International Journal of Systematic and Evolutionary Microbiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Flavobacterium Gliding Motility: from Protein Secretion to Cell Surface Adhesin Movements
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2019 Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements Joseph Johnston University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Johnston, Joseph, "Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements" (2019). Theses and Dissertations. 2202. https://dc.uwm.edu/etd/2202 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences at The University of Wisconsin-Milwaukee August 2019 ABSTRACT FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Dr. Mark J. McBride Flavobacterium johnsoniae exhibits rapid gliding motility over surfaces. At least twenty genes are involved in this process. Seven of these, gldK, gldL, gldM, gldN, sprA, sprE, and sprT encode proteins of the type IX protein secretion system (T9SS). The T9SS is required for surface localization of the motility adhesins SprB and RemA, and for secretion of the soluble chitinase ChiA. This thesis demonstrates that the gliding motility proteins GldA, GldB, GldD, GldF, GldH, GldI and GldJ are also essential for secretion. -
View and Research Objectives
University of Alberta Carotenoid diversity in novel Hymenobacter strains isolated from Victoria Upper Glacier, Antarctica, and implications for the evolution of microbial carotenoid biosynthesis by Jonathan Lee Klassen A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Cell Biotechnology Department of Biological Sciences ©Jonathan Lee Klassen Fall 2009 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Dr. Julia Foght, Department of Biological Science Dr. Phillip Fedorak, Department of Biological Sciences Dr. Brenda Leskiw, Department of Biological Sciences Dr. David Bressler, Department of Agriculture, Food and Nutritional Science Dr. Jeffrey Lawrence, Department of Biological Sciences, University of Pittsburgh Abstract Many diverse microbes have been detected in or isolated from glaciers, including novel taxa exhibiting previously unrecognized physiological properties with significant biotechnological potential. Of 29 unique phylotypes isolated from Victoria Upper Glacier, Antarctica (VUG), 12 were related to the poorly studied bacterial genus Hymenobacter including several only distantly related to previously described taxa. -
Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed
fmicb-10-02870 January 6, 2020 Time: 15:52 # 1 ORIGINAL RESEARCH published: 15 January 2020 doi: 10.3389/fmicb.2019.02870 Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed Mahasweta Saha1,2,3*, Robert M. W. Ferguson2, Shawn Dove4,5, Sven Künzel6, Rafael Meichssner7,8, Sven C. Neulinger9, Finn Ole Petersen10 and Florian Weinberger1 1 Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 The School of Life Sciences, University of Essex, Colchester, United Kingdom, 3 Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom, 4 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom, 5 Institute of Zoology, Zoological Society of London, London, United Kingdom, 6 Max Planck Institute for Evolutionary Biology, Plön, Germany, 7 Department of Biology, Botanical Institute, Christian-Albrechts-University, Kiel, Germany, 8 Coastal Research & Management, Kiel, Germany, 9 omics2view.consulting GbR, Kiel, Germany, 10 Department of Biology, Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany The establishment of epibacterial communities is fundamental to seaweed health and Edited by: fitness, in modulating ecological interactions and may also facilitate adaptation to Olga Lage, University of Porto, Portugal new environments. Abiotic factors like salinity can determine bacterial abundance, Reviewed by: growth and community composition. However, influence of salinity as a driver of Hanzhi Lin, epibacterial community composition (until species level) has not been investigated for University of Maryland Center for Environmental Science (UMCES), seaweeds and especially under long time scales. We also do not know how abiotic United States stressors may influence the ‘core’ bacterial species of seaweeds. -
Metagenomics and Metatranscriptomics of Lake Erie Ice
METAGENOMICS AND METATRANSCRIPTOMICS OF LAKE ERIE ICE Opeoluwa F. Iwaloye A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2021 Committee: Scott Rogers, Advisor Paul Morris Vipaporn Phuntumart © 2021 Opeoluwa Iwaloye All Rights Reserved iii ABSTRACT Scott Rogers, Lake Erie is one of the five Laurentian Great Lakes, that includes three basins. The central basin is the largest, with a mean volume of 305 km2, covering an area of 16,138 km2. The ice used for this research was collected from the central basin in the winter of 2010. DNA and RNA were extracted from this ice. cDNA was synthesized from the extracted RNA, followed by the ligation of EcoRI (NotI) adapters onto the ends of the nucleic acids. These were subjected to fractionation, and the resulting nucleic acids were amplified by PCR with EcoRI (NotI) primers. The resulting amplified nucleic acids were subject to PCR amplification using 454 primers, and then were sequenced. The sequences were analyzed using BLAST, and taxonomic affiliations were determined. Information about the taxonomic affiliations, important metabolic capabilities, habitat, and special functions were compiled. With a watershed of 78,000 km2, Lake Erie is used for agricultural, forest, recreational, transportation, and industrial purposes. Among the five great lakes, it has the largest input from human activities, has a long history of eutrophication, and serves as a water source for millions of people. These anthropogenic activities have significant influences on the biological community. Multiple studies have found diverse microbial communities in Lake Erie water and sediments, including large numbers of species from the Verrucomicrobia, Proteobacteria, Bacteroidetes, and Cyanobacteria, as well as a diverse set of eukaryotic taxa. -
Pontibacter Indicus Sp. Nov., Isolated from Hexachlorocyclohexane-Contaminated Soil
International Journal of Systematic and Evolutionary Microbiology (2014), 64, 254–259 DOI 10.1099/ijs.0.055319-0 Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil Amit Kumar Singh,1 Nidhi Garg,1 Pushp Lata,1 Roshan Kumar,1 Vivek Negi,1 Surendra Vikram2 and Rup Lal1 Correspondence 1Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India Rup Lal 2IMTECH-Institute of Microbial Technology, Sector-39A, Chandigarh-160036, India [email protected] An orange-pigmented bacterial strain, designated LP100T, was isolated from hexachlorocyclohexane-contaminated soil (Lucknow, India). A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LP100T occupied a distinct phylogenetic position in the Pontibacter species cluster, showing highest similarity with Pontibacter lucknowensis DM9T (97.4 %). Levels of similarity to strains of other Pontibacter species ranged between 94.0 and 96.8 %. Strain LP100T contained MK-7 as the predominant menaquinone and sym- homospermidine was the major polyamine in the cell. The major cellular fatty acids of strain T T LP100 were anteiso-C17 : 0 A, iso-C15 : 0 and iso-C18 : 1 H. The polar lipid profile of strain LP100 showed the presence of phosphatidylethanolamine, an unidentified aminophospholipid, three unknown aminolipids and two unknown polar lipids. The G+C content of strain LP100T was 58.2 mol%. The results of DNA–DNA hybridization, biochemical and physiological tests clearly distinguish the novel strain from closely related species of the genus Pontibacter. Therefore, strain LP100T represents a novel species of the genus Pontibacter for which the name Pontibacter indicus is proposed. The type strain is LP100T (5CCM8435T5MCC2027T). -
Pontibacter Locisalis Sy30t Sp. Nov. Isolated from Soil Collected from an Abandoned Saltern
Antonie van Leeuwenhoek (2016) 109:415–420 DOI 10.1007/s10482-016-0646-0 ORIGINAL PAPER Pontibacter locisalis Sy30T sp. nov. isolated from soil collected from an abandoned saltern Yan-Xia Zhou . Zhi-Hong Xie . Jin-Xin Zhao . Zong-Jun Du . Guan-Jun Chen Received: 26 June 2015 / Accepted: 4 January 2016 / Published online: 29 January 2016 Ó Springer International Publishing Switzerland 2016 Abstract A novel Gram-stain negative, red, rod- phenotypic, chemotaxonomic and phylogenetic anal- shaped, non-motile and aerobic bacterial strain, desig- ysis, strain Sy30T represents a novel species of the nated Sy30T, was isolated from dry soils of an genus Pontibacter in the family Cytophagaceae, abandoned marine saltern at Weihai, China. 16S rRNA phylum Bacteroidetes, for which the name Pontibacter sequence analysis indicated that strain Sy30T belongs locisalis sp. nov. is proposed. The type strain is Sy30T to the genus Pontibacter in the family Cytophagaceae, (=KCTC 42498T = CICC AB 2015060T). with sequence similarities ranging from 93.3 to 96.4 % with other type species of the genus Pontibacter. The Keywords Pontibacter locisalis Á 16S rRNA gene predominant cellular fatty acids were iso-C15:0 and sequence Á Polyphasic taxonomy summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). The major menaquinone was MK-7. The major polyamine was sym-homospermidine. The DNA G?C content was 47.7 mol%. The major polar lipids Introduction consisted of phosphatidylethanolamine, phospho- aminolipid and two unidentified polar lipid. Based on The genus Pontibacter belongs to the family Cytopha- gaceae within the phylum Bacteroidetes, and was first described by Nedashkovskaya et al.