Pulsed Power for Solid-State Lasers
Total Page:16
File Type:pdf, Size:1020Kb
LLNL-BOOK-400175 Pulsed Power for Solid-State Lasers W. Gagnon, G. Albrecht, J. Trenholme, M. Newton January 2, 2008 Pulsed Power for Solid-State Lasers This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Pulsed Power for Solid-State Lasers William Gagnon with Georg Albrecht John Trenholme Mark Newton Foreword by John Emmett i ii Table of Contents Foreword by John Emmett...............................................................................................1 Acknowledgements............................................................................................................2 PREFACE ..........................................................................................................................3 INTRODUCTION.............................................................................................................5 CHAPTER 1: OVERVIEW OF SOLID-STATE LASERS .........................................7 The Active Ion..............................................................................................................7 The Amplifier Chain .................................................................................................10 Amplifier Basics.........................................................................................................10 Isolators ......................................................................................................................12 Spatial Filtering and Fill Factor...............................................................................13 Noise Sources and Nonlinear Effects.......................................................................14 Energy Scaling of Large Laser Systems..................................................................16 Frequency Conversion ..............................................................................................17 Conclusion..................................................................................................................19 CHAPTER 2: FUNDAMENTAL CONSIDERATIONS .............................................21 Overview.....................................................................................................................21 Pulse Compression ....................................................................................................21 Time Scale of Pulse Compression ............................................................................22 CHAPTER 3: CIRCUIT GEOMETRIES ...................................................................23 Introduction ...............................................................................................................23 Basic Single Mesh Circuit.........................................................................................23 Single Mesh Circuits with a Common Power Supply and Switch ........................24 Grouping of Circuits and Evolution to NIF 1.6-MJ Modules ...............................27 CHAPTER 4: FLASHLAMP EQUATIONS...............................................................33 Introduction ...............................................................................................................33 Pulse Length and Energy Considerations...............................................................34 Single Shot Explosion Energy ..................................................................................34 Equivalent Flashlamp Resistance K0 .......................................................................36 iii K0 for flashlamps in series and in parallel ..............................................................37 CHAPTER 5: FLASHLAMP DRIVING CIRCUITS.................................................41 Design Equations for Circuits with Flashlamp Resistance Only ..........................41 Example – Single Mesh Circuit..........................................................................41 Example – Flashlamp Resistance Only .............................................................42 Circuits with Resistive Losses ............................................................................44 Design Equations Accounting for Linear Losses..............................................44 Relationship of α versus β for Critical Damping..............................................45 Design Example – Multiple Lamp Loads..........................................................48 Design Example – Two Series Lamps................................................................49 Spreadsheet Example – Two Series Lamps ......................................................51 CHAPTER 6: FLASHLAMP TRIGGER AND PULSED IONIZED LAMP CHECK (PILC) DIAGNOSTIC ..............................................................................55 Flashlamp Diagnostics ..............................................................................................55 Flashlamp Triggering................................................................................................55 CHAPTER 7: FAULTS AND FAULT MITIGATION ..............................................59 Fault Examples ..........................................................................................................60 Dump Resistor Fault ...........................................................................................60 Flashlamp Fault Example...................................................................................63 Tool Fault .............................................................................................................65 CHAPTER 8: COMPONENT DEVELOPMENT ......................................................69 Energy Storage Capacitors.......................................................................................69 Testing of Energy Storage Capacitors.....................................................................72 Development and Testing of Fault Limiting Inductors (Damping Element).......75 CHAPTER 9: SYSTEM GROUNDING OVERVIEW...............................................81 Personnel safety .........................................................................................................81 Noise Reduction and Isolation..................................................................................82 Building Grounding ..................................................................................................82 CHAPTER 10: ELECTRICAL FAULT SAFETY AND OPERATING PROCEDURES ...............................................................................................................87 Safety Procedures......................................................................................................87 Electrical Shock Hazards..........................................................................................87 iv APPENDIX A – Derivation of Emmett and Markiewicz lamp equations .................91 APPENDIX B – EXCEL spreadsheet for lamp equations ..........................................93 APPENDIX C – Spreadsheet solutions for flashlamp equations................................97 APPENDIX D – Off-Normal Fault Event Safety Procedure ...................................... 98 LIST OF FIGURES.......................................................................................................107 REFERENCES AND FOOTNOTES...........................................................................113 INDEX………………………………………………………………………….……... 118 v vi Foreword by John Emmett In 1960 Theodore H. Maiman demonstrated the first laser in the laboratory. In 3+ this case it was a synthetic ruby crystal (Cr :Al2O3) excited by a xenon flashlamp, driven by a small capacitor bank. In the intervening years, many different types of lasers have been demonstrated and developed from electrically or optically excited gases, to electrically or optically excited semiconductors, to dyes, to a variety of lasers that depend on the nonlinear optical properties of materials. However, during the 47 years since the invention of the laser, optically pumped solid-state lasers have undergone extensive development and thus have remained one of the important laser types that find extensive application in medicine, science, and industry. The demonstration of the ruby laser was followed rapidly by the invention of Q- switching of the laser cavity, which produced very high-power pulses of a few tens of nanoseconds in duration. The availability of high-power short pulses immediately started scientists