Movement Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Treating Dysosmia, from Saline to Surgery
日鼻誌47!:51~52,2008 特別講演2 TREATING DYSOSMIA, FROM SALINE TO SURGERY Donald A. Leopold, MD, FACS University of Nebraska Medical Center, Omaha, Nebraska, United States of America The sense of smell begins with airflow through the nose. The exact path of this airflow has only recently been investigated. Some of this data comes from models, both life size and enlarged models using measurements of airflow. Additional information comes from computerized airflow models of the nasal cavities. The neural pathways of olfaction begin with the olfactory receptors high in the nasal cavity. After transduction from the chemical to the electrical information, this information is transferred through the olfactory bulb and into the central brain. Patients typically present with one of three different types of dysosmia. The first is simply a decreased ability to perceive smells(hyposmia and anosmia). The two remaining types of dysosmia relate to distortions of perceived smells. One of these(parosmia)is a distortion of smell odorants that are actually in the environment. The third type is theperceptionofanodorwhenthereisnoodorantintheenvironment(phantosmia or hallucination). The clinical task of the physician seeing these patients is to decide on the etiology of the problem and to recom- mend therapy if possible. The clinical history is one of the best tools the clinician has, but the physical examination, sensory testing and imaging can also be helpful. Diagnostic categories for these patients are many, but the most com- mon include nasal inflammatory disease for about a third of these patients, the losses that occur after an upper respira- tory infection in about 25 percent of the patients and head trauma in about 15 percent of patients. -
D-Penicillamine-Induced Status Dystonicus in a Patient with Wilson’S Disease: a Diagnostic & Therapeutic Challenge
A. Satyasrinivas, et al. D-penicillamine-induced Status Dystonicus | Case Report D-penicillamine-induced Status Dystonicus in A Patient with Wilson’s Disease: A Diagnostic & Therapeutic Challenge A. Satyasrinivas*, Y.S. Kanni, N.Rajesh, M.SaiSravanthi, Vijay kumar Department of General Medicine, Kamineni Institute Of Medical Sciences, Narketpally 508254 Andhra Pradesh, India. DOI Name http://dx.doi.org/10.3126/jaim.v3i2.14066 Keywords Dystonia,Gabapentin Kayser-Fleischer ring, ABSTRACT Trientein hydrochloride, Wilson’s disease. Wilson's disease is an autosomal-recessive disorder of copper metabolism Citation resulting from the absence or dysfunction of a copper-transporting protein. A. Satyasrinivas, Y.S. Kanni, N.Rajesh, The disease is mainly seen in children, adolescents and young adults, and is M.SaiSravanthi, Vijay kumar. D-penicillamine- induced Status Dystonicus in A Patient with characterized by hepatobiliary, neurologic, psychiatric and ophthalmologic Wilson’s Disease: A Diagnostic & Therapeutic (Kayser-Fleischer rings) manifestations. Mechanism of status dystonicus in WD Challenge. Journal of Advances in Internal Medicine is not clear We present here a case study of Wil. son’s disease in 14 year old 2014;03(01):62-64. child with dystonia not responed with routine therapy. INTRODUCTION but patient had developed loose stools, difficulty in speaking and pronouncing linguals. With these compliants he was Wilson’s disease (WD), also known as hepatolenticular admitted in the hospital. On Radio imaging and ophthalmic degeneration was first described in 1912 by Kinnear Wilson as examination he was diagnosed as a case of Wilson’s disease progressive lenticular degeneration. WD is an inherited, fatal and was started with tablet calcium Pantothenate and neurological disorder accompanied by chronic liver disease tablets D-Penicillamine and was discharged. -
Taste and Smell Disorders in Clinical Neurology
TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments. -
Paroxysmal Bilateral Dysosmia Treated by Resection of the Olfactory Bulbs
160 Surg Neurol 1993 ;40:160-3 Paroxysmal Bilateral Dysosmia Treated by Resection of the Olfactory Bulbs J.M. Markert, M.D., D.O. Hartshorn, M.D., and S.M. Farhat, M.D. Department of Surgery, Section of Neurosurgery and Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical Center, and Catherine McAuley Health Center, Ann Arbor, Michigan Markert JM, Hartshorn DO, Farhat SM. Paroxysmal bilateral Case Report dysosmia treated by resection of the olfactory bulbs. Surg Neurol 1993;40:160-3. P.G., a 37-year-old woman, was seen in November 1988. She reported a 17 year history of dysosmia with paroxysms of peculiar sensations of smell. These sensa- Dysosmia, or the distortion of olfaction, is most commonly tions were usually brought on by inhalation of other preceded by viral illness or head trauma, but has a variety strong odors, such as cigars, perfume, or onions; how- of etiologies. The precise nature of the disease process remains obscure. Medical management is largely empiric, ever, they also could be triggered by sudden turning of and has been aimed at treating underlying illnesses, re- the head, a big sniff, or emotional and physical stress. stricting triggering medications, as well as various phar- The common cold or flu would also exacerbate the sensa- macologic interventions. Successful eradication of a severe tion. Dysosmia paroxysms were described as unlike any case of persistent unilateral paroxysmal dysosmia with other odor, and always the same: of a hot, foul and resection of the ipsilateral olfactory bulb has been re- smoky nature on the right, and a sickeningly sweet, ported. -
Consensus Guideline for the Diagnosis and Treatment of Aromatic L-Amino
Wassenberg et al. Orphanet Journal of Rare Diseases (2017) 12:12 DOI 10.1186/s13023-016-0522-z REVIEW Open Access Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency Tessa Wassenberg1, Marta Molero-Luis2, Kathrin Jeltsch3, Georg F. Hoffmann3, Birgit Assmann3, Nenad Blau4, Angeles Garcia-Cazorla5, Rafael Artuch2, Roser Pons6, Toni S. Pearson7, Vincenco Leuzzi8, Mario Mastrangelo8, Phillip L. Pearl9, Wang Tso Lee10, Manju A. Kurian11, Simon Heales12, Lisa Flint13, Marcel Verbeek1,14, Michèl Willemsen1 and Thomas Opladen3* Abstract Aromatic L-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal recessive neurometabolic disorder that leads to a severe combined deficiency of serotonin, dopamine, norepinephrine and epinephrine. Onset is early in life, and key clinical symptoms are hypotonia, movement disorders (oculogyric crisis, dystonia, and hypokinesia), developmental delay, and autonomic symptoms. In this consensus guideline, representatives of the International Working Group on Neurotransmitter Related Disorders (iNTD) and patient representatives evaluated all available evidence for diagnosis and treatment of AADCD and made recommendations using SIGN and GRADE methodology. In the face of limited definitive evidence, we constructed practical recommendations on clinical diagnosis, laboratory diagnosis, imaging and electroencephalograpy, medical treatments and non-medical treatments. Furthermore, we identified topics for further research. We believe this guideline will improve the care for AADCD patients around the world whilst promoting general awareness of this rare disease. Keywords: Aromatic l-amino acid decarboxylase deficiency, AADC deficiency, Neurotransmitter, Dopamine, Serotonin, Guideline, Infantile dystonia-parkinsonism, SIGN, GRADE German abstract Der Aromatische L-Aminosäuren Decarboxylase Mangel (AADCD) ist eine seltene autosomal rezessive neurometabolische Störung, die zu einem schweren kombinierten Mangel an Serotonin, Dopamin, Norepinephrin und Epinephrin führt. -
2010 Buenos Aires, Argentina
Claiming CME Credit To claim CME credit for your participation in the MDS 14th Credit Designation International Congress of Parkinson’s Disease and Movement The Movement Disorder Society designates this educational Disorders, International Congress participants must complete activity for a maximum of 35 AMA PRA Category 1 Credits™. and submit an online CME Request Form. This form will be Physicians should only claim credit commensurate with the available beginning June 15. extent of their participation in the activity. Instructions for claiming credit: If you need a Non-CME Certificate of Attendance, please tear • After June 15, visit the MDS Web site. out the Certificate in the back of this Program and write in • Log in after reading the instructions on the page. You will your name. need your International Congress File Number which is located on your name badge or e-mail The Movement Disorder Society has sought accreditation from [email protected]. the European Accreditation Council for Continuing Medical • Follow the on-screen instructions to claim CME Credit for Education (EACCME) to provide CME activity for medical the sessions you attended. specialists. The EACCME is an institution of the European • You may print your certificate from your home or office, or Union of Medical Specialists (UEMS). For more information, save it as a PDF for your records. visit the Web site: www.uems.net. Continuing Medical Education EACCME credits are recognized by the American Medical The Movement Disorder Society is accredited by the Association towards the Physician’s Recognition Award (PRA). Accreditation Council for Continuing Medical Education To convert EACCME credit to AMA PRA category 1 credit, (ACCME) to provide continuing medical education for contact the AMA online at www.ama-assn.org. -
Case Reports Reversal of Status Dystonicus After Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia
Freely available online Case Reports Reversal of Status Dystonicus after Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia 1*{ 2,3{ 4 1 4 2,5 D.L. Marinus Oterdoom , Martje E. van Egmond , Luisa Cassini Ascencao , J. Marc C. van Dijk , Assel Saryyeva , Martijn Beudel , 4 6,7 4 2 2 4 Joachim Runge , Tom J. de Koning , Mahmoud Abdallat , Hendriekje Eggink , Marina A.J. Tijssen , Joachim K. Krauss 1 Department of Neurosurgery, University of Groningen, University Medical Center Groningen, the Netherlands, 2 Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands, 3 Ommelander Ziekenhuis Groningen, Department of Neurology, Delfzijl and Winschoten, the Netherlands, 4 Department of Neurosurgery, Hannover Medical School, Germany, 5 Department of Neurology, Isala Klinieken, Zwolle, the Netherlands, 6 Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands, 7 Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands Abstract Background: DYT6 dystonia can have an unpredictable clinical course and the result of deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi) is known to be less robust than in other forms of autosomal dominant dystonia. Patients who had previous stereotactic surgery with insufficient clinical benefit form a particular challenge with very limited other treatment options available. Case Report: A pediatric DYT6 patient unexpectedly deteriorated to status dystonicus 1 year after GPi DBS implantation with good initial clinical response. After repositioning the DBS electrodes the status dystonicus resolved. Discussion: This case study demonstrates that medication-resistant status dystonicus in DYT6 dystonia can be reversed by relocation of pallidal electrodes. -
Movement Disorder Emergencies 1 4 Robert L
Movement Disorder Emergencies 1 4 Robert L. Rodnitzky Abstract Movement disorders can be the source of signifi cant occupational, social, and functional disability. In most circumstances the progression of these disabilities is gradual, but there are circumstances when onset is acute or progression of a known movement disorders is unexpectedly rapid. These sudden appearances or worsening of abnormal involuntary movements can be so severe as to be frightening to the patient and his family, and disabling, or even fatal, if left untreated. This chapter reviews movement disorder syndromes that rise to this level of concern and that require an accurate diagnosis that will allow appropriate therapy that is suffi cient to allay anxiety and prevent unnecessary morbidity. Keywords Movement disorders • Emergencies • Acute Parkinsonism • Dystonia • Stiff person syndrome • Stridor • Delirium severe as to be frightening to the patient and his Introduction family, and disabling, or even fatal, if left untreated. This chapter reviews movement disor- Movement disorders can be the source of signifi - der syndromes that rise to this level of concern cant occupational, social, and functional disabil- and that require an accurate diagnosis that will ity. In most circumstances the progression of allow appropriate therapy that is suffi cient to these disabilities is gradual, but there are circum- allay anxiety and prevent unnecessary morbidity. stances when onset is acute or progression of a known movement disorders is unexpectedly rapid. These sudden appearances or worsening Acute Parkinsonism of abnormal involuntary movements can be so The sudden or subacute onset of signifi cant par- R. L. Rodnitzky , MD (*) kinsonism, especially akinesia, is potentially very Neurology Department , Roy J. -
Critical Illness and Changes in Sensory Perception
Proceedings of the Nutrition Society (2007), 66, 331–345 DOI:10.1017/S0029665107005599 g The Author 2007 Critical illness and changes in sensory perception Susan S. Schiffman Department of Psychiatry, 54212 Woodhall Building, Duke University Medical Center, Durham, NC 27710–3259, USA Impairments of sensory perception that occur during a period of critical care can seriously impact on health and nutritional status, activities of daily living, independence, quality of life and the possibility of recovery. It is emphasized from the outset that sensory losses in critically- ill patients may or may not be related to their current medical condition. The present paper provides an overview of all five senses (vision, hearing, taste, smell and touch) and describes the factors that contribute to sensory losses in critically-ill patients, including medications, medical conditions and treatments and the process of aging itself. Cancer and stroke are two critical illnesses in which profound sensory decrements often occur. Many sensory complaints in patients with cancer are related to alteration in sensory signals caused by damage to the sensory receptors. However, some complaints, such as taste aversions in patients with cancer, are not related to altered sensory physiology per se but to learned aversions that arise during the noxious effects of radiotherapy and chemotherapy. The paper also reviews a study in which the sensory performance (of all five senses) was compared in three groups of elderly subjects: (1) patients who had undergone coronary artery bypass surgery; (2) patients with cardio- vascular conditions but with no history of surgery; (3) healthy non-medicated age-matched controls. -
Clinical Diagnosis and Treatment of Olfactory Dysfunction
Clinical Diagnosis and Treatment of Olfactory Dysfunction Seok Hyun Cho Hanyang Med Rev 2014;34:107-115 http://dx.doi.org/10.7599/hmr.2014.34.3.107 Department of Otorhinolaryngology-Head and Neck Surgery, Hanyang University College of Medicine, Seoul, Korea pISSN 1738-429X eISSN 2234-4446 Olfactory dysfunction is a relatively common disorder that is often under-recognized by Correspondence to: Seok Hyun Cho Department of Otorhinolaryngology-Head both patients and clinicians. It occurs more frequently in older ages and men, and decreases and Neck Surgery, Hanyang University patients’ quality of life, as olfactory dysfunction may affect the emotion and memory func- Hospital, 222 Wangsimni-ro, Seongdong-gu, tions. Three main causes of olfactory dysfunction are sinonasal diseases, upper respiratory Seoul 133-792, Korea Tel: +82-2-2290-8583 viral infection, and head trauma. Olfactory dysfunction is classified quantitatively (hypos- Fax: +82-2-2293-3335 mia and anosmia) and qualitatively (parosmia and phantosmia). From a pathophysiologi- E-mail: [email protected] cal perspective, olfactory dysfunction is also classified by conductive or sensorineural types. All patients with olfactory dysfunction will need a complete history and physical examina- Received 17 April 2014 Revised 23 June 2014 tion to identify any possible or underlying causes and psychophysical olfactory tests are Accepted 3 July 2014 essential to estimate the residual olfactory function, which is the most important prognos- This is an Open Access article distributed under tic factor. CT or MRI may be adjunctively used in some indicated cases such as head trauma the terms of the Creative Commons Attribution and neurodegenerative disorders. -
Olfactory Dysfunction
Olfactory Dysfunction: By Steven Sobol, MD, MSc; Saul Frenkiel, MD, FRCSC; and Debbie Mouadeb he sense of smell plays an important role in protecting Tman from environmental dangers, such as fire, natural gas leaks and spoiled food. Physiologically, the chemical senses aid in normal digestion by triggering gastrointestinal secretions.1 Smell influences the palatability of food. Defects in the sense of smell are associated with alterations in perceptions of flavor, leading to anorexia and weight loss. Psychologically, smell is powerful in establishing strong positive and negative memories, and affects socialization and interpersonal relationships. Smell dysfunctions often mean considerable disability and a lower quality of life. Loss or decreased olfactory function affects approximately one per cent of Americans under the age of 60 and more than half the population over that age.2 Aside from having a substantial impact on an individual’s quality of life, olfactory dysfunction may signal an underlying disease. Smell disorders have been largely overlooked by the medical community because of a lack of knowledge and understanding of the sense of smell and its disease states, as well its diagnosis and management. Patients with olfactory disorders need to be clinically assessed, and the etiology and anatomical location of their disorder should be sought out. The Canadian Journal of Diagnosis / August 2002 55 Olfactory Dysfunction Summary What are the causes of olfactory dysfunction? 1.Conductive olfactory loss is any process that causes sufficient obstruction in the nose preventing odorant molecules from reaching the olfactory epithelium. 2.Sensorineural olfactory loss is any process that directly affects and impairs either the olfactory epithelium or the central olfactory pathways. -
Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits
nutrients Review Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits Davide Risso 1,* , Dennis Drayna 2 and Gabriella Morini 3 1 Ferrero Group, Soremartec Italia Srl, 12051 Alba, CN, Italy 2 National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; [email protected] 3 University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, Bra, 12042 Pollenzo, CN, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0173-313214 Received: 3 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Abstract: Our sense of taste arises from the sensory information generated after compounds in the oral cavity and oropharynx activate taste receptor cells situated on taste buds. This produces the perception of sweet, bitter, salty, sour, or umami stimuli, depending on the chemical nature of the tastant. Taste impairments (dysgeusia) are alterations of this normal gustatory functioning that may result in complete taste losses (ageusia), partial reductions (hypogeusia), or over-acuteness of the sense of taste (hypergeusia). Taste impairments are not life-threatening conditions, but they can cause sufficient discomfort and lead to appetite loss and changes in eating habits, with possible effects on health. Determinants of such alterations are multiple and consist of both genetic and environmental factors, including aging, exposure to chemicals, drugs, trauma, high alcohol consumption, cigarette smoking, poor oral health, malnutrition, and viral upper respiratory infections including influenza. Disturbances or loss of smell, taste, and chemesthesis have also emerged as predominant neurological symptoms of infection by the recent Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus strain 2 (SARS-CoV-2), as well as by previous both endemic and pandemic coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and SARS-CoV.