Childhood Dystonia

Total Page:16

File Type:pdf, Size:1020Kb

Childhood Dystonia ACNRSO13_Layout 1 26/08/2013 22:47 Page 18 PAEDIATRICNEUROLOGY Childhood Dystonia Aetiology Summary Primary dystonia occurs as an isolated presenta- • Dystonia means involuntary muscle tion and has a genetic (or presumed genetic) aeti- contractions causing repetitive ology (Table 1). Inheritance is often autosomal movements and twisted postures dominant; a careful family history may reveal previ- • The commonest clinical picture in ously undiagnosed relatives with milder pheno- children is dystonic cerebral palsy following hypoxic brain injury types. Dystonia occurring secondary to another • A trial of levodopa is warranted in cases disease process affecting the basal ganglia is the without a clear secondary cause more common finding in children (Table 2). • Management is often challenging, and Psychogenic pseudo-dystonia is an important must be holistic differential diagnosis. Clinical approach The aims of the clinical assessment will be to ystonia is a movement disorder in which confirm the presence of dystonia, and assess asso- involuntary muscle contractions cause Nadine McCrea ciated co-morbidities, functional impact, aetiology, Drepetitive movements and twisted postures. perpetuating factors and complications. is a Paediatric Neurology Trainee at Dystonia causes significant morbidity in sufferers, Addenbrooke’s Hospital, Cambridge. Having completed her and may even be fatal in severe cases. It may be a History undergraduate training at primary, genetic disorder, or secondary to a large A summary of key elements of the history is Manchester University, she has number of other disorders. In children, these are been continuing postgraduate provided in Table 3. mainly neurometabolic and degenerative. A thor- training in the East of England. As well as training in paediatric ough history, examination, and targeted use of inves- Examination neurology she has a strong interest tigations can provide the diagnosis in a subset of The key aims of the examination are to characterise in medical education, and leads a children, and help identify those in whom esoteric number of regional education the dystonia and the degree of functional impair- tests are warranted. Management is usually chal- initiatives. ment, document associated motor disorders, review lenging, with a lack of robust evidence for treatment growth parameters and home video footage. Correspondence to: strategies in children. This article summarises an Firstly, inspect from a distance: note the use of Nadine McCrea, approach to the child with dystonia, and provides a Paediatric Neurology, orthoses, plot the height, weight and head circum- framework for management. Addenbrooke’s Hospital, ference on a growth chart, looking specifically for Hills Road, Defining dystonia malnutrition or microcephaly. Next observe more Cambridge CB2 0QQ, UK. Dystonia is defined as “a movement disorder in closely: assess if the dystonia is isolated, or if there Email: [email protected] which involuntary sustained or intermittent muscle is additional chorea, athetosis, or spasticity. Ask the Conflict of interest statement: contractions cause twisting and repetitive move- child to walk if they can, preferably with shoes and The author declares that there are ments, abnormal postures, or both”.1 The postures clothes on at first, and then off. Video is very useful no financial or commercial produced by co-contraction of agonist and antago- as gait can be very difficult to evaluate as children conflicts of interest. nist muscle groups include hyperextension of the move swiftly around. Use functional techniques to back and neck, torticollis, foot inversion, upward bring out movement disorders: holding their extension of the great toe, and ‘spooning’ of the fingers “as near to the nose as possible without hands (Figure 1).2 Dystonia is often more promi- touching it” (tremor), heel- toe walking and turning nent when voluntary movement is attempted, or in (ataxia), walking on the heels looking for inserted certain postures. Muscle tone may be normal at movements of hands and feet (Fogg sign). If you rest, enabling the clinician to differentiate dystonia can see dystonia, note whether it is generalised, from hypertonia. Dystonia may be generalised (or focal or segmental, and postural or fixed. multi-focal), or localised to specific regions of the Next move them to the couch (even if wheel- body, such as in torticollis.1 In childhood, the chair bound): assess the character of the dystonia commonest clinical picture is one of cerebral and any additional movement disorders. Examine palsy with elements of spasticity and dystonia the cranial nerves with emphasis on fundi, eye together.3 However primary dystonia and dystonia movements, dysarthria, dysphagia (offer water if secondary to other causes also occur.1 they drink orally), and tongue thrusting. Examine the limbs for evidence of other movement prob- lems, e.g. dysmetria, intention tremor, spasticity, or Figure 1 neuropathy. Assess function through handwriting, drawing spirals, and performing tasks such as pouring water into a cup. It is also useful to video this, looking for posture and movement during a simple activity. Home videos can provide excellent insights, and should be reviewed. Grading severity Severity of the current episode of dystonia should be determined. Features of increasing severity of dystonia include being unable to sleep, sit or lie 18 > ACNR > VOLUME 13 NUMBER 5 > SEPTEMBER/OCTOBER 2013 ACNRSO13_Layout 1 26/08/2013 22:47 Page 19 PAEDIATRICNEUROLOGY Table 1: Childhood-onset primary dystonia4 Gene Disease Inheritance Gene product & location DYT1 Idiopathic torsion dystonia AD Torsin A 9q34 DYT3 X-linked dystonia-parkinsonism XL TAF 1 Xq13-1 DYT4 Whispering dysphonia AD TUBB4a 19p13.12-13 DYT5a AD Segawa syndrome (Dopa responsive dystonia) AD GCH1 14q22.1-q22.2 DYT5b AR Segawa syndrome (TH deficiency) AR TH 11p15.5 DYT6 Adolescent/adult-onset Idiopathic torsion dystonia (mixed) AD THAP1 8p21-q22 DYT11 Myoclonus-dystonia syndrome AD SGCE 7q21.3 DYT12 Rapid onset dystonia-parkinsonism AD ATP1A3 19q12-q13.2 Table 2: Causes of secondary dystonia5 Table 3: History Cerebral Palsy following hypoxic brain injury (commonest cause) Birth history Metabolic Pregnancy complications, Gestation, Mode of delivery, Cord gas results, Biotinidase deficiency Mitochondrial diseases Neonatal resuscitation, Encephalopathic features Creatine deficiency Mucopolysaccharidoses Early life Galactosaemia Neuronal ceroid lipofuscinoses Feeding, Seizures, Hospital admissions, Medical diagnoses Glutaric acidura type 1 Neurotransmitter disorders Development GM1 and GM2 gangliosidosis Niemann-Pick C Milestones achieved, Delay, Regression, School Hartnup disease Proprionic acidaemia Family history Homocystinuria Sulphite oxidase deficiency Family tree, Consanguinity, Movement disorders, Neurological disor- ders, Stillbirths or early deaths Hypoparathyroidism Tyrosinosis Dystonia Krabbe disease Vitamin E deficiency Age of onset, Progression, Focality, Diurnal variation, Functional impact, Lesch-Nyhan Wilson disease activities of daily living Metachromatic leukodystrophy Dystonia exacerbating factors Methyl-malonic acidaemia Gastro-oesophageal reflux, Constipation, Dental caries, Orthopaedic Metabolic problems, including dislocated hips, fractures, Other causes of pain, Infection, Drug addition or withdrawal, Boredom, Emotional Ataxia telangiectasia Neuroaxonal dystrophy abuse/frustration/fear Ataxia with oculomotor apraxia type 1, 2 Panthothenate kinase 2-associated Dystonia complications Infantile bilateral striatal necrosis neurodegeneration (PKAN2) Swallowing problems, Failure to thrive, Anxiety, depression, Juvenile Huntington’s Pelizaeus-Merzbacher disease Aspiration pneumonia, Status dystonicus (potentially fatal exacerbation Neuroacanthocystosis Spinocerebellar ataxias with multisystem dysfunction) Drugs/Toxins Co-morbidity Phenothiazines Spasticity, Oculogyric crises. Chorea. Other neurological problems Haloperidol Metoclopramide Other Alternating hemiplegia of childhood Porencephaly Management strategies Basal ganglia infarction Sandifer syndrome There is a lack of robust evidence to inform pharmacotherapy for Basal ganglia neoplasm Striatal necrosis dystonia, therefore strict recommendations of first, second and third line medications are not practical.4 Therapeutic strategies tend to vary with HIV infection Vascular malformations individual clinician preference and experience. As well as dystonia- Kernicterus specific therapy, identifying and treating precipitating factors is para- mount (Table 3). Spasticity is a common co-morbidity, and it can be diffi- cult to differentiate between spasticity and dystonia in some children. In these cases a pragmatic approach to symptom control should be taken.4 comfortably, and being systemically unwell. Children who show signs of Medications should be reviewed periodically, addressing whether the systemic illness require urgent assessment and treatment for status drug has had a positive effect on quality of life and the side effects. If dystonicus. Several formal grading scores are available.6 there is no improvement with second line medication, consider discus- sion with colleagues at a complex case review or referring to a quater- nary movement disorders clinic. As well as medication, supportive Investigation management in a multidisciplinary team including physiotherapy, occu- Investigation and treatment are interlinked, as a therapeutic trial of levo- pational therapy, speech therapy and psychosocial
Recommended publications
  • D-Penicillamine-Induced Status Dystonicus in a Patient with Wilson’S Disease: a Diagnostic & Therapeutic Challenge
    A. Satyasrinivas, et al. D-penicillamine-induced Status Dystonicus | Case Report D-penicillamine-induced Status Dystonicus in A Patient with Wilson’s Disease: A Diagnostic & Therapeutic Challenge A. Satyasrinivas*, Y.S. Kanni, N.Rajesh, M.SaiSravanthi, Vijay kumar Department of General Medicine, Kamineni Institute Of Medical Sciences, Narketpally 508254 Andhra Pradesh, India. DOI Name http://dx.doi.org/10.3126/jaim.v3i2.14066 Keywords Dystonia,Gabapentin Kayser-Fleischer ring, ABSTRACT Trientein hydrochloride, Wilson’s disease. Wilson's disease is an autosomal-recessive disorder of copper metabolism Citation resulting from the absence or dysfunction of a copper-transporting protein. A. Satyasrinivas, Y.S. Kanni, N.Rajesh, The disease is mainly seen in children, adolescents and young adults, and is M.SaiSravanthi, Vijay kumar. D-penicillamine- induced Status Dystonicus in A Patient with characterized by hepatobiliary, neurologic, psychiatric and ophthalmologic Wilson’s Disease: A Diagnostic & Therapeutic (Kayser-Fleischer rings) manifestations. Mechanism of status dystonicus in WD Challenge. Journal of Advances in Internal Medicine is not clear We present here a case study of Wil. son’s disease in 14 year old 2014;03(01):62-64. child with dystonia not responed with routine therapy. INTRODUCTION but patient had developed loose stools, difficulty in speaking and pronouncing linguals. With these compliants he was Wilson’s disease (WD), also known as hepatolenticular admitted in the hospital. On Radio imaging and ophthalmic degeneration was first described in 1912 by Kinnear Wilson as examination he was diagnosed as a case of Wilson’s disease progressive lenticular degeneration. WD is an inherited, fatal and was started with tablet calcium Pantothenate and neurological disorder accompanied by chronic liver disease tablets D-Penicillamine and was discharged.
    [Show full text]
  • Consensus Guideline for the Diagnosis and Treatment of Aromatic L-Amino
    Wassenberg et al. Orphanet Journal of Rare Diseases (2017) 12:12 DOI 10.1186/s13023-016-0522-z REVIEW Open Access Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency Tessa Wassenberg1, Marta Molero-Luis2, Kathrin Jeltsch3, Georg F. Hoffmann3, Birgit Assmann3, Nenad Blau4, Angeles Garcia-Cazorla5, Rafael Artuch2, Roser Pons6, Toni S. Pearson7, Vincenco Leuzzi8, Mario Mastrangelo8, Phillip L. Pearl9, Wang Tso Lee10, Manju A. Kurian11, Simon Heales12, Lisa Flint13, Marcel Verbeek1,14, Michèl Willemsen1 and Thomas Opladen3* Abstract Aromatic L-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal recessive neurometabolic disorder that leads to a severe combined deficiency of serotonin, dopamine, norepinephrine and epinephrine. Onset is early in life, and key clinical symptoms are hypotonia, movement disorders (oculogyric crisis, dystonia, and hypokinesia), developmental delay, and autonomic symptoms. In this consensus guideline, representatives of the International Working Group on Neurotransmitter Related Disorders (iNTD) and patient representatives evaluated all available evidence for diagnosis and treatment of AADCD and made recommendations using SIGN and GRADE methodology. In the face of limited definitive evidence, we constructed practical recommendations on clinical diagnosis, laboratory diagnosis, imaging and electroencephalograpy, medical treatments and non-medical treatments. Furthermore, we identified topics for further research. We believe this guideline will improve the care for AADCD patients around the world whilst promoting general awareness of this rare disease. Keywords: Aromatic l-amino acid decarboxylase deficiency, AADC deficiency, Neurotransmitter, Dopamine, Serotonin, Guideline, Infantile dystonia-parkinsonism, SIGN, GRADE German abstract Der Aromatische L-Aminosäuren Decarboxylase Mangel (AADCD) ist eine seltene autosomal rezessive neurometabolische Störung, die zu einem schweren kombinierten Mangel an Serotonin, Dopamin, Norepinephrin und Epinephrin führt.
    [Show full text]
  • 2010 Buenos Aires, Argentina
    Claiming CME Credit To claim CME credit for your participation in the MDS 14th Credit Designation International Congress of Parkinson’s Disease and Movement The Movement Disorder Society designates this educational Disorders, International Congress participants must complete activity for a maximum of 35 AMA PRA Category 1 Credits™. and submit an online CME Request Form. This form will be Physicians should only claim credit commensurate with the available beginning June 15. extent of their participation in the activity. Instructions for claiming credit: If you need a Non-CME Certificate of Attendance, please tear • After June 15, visit the MDS Web site. out the Certificate in the back of this Program and write in • Log in after reading the instructions on the page. You will your name. need your International Congress File Number which is located on your name badge or e-mail The Movement Disorder Society has sought accreditation from [email protected]. the European Accreditation Council for Continuing Medical • Follow the on-screen instructions to claim CME Credit for Education (EACCME) to provide CME activity for medical the sessions you attended. specialists. The EACCME is an institution of the European • You may print your certificate from your home or office, or Union of Medical Specialists (UEMS). For more information, save it as a PDF for your records. visit the Web site: www.uems.net. Continuing Medical Education EACCME credits are recognized by the American Medical The Movement Disorder Society is accredited by the Association towards the Physician’s Recognition Award (PRA). Accreditation Council for Continuing Medical Education To convert EACCME credit to AMA PRA category 1 credit, (ACCME) to provide continuing medical education for contact the AMA online at www.ama-assn.org.
    [Show full text]
  • Case Reports Reversal of Status Dystonicus After Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia
    Freely available online Case Reports Reversal of Status Dystonicus after Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia 1*{ 2,3{ 4 1 4 2,5 D.L. Marinus Oterdoom , Martje E. van Egmond , Luisa Cassini Ascencao , J. Marc C. van Dijk , Assel Saryyeva , Martijn Beudel , 4 6,7 4 2 2 4 Joachim Runge , Tom J. de Koning , Mahmoud Abdallat , Hendriekje Eggink , Marina A.J. Tijssen , Joachim K. Krauss 1 Department of Neurosurgery, University of Groningen, University Medical Center Groningen, the Netherlands, 2 Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands, 3 Ommelander Ziekenhuis Groningen, Department of Neurology, Delfzijl and Winschoten, the Netherlands, 4 Department of Neurosurgery, Hannover Medical School, Germany, 5 Department of Neurology, Isala Klinieken, Zwolle, the Netherlands, 6 Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands, 7 Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands Abstract Background: DYT6 dystonia can have an unpredictable clinical course and the result of deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi) is known to be less robust than in other forms of autosomal dominant dystonia. Patients who had previous stereotactic surgery with insufficient clinical benefit form a particular challenge with very limited other treatment options available. Case Report: A pediatric DYT6 patient unexpectedly deteriorated to status dystonicus 1 year after GPi DBS implantation with good initial clinical response. After repositioning the DBS electrodes the status dystonicus resolved. Discussion: This case study demonstrates that medication-resistant status dystonicus in DYT6 dystonia can be reversed by relocation of pallidal electrodes.
    [Show full text]
  • Movement Disorder Emergencies 1 4 Robert L
    Movement Disorder Emergencies 1 4 Robert L. Rodnitzky Abstract Movement disorders can be the source of signifi cant occupational, social, and functional disability. In most circumstances the progression of these disabilities is gradual, but there are circumstances when onset is acute or progression of a known movement disorders is unexpectedly rapid. These sudden appearances or worsening of abnormal involuntary movements can be so severe as to be frightening to the patient and his family, and disabling, or even fatal, if left untreated. This chapter reviews movement disorder syndromes that rise to this level of concern and that require an accurate diagnosis that will allow appropriate therapy that is suffi cient to allay anxiety and prevent unnecessary morbidity. Keywords Movement disorders • Emergencies • Acute Parkinsonism • Dystonia • Stiff person syndrome • Stridor • Delirium severe as to be frightening to the patient and his Introduction family, and disabling, or even fatal, if left untreated. This chapter reviews movement disor- Movement disorders can be the source of signifi - der syndromes that rise to this level of concern cant occupational, social, and functional disabil- and that require an accurate diagnosis that will ity. In most circumstances the progression of allow appropriate therapy that is suffi cient to these disabilities is gradual, but there are circum- allay anxiety and prevent unnecessary morbidity. stances when onset is acute or progression of a known movement disorders is unexpectedly rapid. These sudden appearances or worsening Acute Parkinsonism of abnormal involuntary movements can be so The sudden or subacute onset of signifi cant par- R. L. Rodnitzky , MD (*) kinsonism, especially akinesia, is potentially very Neurology Department , Roy J.
    [Show full text]
  • Botulinum Neurotoxin Injections in Childhood Opisthotonus
    toxins Article Botulinum Neurotoxin Injections in Childhood Opisthotonus Mariam Hull 1,2,* , Mered Parnes 1,2 and Joseph Jankovic 2 1 Section of Pediatric Neurology and Developmental Neuroscience, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 2 Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] * Correspondence: [email protected] Abstract: Opisthotonus refers to abnormal axial extension and arching of the trunk produced by excessive contractions of the paraspinal muscles. In childhood, the abnormal posture is most often related to dystonia in the setting of hypoxic injury or a number of other acquired and genetic etiologies. The condition is often painful, interferes with ambulation and quality of life, and is challenging to treat. Therapeutic options include oral benzodiazepines, oral and intrathecal baclofen, botulinum neurotoxin injections, and deep brain stimulation. Management of opisthotonus within the pediatric population has not been systematically reviewed. Here, we describe a series of seven children who presented to our institution with opisthotonus in whom symptom relief was achieved following administration of botulinum neurotoxin injections. Keywords: opisthotonus; opisthotonos; axial dystonia; botulinum toxin Key Contribution: This is the first series of pediatric patients with opisthotonus treated with bo- tulinum neurotoxin injections. Botulinum neurotoxin injections should be added to the armamentar- ium of treatment options in children with axial dystonia, including opisthotonos. Citation: Hull, M.; Parnes, M.; 1. Introduction Jankovic, J. Botulinum Neurotoxin Injections in Childhood Opisthotonus. Opisthotonus, derived from the Greek “opistho” meaning behind and “tonos” mean- Toxins 2021, 13, 137.
    [Show full text]
  • Movement Disorders Emergencies: a Review Emergências Em Distúrbios Do Movimento: Uma Revisão Renato P
    VIEWS AND REVIEWS Movement disorders emergencies: a review Emergências em distúrbios do movimento: uma revisão Renato P. Munhoz1,2, Mariana Moscovich1, Patrícia Dare Araujo1, Hélio A. G. Teive2 ABSTRACT Movement disorders (MD) encompass acute and chronic diseases characterized by involuntary movements and/or loss of control or ef- ficiency in voluntary movements. In this review, we covered situations in which the main manifestations are MDs that pose significant risks for acute morbidity and mortality. The authors examine literature data on the most relevant MD emergencies, including those related to Parkinson`s disease, acute drug reactions (acute dystonia, neuroleptic malignant syndrome, serotonergic syndrome and malignant hyper- thermia), acute exacerbation of chronic MD (status dystonicus), hemiballism and stiff-person syndrome, highlighting clinical presentation, demographics, diagnosis and management. Key words: movements disorders, dystonia, neuroleptic malignant syndrome, serotonergic syndrome, malignant hyperthermia, status dystonicus, dyskinesias, stiff person syndrome. RESUMO Os distúrbios do movimento (DM) englobam doenças agudas e crônicas caracterizadas por movimentos involuntários e/ou perda do controle ou eficiência em movimentos voluntários. Nesta revisão, incluímos situações nas quais as principais manifestações são DM que represen- tam risco devido à alta morbidade e mortalidade. Os autores revisaram aspectos relacionados às principais emergências em DM, incluindo aquelas relacionadas a doença de Parkinson; reações causadas por drogas (distonia aguda, síndrome neuroléptica maligna, síndrome se- rotoninérgica, hipertermia maligna); exacerbação aguda de DM crônicos (status distonicus); hemibalismo e síndrome da pessoa rígida. São destacados a apresentação clínica, os dados demográficos, o diagnóstico e o tratamento. Palavras-Chave: distúrbios de movimentos, distonia, síndrome maligna neuroléptica, síndrome serotoninérgica, hipetermia maligna, status distonicus, discinesias, síndrome da pessoa rígida.
    [Show full text]
  • Movement Disorders and Neurometabolic Diseases
    Movement Disorders and Neurometabolic Diseases. Celanie K. Christensen, MS MD1, 2, Laurence Walsh, MD1, 2, 3 1Department of Neurology, Section of Child Neurology, Indiana University School of Medicine, Indianapolis, IN 2Department of Pediatrics, Section of Developmental Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN From: Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine Address reprint requests to: Celanie K. Christensen, MS MD Section of Developmental Pediatrics RI1601 705 Riley Hospital Drive Indianapolis, IN 46202 ___________________________________________________________________ This is the author's manuscript of the article published in final edited form as: Christensen, C. K., & Walsh, L. (2018). Movement Disorders and Neurometabolic Diseases. Seminars in Pediatric Neurology. https://doi.org/10.1016/j.spen.2018.02.003 Abstract Many inherited metabolic disorders cause movement disorders in children. This review focuses on chorea, dystonia, myoclonus, tremor, and parkinsonism. Broad categories commonly responsible for pediatric movement disorders include mitochondrial disorders, organic acidemias, mineral metabolism and transport disorders, neurotransmitter diseases, purine metabolism disorders, lipid storage disorders, and disorders of creatine metabolism. Each movement disorder can be caused by many different inherited metabolic disorders and several of the inherited metabolic disorders can cause multiple movement abnormalities. Dietary modifications, medications, and increasingly specific therapy can improve outcomes in children with movement disorders caused by metabolic disorders. Recognition and characterization of secondary movement disorders in children facilitate management of the abnormal movements and diagnosis, and possible treatment, of an underlying metabolic disorder. Introduction Many inborn errors of metabolism (IEM) cause movement disorders in children.
    [Show full text]
  • Pallidotomy for Medically Refractory Status Dystonicus in Childhood
    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY ORIGINAL ARTICLE Pallidotomy for medically refractory status dystonicus in childhood CARLO EFISIO MARRAS1 | MICHELE RIZZI2 | LAURA CANTONETTI3 | ERIKA REBESSI1 | ALESSANDRO DE BENEDICTIS1 | FRANCESCO PORTALURI1 | FRANCO RANDI4 | ALESSANDRA SAVIOLI5 | ENRICO CASTELLI3 | FEDERICO VIGEVANO4 1 Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesu Children’s Hospital (BGCH), Rome; 2 Department of Neurosurgery, IRCCS Fondazione Istituto Neurologico ‘Carlo Besta’, Milan; 3 Neurorehabilitation Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesu Children’s Hospital (BGCH), Rome; 4 Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesu Children’s Hospital (BGCH), Rome; 5 Intensive Care Unit, Department of Emergency, IRCCS Bambino Gesu Children’s Hospital (BGCH), Rome, Italy. Correspondence to Erika Rebessi, Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesu Children’s Hospital, IRCCS 4, Piazza Sant’Onofrio, 00165 Rome, Italy. E-mail: [email protected] This article is commented on by Lumsden on pages 607–608 of this issue. PUBLICATION DATA AIM Status dystonicus is a rare and potentially fatal condition of continuous and generalized Accepted for publication 29th December muscle contraction that can complicate dystonia. As status dystonicus is usually refractory to 2013. traditional pharmacological therapy, alternative and invasive strategies have been developed, Published online 4th April 2014. but so far there are no guidelines on status dystonicus management. Pallidotomy has shown good results in status dystonicus treatment. ABBREVIATIONS METHOD We report indications, surgical strategy, and outcome of bilateral pallidotomy in BFMDRS Burke-Fahn-Marsden Dystonia four pediatric patients (four males; mean age at surgery 11y 5mo) with secondary dystonia, Rating Scale who developed refractory status dystonicus.
    [Show full text]
  • Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias
    International Journal of Molecular Sciences Review Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias Giacomo Garone 1,2 , Alessandro Capuano 2 , Lorena Travaglini 3,4 , Federica Graziola 2,5 , Fabrizia Stregapede 4,6, Ginevra Zanni 3,4, Federico Vigevano 7, Enrico Bertini 3,4 and Francesco Nicita 3,4,* 1 University Hospital Pediatric Department, IRCCS Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, 00165 Rome, Italy; [email protected] 2 Movement Disorders Clinic, Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (A.C.); [email protected] (F.G.) 3 Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (L.T.); [email protected] (G.Z.); [email protected] (E.B.) 4 Laboratory of Molecular Medicine, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] 5 Department of Neuroscience, University of Rome Tor Vergata, 00133 Rome, Italy 6 Department of Sciences, University of Roma Tre, 00146 Rome, Italy 7 Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +0039-06-68592105 Received: 30 April 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs).
    [Show full text]
  • Paediatric Deep Brain Stimulation
    Paediatric deep brain stimulation An Evidence Check rapid review brokered by the Sax Institute for the NSW Ministry of Health. October 2019. An Evidence Check rapid review brokered by the Sax Institute for NSW Ministry of Health. October 2019. This report was prepared by: Ann Scott, Joanna Duncan, David Tivey, Wendy Babidge (ASERNIP-S of the Royal Australasian College of Surgeons) October 2019 This work is copyright. It may be reproduced in whole or in part for study training purposes subject to the inclusions of an acknowledgement of the source. It may not be reproduced for commercial usage or sale. Reproduction for purposes other than those indicated above requires written permission from the copyright owners. Enquiries regarding this report may be directed to the: Principal Analyst Knowledge Exchange Program Sax Institute www.saxinstitute.org.au [email protected] Phone: +61 2 91889500 Suggested Citation: Scott A, Duncan J, Tivey D, Babidge W. Paediatric deep brain stimulation: an Evidence Check rapid review brokered by the Sax Institute (http://www.saxinstitute.org.au/) for the NSW Ministry of Health, 2019. Disclaimer: This Evidence Check Review was produced using the Evidence Check methodology in response to specific questions from the commissioning agency. It is not necessarily a comprehensive review of all literature relating to the topic area. It was current at the time of production (but not necessarily at the time of publication). It is reproduced for general information and third parties rely upon it at their own risk. Paediatric deep brain stimulation An Evidence Check rapid review brokered by the Sax Institute for NSW Ministry of Health.
    [Show full text]
  • Unilateral Pallidotomy As a Potential Rescue Therapy for Cervical Dystonia After Unsatisfactory Selective Peripheral Denervation
    CLINICAL ARTICLE J Neurosurg Spine 33:658–666, 2020 Unilateral pallidotomy as a potential rescue therapy for cervical dystonia after unsatisfactory selective peripheral denervation *Yijie Lai, MD,1 Peng Huang, MD,1 Chencheng Zhang, MD, PhD,1 Liangyun Hu, ME,1 Zhengdao Deng, MD,1,2 Dianyou Li, MD, PhD,1 Bomin Sun, MD, PhD,1 Wei Liu, MD, PhD,1 and Shikun Zhan, MD, PhD1 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and 2Research Group of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium OBJECTIVE Selective peripheral denervation (SPD) is a widely accepted surgery for medically refractory cervical dys- tonia (CD), but when SPD has failed, the available approaches are limited. The authors investigated the results from a cohort of CD patients treated with unilateral pallidotomy after unsatisfactory SPD. METHODS The authors retrospectively analyzed patients with primary CD who underwent unilateral pallidotomy after SPD between April 2007 and August 2019. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) was used to evaluate symptom severity before surgery, 7 days postsurgery, 3 months postsurgery, and at the last follow-up. TWSTRS subscores for disability and pain and the 24-item Craniocervical Dystonia Questionnaire (CDQ-24) were used to assess quality of life. RESULTS At a mean final follow-up of 5 years, TWSTRS severity subscores and total scores were significantly im- proved (n = 12, mean improvement 57.3% and 62.3%, respectively, p = 0.0022 and p = 0.0022), and 8 of 12 patients (66.7%) were characterized as responders (improvement ≥ 25%). Patients with rotation symptoms before pallidotomy showed greater improvement in TWSTRS severity subscores than those who did not (p = 0.049).
    [Show full text]