Development and Commercialization of an Ozone Generator

Total Page:16

File Type:pdf, Size:1020Kb

Development and Commercialization of an Ozone Generator DEVELOPMENT AND COMMERCIALIZATION OF AN OZONE GENERATOR FOR THE OXIDATION OF MERCURY IN FLUE GASSES By Justin Douglas Isaacs Submitted in partial fulfillment of the requirements For the degree of Master of Science Department of Biology CASE WESTERN RESERVE UNIVERSITY August, 2013 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Justin Isaacs candidate for the Master of Science degree *. (signed) Dr. Christopher Cullis (chair of the committee) Mike Neundorfer Dr. Peter McCall (date) 4/17/2013 *We also certify that written approval has been obtained for any proprietary material contained therein. ii!!!!!!!!!!!! Dedicated to my loving and supportive family. iii!!!!!!!!!!! ! Table of Contents Introduction ......................................................................................................................... 1 Need .................................................................................................................................... 3 Forms of Mercury ................................................................................................... 3 Sources .................................................................................................................... 4 Exposure ................................................................................................................. 4 Ecological Effects ................................................................................................... 6 Human Health Effects ............................................................................................. 7 Reducing Releases - Mercury Air Toxics Standards .............................................. 7 Current Pollution Control Solutions ....................................................................... 9 Electrostatic Precipitators ........................................................................... 9 Bag Houses ................................................................................................. 9 Flue-Gas Desulfurization Scrubbers ......................................................... 10 Selective Catalytic Reduction ................................................................... 11 Approach ........................................................................................................................... 12 Neundorfer Solution .............................................................................................. 12 Ozone .................................................................................................................... 13 Mercury Speciation ............................................................................................... 15 Neundorfer Ozone Generator ................................................................................ 16 Power Supply ............................................................................................ 18 Throat Assembly ....................................................................................... 19 Variable Frequency Drive fan ................................................................... 20 Programmable Logic Controller / Human/Machine Interface .................. 21 Ozone Contactor ....................................................................................... 22 Operation ............................................................................................................... 23 Application of Technology ................................................................................... 24 Ozone Demand ...................................................................................................... 26 Intellectual Property .............................................................................................. 27 Cost ....................................................................................................................... 28 Competition ....................................................................................................................... 30 Mercury Remediation Competition ...................................................................... 30 Activated Carbon Injection ....................................................................... 30 Calcium Bromide ...................................................................................... 31 Ozone Generator Competition .............................................................................. 31 Spartan Environmental .............................................................................. 33 Ozonia ....................................................................................................... 34 Guardian Manufacturing ........................................................................... 35 Benefits/Costs ................................................................................................................... 36 Ozone Production Benefits ................................................................................... 36 Mercury Remediation Benefits ............................................................................. 37 iv!!!!!!!!!!! ! Analysis ............................................................................................................................. 38 VRIO ................................................................................................................... 38 Resources vs. Capabilities ........................................................................ 38 Valuable .................................................................................................... 39 Rare ........................................................................................................... 39 Inimitable .................................................................................................. 40 Organization .............................................................................................. 40 SWOT ................................................................................................................... 41 Strengths ................................................................................................... 41 Weaknesses ............................................................................................... 42 Opportunities ............................................................................................. 42 Threats ....................................................................................................... 43 Business Model Canvas ........................................................................................ 43 Dashboard ............................................................................................................. 43 Future Suggestions ............................................................................................................ 44 Bench Top Experiment ......................................................................................... 44 Simulated Flue Gasses .............................................................................. 44 Mercury Vapor .......................................................................................... 45 Ozone ........................................................................................................ 45 Simulated Bag House or Scrubber ............................................................ 45 Instrumentation ......................................................................................... 46 Other Suggestions ................................................................................................. 47 Appendix ........................................................................................................................... 49 Works Cited ...................................................................................................................... 56 v!!!!!!!!!!!! List of Tables Table 1. Examples of mercury’s effects on various ecological components. .................... 6 Table 2. Cost of goods for Neundorfer’s ozone generator technology. ........................... 29 vi!!!!!!!!!!! ! List of Figures Figure 1. Elemental mercury at standard pressure and temperature. ................................. 4 Figure 2. Illustration of the mercury cycle. ........................................................................ 5 Figure 3. Portions of U.S. air pollutants emitted by power plants. .................................... 8 Figure 4. Formation of ozone (O3) from elemental oxygen (O2) by corona discharge. .. 13 Figure 5. Schematic of Neundorfer’s ozone generator technology ................................. 17 Figure 6. NWL PowerPlus series 6 (front and back). ...................................................... 18 Figure 7. Throat assembly as seen from the side and looking head on with the discharge electrodes .......................................................................................................................... 19 Figure 8. PLR fan made by The New York Blower Company ........................................ 20 Figure 9. Variable frequency drive (closed and open). .................................................... 20 Figure 10. Programmable logic controller (open). ........................................................... 21 Figure 11. Human/Machine interface. ............................................................................. 21 Figure 12. Industrial size venturis typical
Recommended publications
  • 10Neurodevelopmental Effects of Childhood Exposure to Heavy
    Neurodevelopmental E¤ects of Childhood Exposure to Heavy Metals: 10 Lessons from Pediatric Lead Poisoning Theodore I. Lidsky, Agnes T. Heaney, Jay S. Schneider, and John F. Rosen Increasing industrialization has led to increased exposure to neurotoxic metals. By far the most heavily studied of these metals is lead, a neurotoxin that is particularly dangerous to the developing nervous system of children. Awareness that lead poison- ing poses a special risk for children dates back over 100 years, and there has been increasing research on the developmental e¤ects of this poison over the past 60 years. Despite this research and growing public awareness of the dangers of lead to chil- dren, government regulation has lagged scientific knowledge; legislation has been in- e¤ectual in critical areas, and many new cases of poisoning occur each year. Lead, however, is not the only neurotoxic metal that presents a danger to children. Several other heavy metals, such as mercury and manganese, are also neurotoxic, have adverse e¤ects on the developing brain, and can be encountered by children. Al- though these other neurotoxic metals have not been as heavily studied as lead, there has been important research describing their e¤ects on the brain. The purpose of the present chapter is to review the neurotoxicology of lead poisoning as well as what is known concerning the neurtoxicology of mercury and manganese. The purpose of this review is to provide information that might be of some help in avoiding repeti- tion of the mistakes that were made in attempting to protect children from the dan- gers of lead poisoning.
    [Show full text]
  • HISTORY of LEAD POISONING in the WORLD Dr. Herbert L. Needleman Introduction the Center for Disease Control Classified the Cause
    HISTORY OF LEAD POISONING IN THE WORLD Dr. Herbert L. Needleman Introduction The Center for Disease Control classified the causes of disease and death as follows: 50 % due to unhealthy life styles 25 % due to environment 25% due to innate biology and 25% due to inadequate health care. Lead poisoning is an environmental disease, but it is also a disease of life style. Lead is one of the best-studied toxic substances, and as a result we know more about the adverse health effects of lead than virtually any other chemical. The health problems caused by lead have been well documented over a wide range of exposures on every continent. The advancements in technology have made it possible to research lead exposure down to very low levels approaching the limits of detection. We clearly know how it gets into the body and the harm it causes once it is ingested, and most importantly, how to prevent it! Using advanced technology, we can trace the evolution of lead into our environment and discover the health damage resulting from its exposure. Early History Lead is a normal constituent of the earth’s crust, with trace amounts found naturally in soil, plants, and water. If left undisturbed, lead is practically immobile. However, once mined and transformed into man-made products, which are dispersed throughout the environment, lead becomes highly toxic. Solely as a result of man’s actions, lead has become the most widely scattered toxic metal in the world. Unfortunately for people, lead has a long environmental persistence and never looses its toxic potential, if ingested.
    [Show full text]
  • Approach to the Poisoned Patient
    PED-1407 Chocolate to Crystal Methamphetamine to the Cinnamon Challenge - Emergency Approach to the Intoxicated Child BLS 08 / ALS 75 / 1.5 CEU Target Audience: All Pediatric and adolescent ingestions are common reasons for 911 dispatches and emergency department visits. With greater availability of medications and drugs, healthcare professionals need to stay sharp on current trends in medical toxicology. This lecture examines mind altering substances, initial prehospital approach to toxicology and stabilization for transport, poison control center resources, and ultimate emergency department and intensive care management. Pediatric Toxicology Dr. James Burhop Pediatric Emergency Medicine Children’s Hospital of the Kings Daughters Objectives • Epidemiology • History of Poisoning • Review initial assessment of the child with a possible ingestion • General management principles for toxic exposures • Case Based (12 common pediatric cases) • Emerging drugs of abuse • Cathinones, Synthetics, Salvia, Maxy/MCAT, 25I, Kratom Epidemiology • 55 Poison Centers serving 295 million people • 2.3 million exposures in 2011 – 39% are children younger than 3 years – 52% in children younger than 6 years • 1-800-222-1222 2011 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System Introduction • 95% decline in the number of pediatric poisoning deaths since 1960 – child resistant packaging – heightened parental awareness – more sophisticated interventions – poison control centers Epidemiology • Unintentional (1-2
    [Show full text]
  • ESTIMATION of FISSION-PRODUCT GAS PRESSURE in URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Wuzter A
    NASA TECHNICAL NOTE NASA TN D-4823 - - .- j (2. -1 "-0 -5 M 0-- N t+=$j oo w- P LOAN COPY: RET rm 3 d z c 4 c/) 4 z ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by WuZter A. PuuZson una Roy H. Springborn Lewis Reseurcb Center Clevelund, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1968 i 1 TECH LIBRARY KAFB, NM I 111111 lllll IllH llll lilll1111111111111 Ill1 01317Lb NASA TN D-4823 ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS By Walter A. Paulson and Roy H. Springborn Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACl Fission-product gas pressure in macroscopic voids was calculated over the tempera- ture range of 1000 to 2500 K for clad uranium dioxide fuel elements operating in a fast neutron spectrum. The calculated fission-product yields for uranium-233 and uranium- 235 used in the pressure calculations were based on experimental data compiled from various sources. The contributions of cesium, rubidium, and other condensible fission products are included with those of the gases xenon and krypton. At low temperatures, xenon and krypton are the major contributors to the total pressure. At high tempera- tures, however, cesium and rubidium can make a considerable contribution to the total pressure. ii ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Walter A. Paulson and Roy H.
    [Show full text]
  • Mercury Education
    MERCURY The Slippery, Silent Toxin to Dispose of Carefully You may be surprised to find mercury in your home, business and places you go often. When spilled or not disposed of carefully, it poses a risk to human and ecosystem health. DID YOU KNOW? Mercury is the only metal that is liquid at room Why is Mercury Such a Problem? temperature. Mercury, or quicksilver, is an element that serves many useful 80 purposes – when contained. It conducts electricity, is used in thermometers, thermostats, barometers, blood pressure cuffs and many other everyday items such as some alarm clocks Mercury 200.59 and irons. The most common use is in today’s fluorescent light bulbs that use mercury vapor. Read the reverse The trouble comes when mercury is not disposed of properly for safe ways to or worse, when it spills. Mercury is a toxic element that can dispose of mercury. enter the body through an open wound or by inhaling or ingesting it. It can cause damage to nerves, the liver and kidneys, as well as a number of other symptoms. If mercury is poured down the drain or dumped into the sewer, it seeps into lakes and waterways, a chemical process occurs, converting it to deadly methylmercury, potentially contaminating the fish and animals we eat. When products containing mercury are placed in the trash or poured down the drain, the mercury does not disappear. It ends up in the environment via landfills and wastewater treatment facilities. Now that you know some of the items that contain mercury, you can make Never touch or vacuum up buying decisions that reduce the amount of mercury in your home or office, spilled mercury in any form, and that assure safe disposal of products that contain mercury.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Mercury Spill Fact Sheet
    This fact sheet is intended to be a quick reference tool for people who are involved in a mercury spill and cleanup event. MERCURY Mercury mercury MERCURY MERCURY MERCURY Elemental mercury, also called “quicksilver,” is a heavy, silvery, form of the metal mercury that is liquid at room temperature. It can slowly change from a liquid into a gas that is invisible to the naked eye. The gas or “vapors” that are released will start to fill a room if mercury is spilled indoors. MERCURY EXPOSURE Mercury is a very toxic or poisonous substance that people can be exposed to in several ways. If it is swallowed, like from a broken thermometer, it mostly passes through your body and very little is absorbed. If you touch it, a small amount may pass through your skin, but not usually enough to harm you. Mercury is most harmful when you breathe in the vapors that are released when a container is open or a spill occurs. HEALTH EFFECTS Pregnant women, infants and young children are particularly sensitive to the harmful effects of mercury. The health effects that can result from mercury exposure depend on how much mercury you are exposed to and how long you are exposed. Some of the acute effects, ones that may come soon after exposure to high concentrations of mercury are: • Headaches, chills, fever • chest tightness, coughs • hand tremors • nausea, vomiting, abdominal cramps, diarrhea Some effects that may result from chronic, or longer term exposure to mercury vapor can be: • Personality changes • Decreased vision or hearing • Peripheral nerve damage • Elevated blood pressure Children are especially sensitive to mercury and at risk of developing a condition known as acrodynia or “Pinks Disease” by breathing vapors or other exposure circumstances.
    [Show full text]
  • Elemental Mercury Emission in the Indoor Environment Due to Broken Compact Fluorescent Light (CFL) Bulbs
    Elemental Mercury Emission In The Indoor Environment Due To Broken Compact Fluorescent Light (CFL) Bulbs David Marr1, Mark Mason1, Stanley Durkee2 1U.S. EPA, RTP, NC 2U.S. EPA, Washington DC Mark Mason l [email protected] l 919-541-4835 Paper control number 553 Introduction Mercury emissions from broken Broken CFL Bulb Cleanup fluorescent bulbs Compact fluorescent light (CFL) bulbs require elemental The U.S EPA, as part of its public outreach program, provides mercury for operation. Each bulb contains a few milligrams Published research on mercury emissions cleanup guidance when a CFL is broken in the indoor of mercury, a value that has been decreasing over time due to environment. As part of this guidance, it is recommended that new technologies and methodologies, driven primarily by from lighting the debris be cleaned up following 5 to 10 minutes of increased environmental and consumer concerns. If a CFL breaks, Aucott et al. (2003) generated mercury emission rate ventilation and some initial steps. Figure 3 shows indoor model some of the mercury is immediately released as elemental equations for fluorescent lamps (FLs) broken in a barrel at results that include the emission rate of Equation 1, but with mercury vapor while the remainder is available for emission three ambient air temperatures in an effort to quantify source removal occurring at 15 minutes to provide a visual of over time to air via the bulb debris and contaminated indoor mercury emissions in time. Equation 1 is their published the impact of proper cleanup on indoor mercury concentrations surfaces until properly remediated.
    [Show full text]
  • Indoor Air Mercury May 2003
    Indoor Air Mercury May 2003 Why is Mercury a Problem in Indoor Air? Mercury is a potent neurotoxin found in a variety of products. It affects the brain, liver and kidneys and can cause developmental disorders in children. Young children and developing fetuses are especially at risk. Metallic, or elemental mercury, is a liquid at room temperature and like any other liquid it evaporates into the air, where it can be inhaled. Exposures can occur in the home when a mercury-containing item, such as a thermometer, breaks and is not properly cleaned up. They can occur in the workplace when mercury or mercury-containing device/materials are not carefully handled and safely managed or when workplace or storage areas are not properly ventilated. Exposures can also occur when children find and play with improperly stored mercury; many cases of mercury poisoning result for this reason.1 When spilled in a small, poorly-ventilated room, mercury can pose significant health threats. Very small amounts of metallic mercury, released into an enclosed space, (i.e., a few drops) can raise air concentrations of mercury to levels that may be harmful to health. The longer people breathe the contaminated air, the greater the risk to their health. In addition, metallic mercury and its vapors are extremely difficult to remove from clothes, furniture, carpet, and other porous items. If these items are not properly disposed or cleaned, the mercury can linger for months or years, continuing to pose a health threat. The risk of exposure to mercury from indoor air is not insignificant.
    [Show full text]
  • Mercury Use and Loss from Gold Mining in Nineteenth-Century Victoria 45
    CSIRO Publishing The Royal Society of Victoria, 127, 44 –54, 2015 www.publish.csiro.au/journals/rs 10.1071/RS15017 Me RCuRy uSe and LOSS fROM GOLd MInInG In nIneTeenTh- CenTuRy Victoria Peter Davies1, susan Lawrence2 anD JoDi turnbuLL3 1, 2, 3 department of archaeology and history, La Trobe university, Bundoora, Victoria 3086 Correspondence: Peter davies, [email protected] ABSTRACT: This paper reports on preliminary research into gold-mining-related mercury contamination in nineteenth-century Victoria. data drawn from contemporary sources, including Mineral Statistics of Victoria and Mining Surveyors Reports from 1868‒1888, are used to calculate quantities of mercury used by miners to amalgamate gold in stamp batteries and the rates of mercury lost in the process. Some of the mercury discharged from mining and ore milling flowed into nearby waterways and some remained in the waste residue, the tailings near the mills. We estimate that a minimum of 121 tons of mercury were discharged from stamp batteries in this period. although the figures fluctuate through time and space, they allow a good estimate of how much mercury was leaving the mine workings and entering Victorian creeks and rivers. Better understanding of historic mercury loss can provide the basis for improved mapping of mercury distribution in modern waterways, which can in turn inform the management of catchment systems. Keywords: mercury, gold mining, pollution, water, rivers In recent years, mercury in waterways has emerged as an et al. 1996) and new Zealand (Moreno et al. 2005), while important environmental issue in south-eastern australia extensive mercury pollution also resulted from silver and in many other areas.
    [Show full text]
  • Mercury and Mercury Compounds
    United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY
    [Show full text]
  • Direct Detection of Atmospheric Atomic Bromine Leading to Mercury and Ozone Depletion
    Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion Siyuan Wanga,1, Stephen M. McNamaraa, Christopher W. Mooreb,2, Daniel Obristb,3, Alexandra Steffenc, Paul B. Shepsond,e,f,4, Ralf M. Staeblerc, Angela R. W. Rasod, and Kerri A. Pratta,g,5 aDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109; bDivision of Atmospheric Science, Desert Research Institute, Reno, NV 89523; cAir Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON M3H5T4, Canada; dDepartment of Chemistry, Purdue University, West Lafayette, IN 47907; eDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907; fPurdue Climate Change Research Center, Purdue University, West Lafayette, IN 47907; and gDepartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved May 29, 2019 (received for review January 12, 2019) Bromine atoms play a central role in atmospheric reactive halogen O3 producing BrO ([R2]), which can undergo photolysis to chemistry, depleting ozone and elemental mercury, thereby reform Br ([R3]). Br is also regenerated by BrO reaction with enhancing deposition of toxic mercury, particularly in the Arctic NO ([R4]), or a halogen monoxide (XO = BrO, ClO, or IO; near-surface troposphere. However, direct bromine atom mea- [R5]) (19). surements have been missing to date, due to the lack of analytical capability with sufficient sensitivity for ambient measurements. Br2 + hv → Br + Br, [R1] Here we present direct atmospheric bromine atom measurements, conducted in the springtime Arctic. Measured bromine atom levels − Br + O → BrO + O , [R2] reached 14 parts per trillion (ppt, pmol mol 1;4.2× 108 atoms 3 2 − per cm 3) and were up to 3–10 times higher than estimates using + + → + [R3] previous indirect measurements not considering the critical role of BrO hv O2 Br O3, molecular bromine.
    [Show full text]