Perspectives of Homo Sapiens Lifespan Extension: Focus on External Or Internal Resources?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Journal of the Palo Alto Institute
PAI is a 501(c)(3) nonprofit Vol. 5 creativity laboratory, The Journal of the dedicated to the pursuit February 2012 and promotion of unconventional truths ISSN: 1948–7843 through research, Palo Alto Institute education and entertainment. E-ISSN: 1948–7851 Future of Human Evolution 1 Status Update 13 Food Allergy, Asthma, Anaphylaxis, and Autonomic Dysfunction 17 10x 22 Therapeutics as the Next Frontier in the Evolution of Darwinian Medicine 24 Future of Human Evolution Palo Alto Institute Joon Yun February 2012, Vol. 5 DOI: 10.3907 / FHEJ5P Programmed Death Is senescence (biologic death) a programmed trait? Perhaps no topic in evolutionary biology evokes more controversy. Senescence was once assumed to be the result of so-called "wear and tear"; namely, an organism ages and eventually fails as it accumulates defects that are insufficiently corrected. However, the existence of senescence is not a thermodynamic necessity. Although entropy must increase within a closed system, organisms are not closed systems unto themselves. Since it can extract free energy from the environment and reduce its own entropy, an organism typically grows more resilient from seed stage to reproductive maturity. Indeed, life tables for humans suggest that the lowest likelihood of death in females occurs around the age of 14, which coincides with the prehistoric age of reproductive maturity. Organisms appear to be capable of self-repair when beneficial; indeed, certain organisms such as Hydra do not exhibit signs of senescence. However, most organisms undergo a failure of repair mechanisms, an increase in entropy, and an emergence of senescence after reproductive age—despite having free energy available around them. -
Aging by Design
Aging by Design How New Thinking on Aging Will Change Your Life Theodore C. Goldsmith Copyright © 2011 Azinet Press ISBN: 978-0-9788709-3-5 ISBN-10: 0-9788709-3-X Amazon Kindle Edition ASIN: B005KCO8SS Azinet Press Box 239 Crownsville, MD 21032 1-410-923-4745 Keywords: senescence, anti-aging medicine, ageing, evolution, gerontology This book contains some material previously published in An Introduction to Biological Aging Theory Pictures and illustrations courtesy of Wikipedia unless otherwise noted. 22,500 words, 49 pages (8.5 x 11 inch format), 7 illus. August 22, 2011 2 Contents Introduction......................................................................................................................... 4 Ages of Man – Human Mortality........................................................................................ 5 A Brief Summary of Aging Theories.................................................................................. 6 The Evolution of Aging ...................................................................................................... 7 Medawar’s Modification to Darwin’s Theory .................................................................. 11 Williams’ Modification to Darwin’s Theory .................................................................... 12 Evolution Theory’s Individual Benefit Clause ................................................................. 14 More Discrepancies with Traditional Darwinism – Group Selection............................... 15 More Discrepancies – Evolvability -
Morphological Variability of the Baculum in Martes Foina (Carnivora: Mustelidae) from Turkey
Turkish Journal of Zoology Turk J Zool (2018) 42: 666-672 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1802-39 Morphological variability of the baculum in Martes foina (Carnivora: Mustelidae) from Turkey Ahmet Haris Selçuk ÖZEN* Department of Biology, Faculty of Science and Literature, Dumlupınar University, Evliya Çelebi Campus, Kütahya, Turkey Received: 25.02.2018 Accepted/Published Online: 10.09.2018 Final Version: 12.11.2018 Abstract: The present study was based on the bacula of 39 male (17 juvenile, 22 adult) stone marten (Martes foina) samples obtained from all geographical regions of Turkey between 1995 and 2016. Morphological variability in 11 characteristics of bacula was investigated. The purpose of this study was to measure numerical characters of the baculum, to identify relationships between measurements, and to evaluate variabilities in its morphology. Weight, total length, base length, base height, base width, apex height, apex width, median width, and median height were significantly greater in the bacula of adults compared to the bacula of juveniles. The most variable characteristic in adults was base width (18.96%). There was a significant relationship between some characteristics of the bacula measured. The strongest positive relationships were observed between median height and baculum weight (r = 0.771), weight and base length (r = 0.755), and median width and weight (r = 0.750) characteristics. Statistical analysis (PCA) also revealed a strong relationship between some characteristics. In particular, positive correlations between width and height sizes in the base (proximal), median, and distal of the baculum, as well as axis–apex height and apex width, suggest relationships that protect the urethra and baculum from fissures and fractures during copulation. -
An Age Dependent Mechanism of Mammals Self Destruction
Ukrainica Bioorganica Acta 1—2 (2004) 3—12 www.bioorganica.org.ua Do mammals die young!? An agedependent mechanism of mammals selfdestruction O. G. Boyko MultiВranched Centre of Science & Technology «Agrobiotech» 50 Kharkivski highway, Kyiv, 02160, Ukraine Abstract. It is hypothesized the first multicellular organisms arisen on the Earth have inherited neither cell aging nor programmed cell death mechanisms from singlecellular ancestors possessing practically unlimited longevity. Both aging and aginginduced death are later evolutionary acquisitions. They are typical only for some phyla, and the majority of nowadays species of multicellular organisms are potentially immortal. Cell aging mechanisms in multicellular organisms can be somewhat involved in agedependent mechanisms of self destruction, but they cannot determine themselves the organism’s aging and longevity. An agerelated mecha nism of mammal selfdestruction appears in the evolutionary lineage from mammallike reptiles Synapsida to mammals in addition to existing systemic and cellular mechanisms of aging. Such agerelated mechanism direct ing the selfdestruction of mammal’s organism is a result of some evolutionary events leading to the «postmitot ic brain» development in mammals. In this minireview, recent results relevant to this hypothesis are surveyed and some approaches to intervening in the proposed process are discussed. Keywords: aging, hypothesis, mammals, birds, exogenous organospecific RNAs, postmitotic brain. Introduction. The ultimate aim of gerontology lachev’s version, potential immortality has alrea researches is to make human aging optional. dy considered not as a luxury, but as a fatal dan Therefore, the initial purpose of this work was ger for population, contrary to initial Weismann’s to consider the most important facts and ideas and conception. -
ER Galimov1, JN Lohr1, and D. Gems1,A
MINI-REVIEW When and How Can Death Be an Adaptation? E. R. Galimov1, J. N. Lohr1, and D. Gems1,a* 1Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK ae-mail: [email protected] * To whom correspondence should be addressed. Abstract—The concept of phenoptosis (or programmed organismal death) is problematic with respect to most species (including humans) since it implies that dying of old age is an adaptation, which contradicts the established evolutionary theory. But can dying ever be a strategy to promote fitness? Given recent developments in our understanding of the evolution of altruism, particularly kin and multilevel selection theories, it is timely to revisit the possible existence of adaptive death. Here, we discuss how programmed death could be an adaptive trait under certain conditions found in organisms capable of clonal colonial existence, such as the budding yeast Saccharomyces cerevisiae and, perhaps, the nematode Caenorhabditis elegans. The concept of phenoptosis is only tenable if consistent with the evolutionary theory; this accepted, phenoptosis may only occur under special conditions that do not apply to most animal groups (including mammals). DOI: 10.1134/S000629791912001? Keywords: adaptive death, aging, altruism, C. elegans, evolution, inclusive fitness PROGRAMMED AGING AND PHENOPTOSIS Is aging programmed? Asking this question risks falling afoul of the old warning: ask a stupid question and you’ll get a stupid answer [1, 2]. This is because the term programmed aging has multiple meanings, which can lead the questioner into logical confusion [3]. But it is possible to disambiguate this term and to avoid conceptual pratfalls, as follows. -
Coefficient of Variation of Lifespan Across the Tree of Life: Is It a Signature of Programmed Aging?
ISSN 0006-2979, Biochemistry (Moscow), 2017, Vol. 82, No. 12, pp. 1480-1492. © Pleiades Publishing, Ltd., 2017. Original Russian Text © G. A. Shilovsky, T. S. Putyatina, V. V. Ashapkin, O. S. Luchkina, A. V. Markov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 12, pp. 1842-1857. Coefficient of Variation of Lifespan Across the Tree of Life: Is It a Signature of Programmed Aging? G. A. Shilovsky1,2*, T. S. Putyatina2, V. V. Ashapkin1, O. S. Luchkina3, and A. V. Markov2 1Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; E-mail: [email protected], [email protected] 2Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russia 3Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia Received August 9, 2017 Revision received September 15, 2017 Abstract—Measurements of variation are of great importance for studying the stability of pathological phenomena and processes. For the biology of aging, it is very important not only to determine average mortality, but also to study its stabil- ity in time and the size of fluctuations that are indicated by the variation coefficient of lifespan (CVLS). It is believed that a ∼ relatively small ( 20%) value of CVLS in humans, comparable to the coefficients of variation of other events programmed in ontogenesis (for example, menarche and menopause), indicates a relatively rigid determinism (N. S. Gavrilova et al. (2012) Biochemistry (Moscow), 77, 754-760). To assess the prevalence of this phenomenon, we studied the magnitude of CVLS, as well as the coefficients of skewness and kurtosis in diverse representatives of the animal kingdom using data provided by the Institute for Demographic Research (O. -
Insights from Conventional and Unconventional Myosins A
Structure-Function Analysis of Motor Proteins: Insights from Conventional and Unconventional Myosins A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Karl J. Petersen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Margaret A. Titus, Advisor David D. Thomas, Co-Advisor December 2016 © Karl J. Petersen 2016 Acknowledgements This thesis would not exist without the patient support of my advisors, Meg Titus and Dave Thomas. Any shortcomings are my own. Collaborators Holly Goodson, Anne Houdusse, and Gant Luxton also provided invaluable training and support. I am also grateful for essential services provided by departmental staff: Sarah Blakely Anderson, Octavian Cornea, Sarah Dittrich, Karen Hawkinson, Michelle Lewis, Mary Muwahid, Laurie O’Neill, Darlene Toedter, with apologies to others not listed. Thanks to friends and colleagues at the University of Minnesota: Ashley Arthur, Kelly Bower, Brett Colson, Sinziana Cornea, Chi Meng Fong, Greg Gillispie, Piyali Guhathakurta, Tejas Gupte, Tom Hays, Norma Jiménez Ramírez, Dawn Lowe, Allison MacLean, Santiago Martínez Cifuentes, Jared Matzke, Megan McCarthy, Joachim Mueller, Joe Muretta, Kurt Peterson, Mary Porter, Ewa Prochniewicz, Mike Ritt, Cosmo Saunders, Shiv Sivaramakrishnan, Ruth Sommese, Doug Tritschler, Brian Woolums. i Abstract Myosin motor proteins play fundamental roles in a multitude of cellular processes. Myosin generates force on cytoskeletal actin filaments to control cell shape, most dramatically during cytokinesis, and has a conserved role in defining cell polarity. Myosin contracts the actin cytoskeleton, ensuring prompt turnover of cellular adhesion sites, retracting the cell body during migration and development, and contracting muscle among diverse other functions. How myosins work, and why force generation is essential for their function, is in many cases an open question. -
On the Socio-Sexual Behaviour of the Extinct Ursid Indarctos Arctoides: an Approach Based on Its Baculum Size and Morphology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC On the Socio-Sexual Behaviour of the Extinct Ursid Indarctos arctoides: An Approach Based on Its Baculum Size and Morphology Juan Abella1,2*, Alberto Valenciano3,4, Alejandro Pe´rez-Ramos5, Plinio Montoya6, Jorge Morales2 1 Institut Catala` de Paleontologia Miquel Crusafont, Universitat Auto`noma de Barcelona. Edifici ICP, Campus de la UAB s/n, Barcelona, Spain, 2 Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain, 3 Departamento de Geologı´a Sedimentaria y Cambio Medioambiental. Instituto de Geociencias (CSIC, UCM), Madrid, Spain, 4 Departamento de Paleontologı´a, Facultad de Ciencias Geolo´gicas UCM, Madrid, Spain, 5 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Vale`ncia, Paterna, Spain, 6 Departament de Geologia, A` rea de Paleontologia, Universitat de Vale`ncia, Burjassot, Spain Abstract The fossil bacula, or os penis, constitutes a rare subject of study due to its scarcity in the fossil record. In the present paper we describe five bacula attributed to the bear Indarctos arctoides Depe´ret, 1895 from the Batallones-3 site (Madrid Basin, Spain). Both the length and morphology of this fossil bacula enabled us to make interpretative approaches to a series of ecological and ethological characters of this bear. Thus, we suggest that I. arctoides could have had prolonged periods of intromission and/or maintenance of intromission during the post-ejaculatory intervals, a multi-male mating system and large home range sizes and/or lower population density. Its size might also have helped females to choose from among the available males. -
Molecular Evolutionary Analysis of Plastid Genomes in Nonphotosynthetic Angiosperms and Cancer Cell Lines
The Pennsylvania State University The Graduate School Department or Biology MOLECULAR EVOLUTIONARY ANALYSIS OF PLASTID GENOMES IN NONPHOTOSYNTHETIC ANGIOSPERMS AND CANCER CELL LINES A Dissertation in Biology by Yan Zhang 2012 Yan Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Dec 2012 The Dissertation of Yan Zhang was reviewed and approved* by the following: Schaeffer, Stephen W. Professor of Biology Chair of Committee Ma, Hong Professor of Biology Altman, Naomi Professor of Statistics dePamphilis, Claude W Professor of Biology Dissertation Adviser Douglas Cavener Professor of Biology Head of Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT This thesis explores the application of evolutionary theory and methods in understanding the plastid genome of nonphotosynthetic parasitic plants and role of mutations in tumor proliferations. We explore plastid genome evolution in parasitic angiosperms lineages that have given up the primary function of plastid genome – photosynthesis. Genome structure, gene contents, and evolutionary dynamics were analyzed and compared in both independent and related parasitic plant lineages. Our studies revealed striking similarities in changes of gene content and evolutionary dynamics with the loss of photosynthetic ability in independent nonphotosynthetic plant lineages. Evolutionary analysis suggests accelerated evolution in the plastid genome of the nonphotosynthetic plants. This thesis also explores the application of phylogenetic and evolutionary analysis in cancer biology. Although cancer has often been likened to Darwinian process, very little application of molecular evolutionary analysis has been seen in cancer biology research. In our study, phylogenetic approaches were used to explore the relationship of several hundred established cancer cell lines based on multiple sequence alignments constructed with variant codons and residues across 494 and 523 genes. -
Appendices Appendix 1 Energy, Work, and Laws Of
Appendices Appendix 1 Energy, Work, and Laws of Thermodynamics A.1 Introduction Energy (from Greek eme9qceia1—action, activity) can be generally defined as the property of a material system that characterizes the ability of this system to produce some changes in the environment (work, W). Such a work can consist of growth of the total amount of matter in a system, the uneven distribution of matter particles in space, and/or movement of these particles. Physical interactions between matter particles in a system are accompanied by the mutual transformation of different types of energy (mechanical, thermal, electromagnetic, gravitational, nuclear, and chemical). How is life ensured by energy? The laws of thermodynamics provide us with a quantitative answer to this question. Energy transductions in living self-replicating material systems (organisms) follow the laws of thermodynamics. It seems quite remarkable that the first law of thermodynamics (the law of conservation and transformation of energy) was first formulated in 1841 by the German physicist and physician Julius Robert von Mayer as the result of his studies of the energy processes in the human organism; it was only some time later that this law was applied to the systems of technical energetics. Thermodynamics deals with three types of systems: isolated, closed, and open. Hypothetical isolated (adiabatic) systems are completely self-contained, i.e., there is no exchange of matter, energy, and information with the environment. Closed systems are materially self-sufficient, but they are open energetically and informationally. In other words, there is exchange of energy and information, but not matter through the borders of closed systems. -
Studying the Effects of Predatory Presence and Enrichment on Cryptoprocta Ferox Behavior
The Pegasus Review: UCF Undergraduate Research Journal (URJ) Volume 11 Issue 2 Article 1 2020 Studying the Effects of Predatory Presence and Enrichment on Cryptoprocta ferox Behavior Julie Sharpe University of Central Florida Part of the Zoology Commons Find similar works at: https://stars.library.ucf.edu/urj University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Office of Undergraduate Research at STARS. It has been accepted for inclusion in The Pegasus Review: UCF Undergraduate Research Journal (URJ) by an authorized editor of STARS. For more information, please contact [email protected]. Recommended Citation Sharpe, Julie (2020) "Studying the Effects of Predatory Presence and Enrichment on Cryptoprocta ferox Behavior," The Pegasus Review: UCF Undergraduate Research Journal (URJ): Vol. 11 : Iss. 2 , Article 1. Available at: https://stars.library.ucf.edu/urj/vol11/iss2/1 Sharpe: Studying the Effects of Predatory Presence & Enrichment on Cryptoprocta ferox Behavior Published Vol. 11.2: 1-6 September 23, THE PEGASUS REVIEW: 2019 UNIVERSITY OF CENTRAL FLORIDA UNDERGRADUATE RESEARCH JOURNAL Studying the Effects of Predatory Presence and Enrichment on Cryptoprocta ferox Behavior By: Julie Sharpe Faculty Mentor: Frank Logiudice UCF Department of Biology ABSTRACT: The Central Florida Zoo and Botanical Gardens houses two fossa (Cryptoprocta ferox), a male and a female. C. ferox is an endangered species of Malagasy mongoose from the island of Madagascar. In October of 2018, an amur leopard (Panthera pardus orientalis) was moved across from the male and female C. ferox. This study was used to identify if the presence of P. -
Proteomic Expression Profile in Human Temporomandibular Joint
diagnostics Article Proteomic Expression Profile in Human Temporomandibular Joint Dysfunction Andrea Duarte Doetzer 1,*, Roberto Hirochi Herai 1 , Marília Afonso Rabelo Buzalaf 2 and Paula Cristina Trevilatto 1 1 Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; [email protected] (R.H.H.); [email protected] (P.C.T.) 2 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-991-864-747 Abstract: Temporomandibular joint dysfunction (TMD) is a multifactorial condition that impairs human’s health and quality of life. Its etiology is still a challenge due to its complex development and the great number of different conditions it comprises. One of the most common forms of TMD is anterior disc displacement without reduction (DDWoR) and other TMDs with distinct origins are condylar hyperplasia (CH) and mandibular dislocation (MD). Thus, the aim of this study is to identify the protein expression profile of synovial fluid and the temporomandibular joint disc of patients diagnosed with DDWoR, CH and MD. Synovial fluid and a fraction of the temporomandibular joint disc were collected from nine patients diagnosed with DDWoR (n = 3), CH (n = 4) and MD (n = 2). Samples were subjected to label-free nLC-MS/MS for proteomic data extraction, and then bioinformatics analysis were conducted for protein identification and functional annotation. The three Citation: Doetzer, A.D.; Herai, R.H.; TMD conditions showed different protein expression profiles, and novel proteins were identified Buzalaf, M.A.R.; Trevilatto, P.C.