Brno University of Technology Beresheet

Total Page:16

File Type:pdf, Size:1020Kb

Brno University of Technology Beresheet BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FACULTY OF INFORMATION TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ BERESHEET LUNAR LANDING SIMULATION SIMULACE PŘISTÁNÍ BERESHEET NA MĚSÍCI BACHELOR’S THESIS BAKALÁŘSKÁ PRÁCE AUTHOR JAKUB KARPÍŠEK AUTOR PRÁCE SUPERVISOR doc. Ing. PETER CHUDÝ, Ph.D. MBA VEDOUCÍ PRÁCE BRNO 2020 Brno University of Technology Faculty of Information Technology Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020 Bachelor's Thesis Specification Student: Karpíšek Jakub Programme: Information Technology Title: Beresheet Lunar Landing Simulation Category: Modelling and Simulation Assignment: 1. Research commercial lunar lander mission: Beresheet. 2. Research lunar landing problem and descent trajectory physics. 3. Perform computation of optimal descent trajectory. 4. Design and implement visualization environment, for which you create or download from relevant sources basic 3D models and 3D engine for descent maneuver interpretation. 5. Evaluate achieved results and discuss potential further improvements. Recommended literature: According to supervisor's recommendations. Requirements for the first semester: Items 1, 2, 3 and partially item 4. Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ Supervisor: Chudý Peter, doc. Ing., Ph.D. MBA Head of Department: Černocký Jan, doc. Dr. Ing. Beginning of work: November 1, 2019 Submission deadline: May 28, 2020 Approval date: May 15, 2020 Bachelor's Thesis Specification/22727/2019/xkarpi06 Page 1/1 Powered by TCPDF (www.tcpdf.org) Abstract The goal of this bachelor’s thesis was to compute the optimal lunar descent trajectory for the Beresheet spacecraft and develop a visualization environment for interpreting lunar descents. The optimal descent trajectory was computed using Bocop, an optimal control problem solver, and the environment was implemented in Java, using the LibGDX 3D engine. The optimal descent trajectory was found and it enables soft landing with 29.2 kg (6.8%) of fuel left. Created environment enables users to see lunar descent trajectories in an intuitive way and to interact with the visualization. Abstrakt Cílem této bakalářské práce bylo vypočítat optimální trajektorii sestupu na Měsíc pro kosmickou loď Beresheet a vyvinout prostředí pro vizualizaci sestupových trajektorií na Měsíc. Optimální trajektorie byla vypočtena použitím programu Bocop, který řeší prob- lémy optimálního řízení, a prostředí bylo vytvořeno v Javě s použitím 3D enginu LibGDX. Byla nalezena optimální trajektorie, která splňuje všechna kritéria použitelnosti, umožňu- jící hladké přistání s palivovou rezervou 29.2 kg (6.8%). Vytvořené prostředí umožňuje uživatelům vidět trajektorii sestupu na Měsíc v intuitivním zobrazení a také jednoduše zasahovat do probíhající vizualizace. Keywords Beresheet, lunar landing, simulation, optimal descent trajectory, optimal control, bocop, libgdx Klíčová slova Beresheet, přistání na Měsíci, simulace, optimální trajektorie sestupu, optimální řízení, bocop, libgdx Reference KARPÍŠEK, Jakub. Beresheet Lunar Landing Simulation. Brno, 2020. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor doc. Ing. Peter Chudý, Ph.D. MBA Rozšířený abstrakt Na začátku roku 2019 se Izraelská soukromá firma SpaceIL pokusila přistát na Měsíci s kosmickou lodí Beresheet. Byl to velmi sledovaný pokus o přistání, jelikož by se jednalo o první Izraelské přistání na Měsíci a první přistání soukromé firmy vůbec. Mise byla bohužel neúspěšná – při závěrečném sestupu k povrchu došlo k selhání a kosmická loď byla zničena. Tato bakalářská práce se zabývá výpočtem optimální sestupové trajektorie pro kos- mickou loď Beresheet z kruhové oběžné dráhy 210 km nad povrchem Měsíce a návrhem a implementací vizualizačního prostředí pro vizualizaci přistání na Měsíci. V první části práce byla nastudována mise Beresheet a z dostupných zdrojů byly získány technické parametry kosmické lodi Beresheet a astronomických těles vyskytujících se ve výpočtech – Měsíce a Země. Přistávací manévr byl omezen na pohyb v jedné rovině se třemi stupni volnosti, čímž došlo ke značnému zjednodušení výpočtů. Pro výpočet byly definovány dvě vztažné polární souřadné soustavy – jedna inerciální se středem vtěžišti Měsíce a druhá rotující se středem v těžišti kosmické lodi. Trajektorie byla rozdělena na čtyři fáze – deorbitace, plutí, brzdění a vertikální sestup. Toto rozdělení umožnilo definování milníků trajektorie a odlišných omezení jednotlivých stavových a řídicích veličin v každé fázi. Pohybové rovnice byly odvozeny s použitím literatury z Newtonovy klasické mechaniky. Výpočet optimální sestupové trajektorie byl identifikován jako problém optimálního řízení. Řídicími prvky jsou tah motoru a úhlové zrychlení způsobené systémem řízení nák- lonu. Tento výpočet byl proveden nástrojem Bocop1, který je k výpočtu takových prob- lémů určený. V nástroji bylo nutné definovat stavový a řídicí vektor, meze jednotlivých veličin, počáteční a koncové podmínky, konstanty, pohybové rovnice a užitkovou funkci. Jako užitková funkce byla zvolena maximalizace finální hmotnosti kosmické lodi. Výsledná optimální trajektorie splňuje všechny podmínky proveditelnosti, minimalizuje rizika, která by mohla vést k neúspěšné misi a zajišťuje palivovou rezervu 29.2 kg (6.8%) po přistání. Pro kontrolu byly zkoumány alternativní trajektorie, ale žádná lepší nebyla nalezena, což zvyšuje pravděpodobnost, že nalezená trajektorie je optimální. Pro zajímavost byla opti- mální sestupová trajektorie porovnána se skutečnou trajektorií z mise Beresheet. Vizualizační prostředí bylo implementováno v Javě s použitím frameworku LibGDX2, který poskytuje abstrakce grafické knihovny OpenGL a umožňuje jednoduchý vývoj 2D i 3D aplikací. Vyvinutou aplikaci lze spustit na počítači s operačním systémem Linux nebo Windows○R . Aplikace umožňuje uživateli nahrát trajektorii a následně vizualizovat let kosmické lodi Beresheet po této trajektorii ve 3D prostředí. Navíc je možné do vizualizace zasahovat a měnit parametry jako čas a rychlost animace, úhel pohledu a další. Trajektorii lze nahrát jako sled souřadnic ve 3-rozměrném prostoru buď v polární nebo kartézské souřadné soustavě. Je nutné doplnit sled časů, ve kterých se kosmická loď v jednotlivých souřadnicích nachází. Rozšířením je poté možnost nahrání sledu hmotnosti, rychlosti a otáčení v průběhu trajektorie. Tato data jsou pak zobrazena v čase během vizualizace pro lepší přehled o trajektorii. Otáčení je navíc promítnuto i do vizualizace. Během práce byly vypracovány všechny zadané úkoly a bylo dosaženo uspokojivých výsledků. Výsledná optimální trajektorie minimalizuje jak spotřebu paliva, tak i rizika spojená s misí. Vyvinuté prostředí pro vizualizaci umožňuje pochopení trajektorie intuitivní cestou a naplňuje záměr určený před započetím práce. 1http://www:bocop:org/ 2https://libgdx:badlogicgames:com/index:html Beresheet Lunar Landing Simulation Declaration I hereby declare that this term project was prepared as an original work by the author under the supervision of doc. Ing. Peter Chudý, Ph.D. MBA. I have listed all the literary sources, publications and other sources, which were used during the preparation of this project. ....................... Jakub Karpíšek May 27, 2020 Acknowledgements I would like to thank doc. Ing. Peter Chudý, Ph.D. MBA. for willingness and valuable advice during work on this assignment. I would also like to thank my wife and parents for their help and support. Contents 1 Introduction 5 2 Commercial Lunar Lander Mission: Beresheet 7 2.1 Google Lunar XPRIZE . .7 2.2 Mission launch . .8 2.3 Mission trajectory . 10 3 Lunar Landing Problem 13 3.1 Lunar Lander in coordinate system . 13 3.2 Descent trajectory definition . 15 3.3 Orbital dynamics definitions . 17 4 Descent Trajectory Physics 19 4.1 Newton’s laws of motion . 19 4.2 Derivation of the equations of motion . 20 4.3 The equations of motion . 22 5 Optimal Descent Trajectory Computation 24 5.1 Optimal control problem solver: Bocop . 24 5.2 Optimization problem theory . 25 5.3 Optimal control problem implementation . 28 5.4 Results . 32 6 Design and Implementation of Visualization Environment for Descent Trajectory Interpretation 35 6.1 Application overview . 35 6.2 Application implementation . 36 7 Evaluation 39 8 Conclusion 42 Bibliography 43 A Astronomical Bodies and Launch Vehicle in Beresheet Mission 46 B Additional Specifications 48 C Contents of Associated Media Drive 49 1 List of Figures 2.1 The Beresheet spacecraft and the Nusantara Satu launch configuration with a 13.1 meters tall Falcon 9 payload fairing in the background. Taken from [23].8 2.2 The Beresheet spacecraft at advanced stage of development. Taken from [22]. 10 2.3 The Beresheet phasing loop trajectory planned (left) and actual (right) in the Earth-Moon rotating coordinate frame with the Moon always at the top. Taken from [22]. 11 2.4 Lunar orbit insertion and circularization maneuvers. 12 3.1 Cartesian coordinate system (left) and polar coordinate system (right). 14 3.2 Two-dimensional inertial and rotating polar frames of reference. 15 3.3 The Beresheet rotation axes demonstrated on the 3D model used in the developed visualization application. 3D model taken from [20]. 16 3.4 The four descent phases (left) and orbital dynamics definitions (right). 17 3.5 Examples of orbital maneuvers. 18 4.1 Two-body system in an inertial frame of reference. Taken from [4],
Recommended publications
  • Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
    COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates
    [Show full text]
  • March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan
    8 8 KARL L. GOTTING PAULA K. MANIS PLLC JACK C. DAVIS MICHAEL G. OLIVA JAMES R. NEAL JEFFREY L. GREEN8 (1938-2020) [email protected] 8 MICHAEL G. OLIVA KELLY REED LUCAS DIRECT DIAL: 517-318-9266 8 MICHAEL H. RHODES RICHARD W. PENNINGS NOTES: MOBILE: 989-798-2650 EFFREY HEUER1 ICHAEL OLMES8 ______________________ J S. T M A. H 1 KEVIN J. RORAGEN YING BEHER8 ALSO LICENSED IN MD 2 REPLY TO LANSING OFFICE ED OZEBOOM ARREN EAN5,8 ALSO LICENSED IN FL T S. R W T. D 3 7,8 ALSO LICENSED IN CT SARA L. CUNNINGHAM JACK L. HOFFMAN 4 2 7,8 ALSO LICENSED IN NY JAMES F. ANDERTON, V HOLLY L. JACKSON 5 ALSO LICENSED IN OH 6 DOMINIC R. RIOS ALSO LICENSED BY USPTO 3,4,6 MIKHAIL MURSHAK 7 GRAND RAPIDS OFFICE GABRIELLE C. LAWRENCE 8 OF COUNSEL ALAN G. ABOONA6 AMIA A. BANKS HANNAH E. BUZOLITS March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan Public Service Commission 7109 W. Saginaw Highway Lansing, MI 48917 Re: Starlink Services, LLC Application for CLEC License MPSC Case No U-21035 Dear Ms. Felice: Enclosed for filing on behalf of Starlink Services, LLC please find: • Application Of Starlink Services, LLC For A Temporary And Permanent License To Provide Basic Local Exchange Service In Michigan • Prefiled Testimony of Matt Johnson • Exhibits SLS-1, SLS-2, SLS-3 and Confidential Exhibit SLS-4 Confidential Exhibit SLS-4 is not being filed electronically, but a sealed copy of Confidential Exhibit SLS-4 is being delivered via overnight mail to the Commission’s offices.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory ..................................................................................
    [Show full text]
  • Spacex Launch
    Episode 15 Teacher Resource 2nd June 2020 SpaceX Launch Students will explore how 1. Briefly summarise the BTN SpaceX Launch story. spacecrafts and space missions 2. Where is Cape Canaveral? Locate using Google Maps. help us understand the Solar 3. Complete the following sentence. The SpaceX Dragon capsule is System. Students will investigate travelling to the International ________ ___________. the history of space exploration. 4. The United States hasn’t launched its own astronauts in the last 9 years. True or false? 5. How have NASA space shuttles been used to explore space? 6. When did NASA retire the space shuttles? 7. How have US astronauts been travelling to space? What were the Science – Year 3 Earth’s rotation on its axis causes disadvantages? regular changes, including night 8. Who is the CEO of SpaceX? and day. 9. What do some people say is the future of space exploration? Science – Years 5 & 6 10. What is your favourite moment in space exploration history? Explain Scientific knowledge is used to your answer. solve problems and inform personal and community decisions. Science – Year 7 Predictable phenomena on Earth, What do you see, think and wonder? including seasons and eclipses, are caused by the relative After watching the BTN SpaceX Launch story, students will respond to the positions of the sun, Earth and following questions: the moon. Scientific knowledge has changed peoples’ understanding of the world and is refined as new • What did you SEE in this video? evidence becomes available. • What do you THINK about what you saw in this video? • What does this video make your WONDER? • What was SURPRISING about this story? Class Discussion Hold a class discussion about the information raised in the BTN SpaceX Launch story.
    [Show full text]
  • Finding of No Significant Impact for Boost-Back and Landing of Falcon Heavy Boosters at Landing Zone-1, Cape Canaveral Air Force Station, Florida
    DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space Transportation Adoption of the Environmental Assessment and Finding of No Significant Impact for Boost-back and Landing of Falcon Heavy Boosters at Landing Zone-1, Cape Canaveral Air Force Station, Florida Summary The U.S. Air Force (USAF) acted as the lead agency, and the Federal Aviation Administration (FAA) was a cooperating agency, in the preparation of the February 2017 Supplemental Environmental Assessment to the December 2014 EA for Space Exploration Technologies Vertical Landing of the Falcon Vehicle and Construction at Launch Complex 13 at Cape Canaveral Air Force Station, Florida (2017 SEA), which analyzed the potential environmental impacts of Space Exploration Technologies Corp. (SpaceX) conducting boost-backs and landings of up to three Falcon Heavy boosters at Landing Zone 1 (LZ-1) at Cape Canaveral Air Force Station (CCAFS), Florida during the same mission. LZ-1 is also known as Launch Complex 13 (LC-13). The scope of the action analyzed in the 2017 SEA also included the option of landing one or two Falcon Heavy boosters on SpaceX’s autonomous droneship in the Atlantic Ocean. The 2017 SEA also addressed construction of two landing pads as well as construction and operation of a processing and testing facility for SpaceX’s Dragon spacecraft. The National Aeronautics and Space Administration (NASA) also participated as a cooperating agency in the preparation of the 2017 SEA. The 2017 SEA was prepared in accordance with the National Environmental Policy Act of 1969, as amended (NEPA; 42 United States Code [U.S.C.] § 4321 et seq.); Council on Environmental Quality NEPA implementing regulations (40 Code of Federal Regulations [CFR] parts 1500 to 1508); the USAF’s Environmental Impact Analysis Process (32 CFR 989); and FAA Order 1050.1F, Environmental Impacts: Policies and Procedures.
    [Show full text]
  • Author's Instructions For
    Feasibility Analysis for a Manned Mars Free-Return Mission in 2018 Dennis A. Tito Grant Anderson John P. Carrico, Jr. Wilshire Associates Incorporated Paragon Space Development Applied Defense Solutions, Inc. 1800 Alta Mura Road Corporation 10440 Little Patuxent Pkwy Pacific Palisades, CA 90272 3481 East Michigan Street Ste 600 310-260-6600 Tucson, AZ 85714 Columbia, MD 21044 [email protected] 520-382-4812 410-715-0005 [email protected] [email protected] Jonathan Clark, MD Barry Finger Gary A Lantz Center for Space Medicine Paragon Space Development Paragon Space Development Baylor College Of Medicine Corporation Corporation 6500 Main Street, Suite 910 1120 NASA Parkway, Ste 505 1120 NASA Parkway, Ste 505 Houston, TX 77030-1402 Houston, TX 77058 Houston, TX 77058 [email protected] 281-702-6768 281-957-9173 ext #4618 [email protected] [email protected] Michel E. Loucks Taber MacCallum Jane Poynter Space Exploration Engineering Co. Paragon Space Development Paragon Space Development 687 Chinook Way Corporation Corporation Friday Harbor, WA 98250 3481 East Michigan Street 3481 East Michigan Street 360-378-7168 Tucson, AZ 85714 Tucson, AZ 85714 [email protected] 520-382-4815 520-382-4811 [email protected] [email protected] Thomas H. Squire S. Pete Worden Thermal Protection Materials Brig. Gen., USAF, Ret. NASA Ames Research Center NASA AMES Research Center Mail Stop 234-1 MS 200-1A Moffett Field, CA 94035-0001 Moffett Field, CA 94035 (650) 604-1113 650-604-5111 [email protected] [email protected] Abstract—In 1998 Patel et al searched for Earth-Mars free- To size the Environmental Control and Life Support System return trajectories that leave Earth, fly by Mars, and return to (ECLSS) we set the initial mission assumption to two crew Earth without any deterministic maneuvers after Trans-Mars members for 500 days in a modified SpaceX Dragon class of Injection.
    [Show full text]
  • Dragon Spacecraft, and Commentary on the Launch and Flight Sequences
    SpaceX CRS-3 Mission Press Kit CONTENTS 3 Mission Overview 7 Mission Timeline 9 Graphics – Rendezvous, Grapple and Berthing, Departure and Re-Entry 11 International Space Station Overview 13 Falcon 9 Overview 16 Dragon Overview 18 SpaceX Facilities 20 SpaceX Overview 22 SpaceX Leadership SPACEX MEDIA CONTACT Emily Shanklin Senior Director, Marketing and Communications 310-363-6733 [email protected] NASA PUBLIC AFFAIRS CONTACTS Trent Perrotto Michael Curie Josh Byerly Public Affairs Officer News Chief Public Affairs Officer Human Exploration and Operations Launch Operations International Space Station NASA Headquarters NASA Kennedy Space Center NASA Johnson Space Center 202-358-1100 321-867-2468 281-483-5111 Rachel Kraft George Diller Public Affairs Officer Public Affairs Officer Human Exploration and Operations Launch Operations NASA Headquarters NASA Kennedy Space Center 202-358-1100 321-867-2468 1 HIGH RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-resolution photographs can be downloaded from: spacex.com/media Broadcast quality video can be downloaded from: vimeo.com/spacexlaunch/ MORE RESOURCES ON THE WEB For SpaceX coverage, visit: For NASA coverage, visit: spacex.com www.nasa.gov/station twitter.com/elonmusk www.nasa.gov/nasatv twitter.com/spacex twitter.com/nasa facebook.com/spacex facebook.com/ISS plus.google.com/+SpaceX plus.google.com/+NASA youtube.com/spacex youtube.com/nasatelevision WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at spacex.com/webcast and NASA’s Kennedy Space Center at www.nasa.gov/nasatv. Web pre-launch coverage will begin at approximately 3:00 a.m.
    [Show full text]
  • 2019 IMPACT REPORT Applying Maxar Capabilities for a Better World TABLE of CONTENTS
    2019 IMPACT REPORT Applying Maxar Capabilities For A Better World TABLE OF CONTENTS ABOUT MAXAR TECHNOLOGIES Maxar is a trusted partner and innovator in Earth intelligence and space infrastructure. We serve the most discriminating and innovative government and commercial customers to help them monitor, understand and navigate our changing planet; deliver global broadband LETTER FROM THE CHIEF EXECUTIVE OFFICER 5 communications; and explore and advance the use of space. Our unique approach combines decades of deep mission understanding and a A GLOBAL COMPANY WITH A TRULY GLOBAL REACH 6 proven commercial and defense foundation to deploy solutions and deliver insights with unrivaled speed, scale and cost-effectiveness. Maxar’s 5,800 team members in 30 global locations are inspired to OUR IMPACT PHILOSOPHY 8 harness the potential of space to help our customers create a better world. Maxar trades on the New York Stock Exchange and Toronto Stock VIGNETTES 10 Exchange as MAXR. For more information, visit www.maxar.com. 1. EARTH 10 The Maxar Impact Report 2019 includes projects worked on or completed between January 1, 2019–December 31, 2019. The projects enclosed are representative of Maxar’s work, not exhaustive. 2 SPACE 16 3. OPEN DATA PROGRAM 24 Cover image courtesy REUTERS / Mohammad Ponir Hossain. 4 NEWS BUREAU 26 . 5 PURPOSE PARTNERS 30 6. COMMUNITY 32 LOOKING AHEAD TO 2020 40 Persistent Change Monitoring and GeoEye-1 | Dublin, Ohio, USA | 9 September 2019 3 LETTER FROM THE CHIEF EXECUTIVE OFFICER At Maxar, we bring together technologies that enable understanding, PURPOSE & VALUES exploration and communication across our planet and beyond.
    [Show full text]
  • Dragon Fire! Copy Subscriber
    SpaceFlight A British Interplanetary Society publication Volume 61 No.5 May 2019 £5.25 Dragon fire! copy Subscriber Apollo feedback 05> Commercial space 634089 Steps back to the Moon 770038 Remembering Apollo 10 9 copy Subscriber CONTENTS Features 16 Return of the Dragon SpaceX has taken a big step forward by successfully launching its Dragon 2 crew- carrying capsule to the International Space Station but how long before astronauts get to ride the latest people-carrier? 2 Letter from the Editor 18 The Impact of Apollo – Part 2 Nick Spall FBIS looks at the technological and The excitement just keeps on inspirational legacy of the Apollo Moon shots growing! No sooner did we have and finds value in the money spent. the first uncrewed landing on the far side of the Moon by China than Israel launched the first privately 22 Apollo 10 – so near, yet so far funded spacecraft to head for a David Baker recalls events 50 years ago when lunar touchdown. Then, NASA three astronauts got closer to the Moon than boss Jim Bridenstine advised ever before and yet left the final descent to glory Congress that its flagship rocket, to the next mission in line, clearing the way for 16 the Space Launch System, may the first landing. not be ready to launch Orion in 2020 as planned, while calling on 32 Commercial Space commercial providers to step up Using a wide range of commercial providers, and fly the mission to fast-track humans back on the Moon in 2028 NASA is building a roadmap to the Moon with (page 2).
    [Show full text]
  • RRF ENVIRONMENTAL IMPACT ASSESSMENT -- RRF MISSION & ARTHUR-1 – with Spacex Falcon 9
    Rue André Dumont 9 1435 Mont-Saint-Guibert Belgium T: +32 (0)483 23 56 96 www.aerospacelab.be RRF ENVIRONMENTAL IMPACT ASSESSMENT -- RRF MISSION & ARTHUR-1 – With SpaceX Falcon 9 Internal Reference ASL-INT-LEGAL-EIA Issue 01 Revision 00 Issue date 19/05/2020 Classification Legal Project RRF Signatures Company Name Signature Author Aerospacelab Paul Mauhin Review Aerospacelab Gonçalo Graças Approval Aerospacelab Benoit Deper This document is the property of Aerospacelab and its publication is authorized within the frame of the law of 17 September 2005. Internal reference: ASL-INT-LEGAL-EIA Issue: 01 Revision: 00 Disclaimer The information contained in this document is confidential, privileged and only for the information of the intended recipient and may not be used, published, or redistributed without the prior written consent of Aerospacelab. Distribution List Company Name Copy type Belspo Electronic Applicable Documents [A1] SF2018-160 Aerospacelab ARLSA Referenced Documents [R1] SpaceX Rideshare Payload User’s Guide (2019) [R2] ESA/ADMIN/IPOL(2014)2 Space Debris Mitigation Policy for Agency Projects [R3] ESSB-HB-U-002 ESA Space Debris Mitigation Compliance Verification Guidelines [R4] ECSS-U-AS-10C Space systems – Space Debris Mitigation Requirements [R5] ECSS-M-ST-10C Project Planning and Implementation [R6] ECSS-E-ST- 10-02C Rev.1 Verification Guidelines [R7] ASL-RRF-DR-SDR System Design Report [R8] TEC-SY/129/2013/SPD/RW Product and Quality Assurance Requirements for In-Orbit Demonstration CubeSat Projects [R9] TEC-SY/128/2013/SPD/RW Tailored ECSS Engineering Standards for In-Orbit Demonstration CubeSat Projects This document is the property of Aerospacelab and its publication is authorized within the frame of the law of 17 September 2005.
    [Show full text]