TBD - standard: 14 days after AD issue date] TCDS Number(s): Luftfahrt Bundesamt Germany (LBA) Kennblatt No. 205, No. 211, No. 216, No. 267, No. 307 and No. 758. Foreign AD: Not applicable Supersedure: This AD supersedes LBA AD (Lufttüchtigkeitsanweisung) 72-7/3 dated 13 December 1989. ATA 55 – Stabilizers – Elevators – Inspection Manufacturer(s): Alexander Schleicher GmbH & Co. Segelflugzeugbau (Schleicher) Applicability: AS-K 13, ASK 16, ASK 16B, ASK 18, ASK 18 B, K 8, K 8 B, K 8 C and K 7 sailplanes and powered sailplanes, all serial numbers (s/n), and Ka 6, Ka 6 B, Ka 6 BR, Ka 6 C, Ka 6 CR, Ka 6/0 sailplanes, all s/n.
    [Show full text]
  • Aircraft Diesel Engines
    Aircraft Diesel Engines Why haven’t they been really successful? What will the future bring? by Bill Brogdon November 12, 2020 Rudolf Diesel 1858-1913 Some of My History • Rambling Wreck from Georgia Tech • 1968 B. Mechanical Engineering • 1968-76 International Harvester • Truck engine design and analysis © bmep, Inc. 2020 2 Teledyne Continental Motors • 1976-98 & 2007-10 • Design Engineer Director Engineering Chief Engineer • Engines – TSIOL300 Boeing Condor – IOL-200 Voyager – TSIOL 550 RAM 414 – Grob Strato 2C HALE – NASA GAP diesel – O-200D Skycatcher © bmep, Inc. 2020 3 JCB photo Ricardo, Inc. • 1998-06 • Design Manager Chief Engr. (Industrial &Other) • TARDEC- Commercially based FCS engine BB photo • Cummins Mercruiser Diesel marinized ISB • Design and analysis direction for all engine types and clients – Diesel – Gasoline CMD photo – Stirling – Engine sizes from 0.5 to 10,000 hp © bmep, Inc. 2020 4 About This Presentation • Engine design guy, let me know when my jargon is unintelligble • Airship diesel engines are left out of this presentation, there was never a successful one! • Also true for helicopters… but some of them are in here… consistency is for sissies • Some experimental auto conversions are included and some are not • SI = spark ignition, CI = compression ignition (diesel) © bmep, Inc. 2020 5 Aircraft Diesels -- Why? • Fuel economy – Cost – Range • Fuel availability (Jet A available world wide, avgas no) • Fire safety and no CO • Operational – Single lever fueling control – Inlet (carb) icing due to fuel evaporation not an issue • Potentially longer TBO (time between overhauls) • The emphasis on each changes over time • Diesels are now in a rapid phase of development due to trucks and cars; this can be applied to aircraft diesels © bmep, Inc.
    [Show full text]
  • EPATS Vision 2020 and Current State
    D5.2 EPATS Roadmap Document Number: EP D5.2-EPATS_Roadmap-V0 Table of contents: FOREWORD........................................................................................................................4 1. INTRODUCTION ......................................................................................................5 2. MEANING OF CONCEPTS USED ............................................................................6 3. BACKGROUND ........................................................................................................9 3.1 Key figures related to passengers transport in EU-27...........................................9 3.2 Airports in Europe.............................................................................................12 4. EPATS CONCEPT...................................................................................................18 5. EPATS OBJECTIVES AND RATIONALE ..............................................................23 6. EPATS SYSTEM COMPONENTS...........................................................................25 7. EPATS EFFECTIVENESS.......................................................................................26 7.1 Introduction.......................................................................................................26 7.2 Time efficiency .................................................................................................27 7.3 Energy efficiency ..............................................................................................29
    [Show full text]
  • Paul H. Poberezny at Home in His Workshop
    The Spirit of Homebuilt Aviation I www.eaa.org Vol.2 No.9 I September 2013 Hatz Trick AirVenture in Review Engines at AirVenture 2013 Fun Fly Zone Recap Paul H. Poberezny At home in his workshop EEAAEXP_Sept13.inddAAEXP_Sept13.indd 1 99/23/13/23/13 44:21:21 PMPM Tower Frequency The debut of Disney’s Planes was another Oshkosh fi rst Oshkosh and was wildly successful with an estimated 15,000 people fi lling every available spot to see the animated feature. Many challenges, much success We expanded our restroom facilities, had entertainment groups performing on stage throughout the week, not just By Jack Pelton on Monday evening, and expanded the tram service to make getting around easier. As the weeks counted down to AirVenture Oshkosh your board identifi ed many challenges facing EAA. When we Fifth, we needed expanded transparency in EAA gover- tightened the focus it became clear there were seven nance. We moved the annual meeting of the membership specifi c objectives that must be accomplished for Oshkosh to Wednesday morning from Saturday so more members and EAA to be successful. could attend. We presented a detailed fi nancial report. We listened to requests by members and eliminated fl ightline First, we had to deal with the FAA’s surprise charge of chalets. And your board listened and responded to com- nearly half a million dollars to provide air traffi c controller ments and questions from members at the meeting. service for the week. Without the controllers there could be no waivers, and without the waivers the special traffi c This year the compliments overwhelmed the complaints, procedures that allow 10,000 airplanes to come and go and EAA members showed their true colors by returning would not be possible.
    [Show full text]