Preparation of Polymer/Clay Hybrid Encapsulation for Barrier Applications Controlled by Hansen Solubility Parameters

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of Polymer/Clay Hybrid Encapsulation for Barrier Applications Controlled by Hansen Solubility Parameters Preparation of polymer/clay hybrid encapsulation for barrier applications controlled by Hansen Solubility Parameters by Michael Huth A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Approved Dissertation Committee Prof. Dr. Veit Wagner Jacobs University Bremen Prof. Dr. J¨urgenFritz Jacobs University Bremen Dr. Odo Wunnicke Evonik Industrie AG Date of Defense: 12.07.2018 Physics & Earth Sciences ii Statutory Declaration Family Name, Given/First Name Huth, Michael Matriculation number 20331540 What kind of thesis are you submitting: Bachelor-, Master- or PhD-Thesis PhD-Thesis English: Declaration of Authorship I hereby declare that the thesis submitted was created and written solely by myself without any external support. Any sources, direct or indirect, are marked as such. I am aware of the fact that the contents of the thesis in digital form may be revised with regard to usage of unauthorized aid as well as whether the whole or parts of it may be identified as plagiarism. I do agree my work to be entered into a database for it to be compared with existing sources, where it will remain in order to enable further comparisons with future theses. This does not grant any rights of reproduction and usage, however. The Thesis has been written independently and has not been submitted at any other university for the conferral of a PhD degree; neither has the thesis been previously published in full. German: Erkl¨arungder Autorenschaft (Urheberschaft) Ich erkl¨arehiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von mir erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder indirekter Art, sind als solche kenntlich gemacht worden. Mir ist die Tatsache bewusst, dass der Inhalt der Thesis in digitaler Form gepr¨uftwerden kann im Hinblick darauf, ob es sich ganz oder in Teilen um ein Plagiat handelt. Ich bin damit einverstanden, dass meine Arbeit in einer Datenbank eingegeben werden kann, um mit bereits bestehenden Quellen verglichen zu werden und dort auch verbleibt, um mit zuk¨unftigenArbeiten verglichen werden zu k¨onnen.Dies berechtigt jedoch nicht zur Verwendung oder Vervielf¨altigung. Diese Arbeit wurde in der vorliegenden Form weder einer anderen Pr¨ufungsbeh¨ordevorgelegt noch wurde das Gesamtdokument bisher ver¨offentlicht. Date, Signature iii F¨urmeinen Großvater, Adolf Erich Albert Moll “It is a myth that the success of science in our time is mainly due to the huge amounts of money that have been spent on big machines. What really makes science grow is new ideas, including false ideas.” -Karl Raimund Popper, ’The Porcupine: A Pilgrimage to Popper’, The New Yorker (1 Apr 2002) iv Acknowledgment This thesis is part of a cooperated research project between Evonik Industries AG and Jacobs University, Bremen. I am grateful to Evonik Industries AG for funding this research project. This project has given me the opportunity to work multiple working groups and locations in Germany and Taiwan, as well as help me grow with and grow on it. I would like to express my sincere gratitude to Prof. Veit Wagner for constructive discussions, his valuable guidance, and advice. I am grateful for this opportunity to work on this very interesting, multi-continental and multidisciplinary topic. I would like to thank for the huge amount of freedom and trust which you have granted me during my work in Bremen and Taiwan. Firstly, I am sincerely grateful for Prof. J¨urgenFritz and Dr. Odo Wunnicke for kindly agreeing to be members of my dissertation committee. I also would like to thank you, Odo, for your guidance and commitment during my time in your working group in Creavis. Secondly, I would like to extend my gratitude towards Dr. J¨urgen Steiger who initiated this whole opportunity for me in the Evonik CLE in Hsinchu. I would like to express my appreciation to Dr. Jackie Chen for his outstanding work as my supervisor in Evonik CLE. Furthermore, I would like to thank all of my colleagues at Jacobs University and Evonik CLE for their kind support, discussions, and encouragement. As such colleagues, I thank Dr. Vladislav Jovanov, Arne M¨uller,Jonas K¨ohling,Talha Nisar, Xiaoling Zeng, Maike Wirtz, Simon Riechmann, Bj¨orn Gensicke and Xavier Bergamini. Particularly Dr. Torsten Balster for his maintenance of the lab and his job as safety advisor in Prof. Wagner’s workgroup, Bremen. I would like to thank Dr. Tom Wu, for his lab management in Evonik CLE and connections to the laboratories in Industrial Technology Research Institute of Taiwan (ITRI), Hsinchu. Last but not least, I would like to thank Ute Helmboldt-Caesar at the University of Bremen for the unconditional assistance during important sample preparations. I am sincerely grateful for all the support, encouragement and time during these three years of work with friends in both Germany and Taiwan: Isabel Fr¨uhauf,Kay Petzold, Janna Mattern, Danny Humburg, Markus Voight, Anne Wollenberg, Anton Hoffmann, Brian Stamper and Dmitry v Sherstoboev. To Arne Reinsdorf, Laura Donath, Arne and Nina M¨uller,and the whole Hsinchu climbing community, thanks for the climbing trips around the world. Finally, I would like to express my deep gratitude for the support from my dear family and the love and help from my girlfriend, Annie Yujung Li. vi Abstract Barrier materials play important roles in modern food packaging or as a protection of electronics/ metals against water permeation. There are often a combination of permeable and impermeable materials and can be divided into inorganic coatings, multilayer structures or nanocomposites. Impermeable layered materials can play an important role in such composites. Studies have shown that layer materials can have a high impact on nanocomposite-based barrier applications, described by the tortuous path model. This model describes the enhancement of a barrier by increasing the diffusion path of permeant molecules. In nanocomposites, such an increase in the diffusion path is due to the introduced impermeable particles. The increase in diffusion path is influenced by the volume fraction and the geometry of the particles. For such an approach, layer materials have a very advantageous geometry. Belonging to this group of materials, graphene, layered silica, and molybdenum disulfide (MoS2) can be used to reduces water permeation. Layer silicates, such as organophilic fluoromica, are of particular interest due to their optical transparency. But also candidates which absorb light, such as graphene or MoS2, can be of benefit for barrier applications and can in addition change optical performance into the desired direction. Nevertheless, for a high impact, complete delamination (exfoliation) is needed for each particle into separate layers. Furthermore, the particle distribution should be uniformly distributed in the matrix. Exfoliation needs to be energetically favorable, which means that interface interactions must be precisely adjusted between filler and matrix. An energetically favorable system offers high processability, reproducibility and a wide process window for the preparation of such composites. Surface energies evaluation offers a way to identify such favorable systems. Unfortunately, those components are known for just a small number of materials. This lack of information can be avoided by describing surface energies via Hansen solubility parameters (HSP). Those parameters are known for more than 1200 materials like solvents, polymers, and optical absorbing materials, such as graphene or MoS2. I, therefore, have investigated whether it is possible to determine HSP of organophilic fluoromica. For that, I have centrifugated dispersions of fluoromicas and afterward estimate the concentration of filler in solvents by gravimetric analysis. The preparation method, results, and conclusion have shown that experimental determinate HSP are more accurate than those calculated theoretically, using group-contribution approach. Such precise HSP values are important for the prediction of dispersion interactions of those fluoromicas with dispersants and polymers. With the help of Flory-Huggins vii theory, I have shown that HSP are related to the energy costs of exfoliation and are controlling the dispersion quality of fluoromicas. I have shown that experimentally determined HSP can help by the exfoliation of organophilic fluoromica (Somasif mica). Furthermore, I have observed that different modifications of fluoromica, associated with HSP changes and Flory-Huggins (F-H) parameter q have a clear influence on the morphology and delamination of the Somasif mica in chloroform. With reducing q the delamination state improves noticeably. The methods, results, and conclusion have shown that in the case of a high F-H parameter (q > 0.15), aggregated and unstable fluoromica dispersions are obtained. Whereas in the case of F-H parameters near zero, exfoliated and stable fluoromica dispersions are achieved. After evaluating the HSP of organophilic fluoromicas, I have investigated whether such values have an impact on the performance of barrier applications. First, an inorganic coatings/ multilayer structures are prepared from solution processing. The prediction is that dispersants with different HSP values influence the coating quality of an organophilic fluoromica (Somasif MAE). For that MAE samples are dispersed in two different dispersants and cast on a polyurethane acylate to form inorganic coatings and multilayer stacks. The methods, results, and conclusion have shown that in the case of a dispersant with similar
Recommended publications
  • Packaging with Topas® Coc Packaging with Topas® Coc
    PACKAGING WITH TOPAS® COC PACKAGING WITH TOPAS® COC TOPAS Advanced Polymers TOPAS Advanced Polymers is the world’s leading maker of COC (cyclic TOPAS Advanced Polymers also supplies the chemical raw material nor- olefin copolymer), a glass-clear plastic for healthcare, optics, packag- bornene. A joint venture of Polyplastics Co., Ltd. and Daicel Corporation, ing, and electronics applications. From insulin delivery, to food contact the company is headquartered in Frankfurt, Germany. It operates the films, to tablet and smartphone displays, TOPAS is the high performance world's largest COC plant in Oberhausen, Germany. TOPAS® is a regis- material of choice. The broad global regulatory compliance of TOPAS tered trademark of TOPAS Advanced Polymers for its family of cyclic can make your next development a simpler task. olefin copolymer resins. Important The properties of articles can be affected by a variety of factors, includ- specified, the numerical values given in this literature are for reference ing choice of material, additives, part design, processing conditions, purposes only and not for use in product design. Without exception, and exposure to the environment. Customers should take responsibility please follow the information and other procedures explained in this as to the suitability of a particular material or part design for a spe- literature. This literature does not guarantee specific properties for our cific application. In addition, before commercializing a product that company’s products. Please take the responsibility to verify intellectual incorporates TOPAS, customers should take the responsibility of car- property rights of third parties. rying out performance evaluations. The products mentioned herein are not designed or promoted for use in medical or dental implants.
    [Show full text]
  • Medical Plastics Are Facilitating a New Frontier of More Types of Outpatient Treatments, Less Invasive Procedures and Longer Lasting Materials
    Medical Plastics are facilitating a new frontier of more types of outpatient treatments, less invasive procedures and longer lasting materials. Plus, antimicrobial plastics cut down on infections. If you’re looking for a healthier cost-effective alternative for medical materials, check out plastics! Applications • Surgical instrument handles/grips • Dental instrument handles/grips • Orthopedic implants • Pacemaker leads • Endoscopic housing/eyepieces • Sterilization trays/caddies • X-ray and MRI parts • Dialysis machines housings • Respiratory units • Pharmaceutical production/packaging • Fluid distribution-valve housings/ nozzles • IV and infusion devices Materials Did you know? • Diagnostic systems • Feeding tubes • Acetal Copolymer (POM) In the high performance medical device market, • Catheters • Cyclic Olefin Copolymer (COC) the goal is to save thousands or tens of thousands • Ethylene-Vinyl Acetate (EVA) of dollars per patient treated, not a few cents per • Liquid Crystal Polymer (LCP) device manufactured. Advantages May Include • Polycarbonate (PC) • Polyetheretherketone (PEEK) • Low manufacturing costs • Polyethylene (PE) • Low friction and wear • Polyetherimide (PEI) • Lightweight • Polymethyl Pentene (PMP) • Resistant to high temperature, impact, • Polyphenylene Oxide (PPO) chemicals • Polyphenylene Sulfide (PPS) • Color coding options • Polyphenylsulfone (PPSU) • Easy to create ergonomic designs • Polypropylene (PP) • Maintains physical properties under • Polysulfone (PSU) thermal, chemical or electrical stress • Polyvinyl
    [Show full text]
  • 3D Cyclic Olefin Copolymer (COC)
    3D Cyclic Olefin Copolymer (COC) Microfluidic Chip Fabrication Using Hot Embossing Method for Cell Culture Platform M ASSACHUSETTS INSTITUTE by OF TECHNOLOGY SEP 0 1 2010 Jessie Sungyun Jeon Bachelor of Science in Mechanical Engineering LIBRARIES Massachusetts Institute of Technology, 2008 ARCHIVES Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2010 © Massachusetts Institute of Technology 2010. All rights reserved. Author .... ...... .. .. .. ...V ......... ..... .. ... ... .. .. Department of Mechanical Engineering f/ May 7, 2010 Certified b' .1 Joseph Charest Senior Member Technical Staff, Draper Laboratory Thesis Supervisor Certified by...... Roger Kamm 7 Pofessor of Mechanical Engineering I Thesis Supervisor Accepted by ........................... ............ David Hardt Chair, Department Committee on Graduate Studies Department of Mechanical Engineering 3D Cyclic Olefin Copolymer (COC) Microfluidic Chip Fabrication Using Hot Embossing Method for Cell Culture Platform by Jessie Sungyun Jeon Submitted to the Department of Mechanical Engineering on May 7, 2010, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract A microfluidic system has been developed for studying the factors inducing different responses of cells in vascular system using a three-dimensional microenvironment. The devices have been transferred from PDMS to a platform in cyclic olefin copolymer (COC) which has advantages in terms of hydrophobicity, production by the more commercially-viable hot embossing technique, and amenability to surface treatments. Here the fabrication process is described and the new systems are characterized. Surface wettability, bond strength between the system body and a covering plastic film, and cell viability data are presented and compared to systems fabricated in PDMS.
    [Show full text]
  • IJREAM-Approved By
    International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-04, Issue-11, Feb 2019 Investigation of Thermal and Melt rheological properties of Linear Low Density Polyethylene/Cyclic olefin copolymer blends 1H. C. Shah, 2S. K. Nema 1PhD Scholar, 2Ph. D. Supervisor, Gujarat Technological University, Gujarat, India. 2HBNI Faculty, Institute for Plasma Research, Bhat Gandhinagar, India. Corresponding author: [email protected] Abstract In this paper, Cyclic Olefin Copolymer (COC) was melt blended in various weight fractions (5%, 10%, 15%, and 20%) with Linear Low Density Polyethylene (LLDPE) using Haake extruder followed by preparation of samples in the form of sheets using compression molding press. Differential scanning calorimetery (DSC) was carried out on polymers and its blends to investigate effect of Cyclic Olefin Copolymer (COC) on melt temperature and percent crystallinity. It was investigated that melting (Tm) and crystalline temperature (Tc) of LLDPE was not affected by the presence of COC. Melt flow index was carried out to measure of the ease of flow of the melt blend. It was observed that there was an increase in MFI values of the LLDPE/COC blend with the rise of temperature which results in the decrease of viscosity at high temperature. Keywords — Polymer blends, Differential Scanning Calorimeter, Melt Flow Index, Polyethylene. I. INTRODUCTION and processabilities, and therefore, they are widely used in The commercial growth of new polymers appears to be industrial film applications. It has been accepted that everlasting. However, preparation of polymer blends from morphology of polymer blends plays a significant role in the already existing polymers would be economically deciding their physical and mechanical properties.
    [Show full text]
  • PACKAGING Packaging
    Cyclic Olefin Copolymer (COC) PACKAGING Packaging www.topas.com TOPAS Advanced Polymers TOPAS Advanced Polymers manufactures and Germany, it operates a U.S. subsidiary in Florence, markets TOPAS® COC (cyclic olefin copolymer) Kentucky, USA, and a 30,000 metric ton per year for advanced packaging, medical, optical and other plant, the world’s largest, in Oberhausen, Germany. applications worldwide. The company is a joint TOPAS Advanced Polymers was launched January 1, venture of Daicel Chemical Industries Ltd., and 2006 following the purchase of the TOPAS business Polyplastics Co., Ltd. Headquartered in Frankfurt, from Ticona, a subsidiary of Celanese Corporation. Important The properties of articles can be affected by a variety of factors, values given in this literature are for reference purposes only including choice of material, additives, part design, processing and not for use in product design. Without exception, please conditions, and exposure to the environment. Customers should follow the information and other procedures explained in this take responsibility as to the suitability of a particular material literature. This literature does not guarantee specific properties for or part design for a specific application. In addition, before our company’s products. Please take the responsibility to verify commercializing a product that incorporates TOPAS, customers intellectual property rights of third parties. should take the responsibility of carrying out performance evaluations. Our company’s products are not intended for use in medical and dental implants. Unless specified, the numerical Published in April 2011 2 Cyclic Olefin Copolymer (COC) Contents 1. Introduction 4 2. Product portfolio 6 Introduction 1 3. Product performance 6 3.1 Physical properties 6 3.1.1 Mechanical properties of blends 8 3.1.2 Thermal properties 8 Product portfolio 2 3.1.3 Rheology 9 3.1.4 Optical properties 10 3.1.5 Barrier properties 10 3.1.6 Deadfold 11 3.1.7 Coefficient of friction 11 Product performance 3 3.2 Chemical resistance 12 3.3 Regulatory 13 3.4 Recycling 13 4.
    [Show full text]
  • Synthesis of High Performance Cyclic Olefin Polymers (Cops) with Ester Group Via Ring-Opening Metathesis Polymerization
    Polymers 2015, 7, 1389-1409; doi:10.3390/polym7081389 OPEN ACCESS polymers ISSN 2073-4360 www.mdpi.com/journal/polymers Article Synthesis of High Performance Cyclic Olefin Polymers (COPs) with Ester Group via Ring-Opening Metathesis Polymerization Jing Cui 1, Ji-Xing Yang 1, Yan-Guo Li 2,* and Yue-Sheng Li 1,* 1 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; E-Mails: [email protected] (J.C.); [email protected] (J.-X.Y.) 2 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.-G.L.); [email protected] (Y.-S.L.); Tel./Fax: +86-22-2740-4377 (Y.-S.L.) Academic Editor: Changle Chen Received: 7 June 2015 / Accepted: 8 July 2015 / Published: 4 August 2015 Abstract: Novel ester group functionalized cyclic olefin polymers (COPs) with high glass transition temperature, high transparency, good mechanical performance and excellent film forming ability have been achieved in this work via efficient ring-opening metathesis copolymerization of exo-1,4,4a,9,9a,10-hexahydro-9,10(1′,2′)-benzeno-l,4-methanoanthracene (HBM) and comonomers (5-norbornene-2-yl methylacetate (NMA), 5-norbornene-2-yl methyl 2-ethylhexanoate (NME) or 5-norbornene-2-yl methyldodecanoate (NMD)) utilizing the Grubbs first generation catalyst, Ru(CHPh)(Cl)2(PCy3)2 (Cy = cyclohexyl, G1), followed by hydrogenation of double bonds in the main chain. The fully hydrogenated copolymers were characterized by nuclear magnetic resonance, FT-IR spectroscopy analysis, gel permeation chromatography, and thermo gravimetric analysis.
    [Show full text]
  • Ronald R. Lamonte and Donal Mcnally Vcyclic Olefin Copolymers
    ▲ CYCLIC Cyclic olefin copolymers are a new family of materials suitable for high-performance optical, medical, electrical, packaging, OLEFIN and other applications. COPOLYMERS Ronald R. Lamonte and Donal McNally Ticona, A business of Celanese AG Summit, New Jersey yclic olefin copolymers (COCs) are engi- neering thermoplastics with a unique combination of properties. They are proving valuable in fields as diverse as CCD-ROM, packaging, medical equipment, optics, capacitors, and toner binders for printers (Fig. 1). COCs have glass-like transparency, low density, high heat-deflection temperature, and excellent electrical properties (Table 1). They also have high tensile modulus, low elongation at break, high rigidity, and good surface hardness. Beyond this, they are highly pure and have excellent water- vapor barrier properties and low moisture absorp- Fig. 1 — Ticona’s Topas cyclic olefin copolymer is being considered for high- tion. These materials flow well, and shrink and resolution CD-ROMs. warp little during injection molding, blow molding, or extrusion. In terms of chemical properties, they resist aqueous acids and bases, as well as polar organic chemicals. However, they are attacked by aliphatic CH2 CH2 CH CH and aromatic hydrocarbons, and should not be ex- posed to solvents such as hexane and toluene. Ex- posure to certain oils and fats should also be avoided. Literature references to COCs first appeared in the 1950s, and the first commercial COCs, made via Ziegler-Natta catalysis, became available in the late 1980s. Metallocene-based COCs became pos- H H Y sible when appropriate metallocene catalysts emerged in the mid-1980s. These catalysts, which foster the linkage of cyclic and linear olefins, en- Fig.
    [Show full text]
  • Functionalization of Cyclic Olefin Copolymer Substrates With
    Functionalization of cyclic olefin copolymer substrates with polyethylene glycol diacrylate for the in situ synthesis of immobilized nanoparticles Josiane Saade, Nina Declas, Pedro Marote, Claire Bordes, Karine Faure To cite this version: Josiane Saade, Nina Declas, Pedro Marote, Claire Bordes, Karine Faure. Functionalization of cyclic olefin copolymer substrates with polyethylene glycol diacrylate for the in situ synthesis ofimmo- bilized nanoparticles. Journal of Materials Science, Springer Verlag, 2017, 52 (8), pp.4509-4520. 10.1007/s10853-016-0696-8. hal-01515322 HAL Id: hal-01515322 https://hal.archives-ouvertes.fr/hal-01515322 Submitted on 23 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Functionalization of cyclic olefin copolymer substrates with polyethylene glycol diacrylate for the in situ synthesis of immobilized nanoparticles Josiane Saadé, Nina Declas, Pedro Marote, Claire Bordes, and Karine Faure Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France [email protected] 1 1 Introduction 2 Microfluidic systems are actually in development owing to their significant advantages: the 3 reduction of solvent consumption and the faster analysis.
    [Show full text]
  • Cyclic Olefin Polymer As a Novel Membrane Material for Membrane Distillation Applications
    Cyclic olefin polymer as a novel membrane material for membrane distillation applications M. Sabzekara,b, M. Pourafshari Chenara,*, Z. Maghsouda, O. Mostaghisic, M.C. García-Payob, M. Khayetb,d,* a Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran b Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain c Sarkhoon Gas Refinery Company, Bandar abbas, Iran d Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com no. 2, Alcalá de Henares, 28805 Madrid, Spain * Corresponding authors: [email protected] (M. Khayet) [email protected] (M. Pourafshari Chenar) 1 Abstract A first attempt was made to prepare cyclic olefin polymer/copolymer (COP/COC) flat-sheet porous membranes by the well-known non-solvent induced phase separation method. In this study, two solvents (chloroform and 1,2,4-trichlorobenzene), different additives (polyvinylpyrrolidone, PVP, polyethylene glycol, PEG400, polyethylene oxide, PEO, and Sorbitan monooleate, Span 80) and coagulants (acetone and 70/30 wt% acetone/water mixture) were employed. The prepared membranes were characterized in terms of the thickness (70 - 85 µm), porosity (~50 - 80%), liquid entry pressure (1.16 - 4.55 bar), water contact angle (~86º - 111º), mean pore size (158 – 265 nm), mechanical properties (tensile strength: 0.74 -5.51 MPa, elongation at break: 3.34% -7.94% and Young´s modulus: 29 – 237 MPa), morphological and topographical characteristics. Short-term direct contact membrane distillation (DCMD) tests showed maximum permeate fluxes of 20 kg.m- 2h-1 and 15 kg.m-2h-1 when using as feed distilled water and 30 g/L sodium chloride aqueous solution, respectively, with a high salt separation factor (99.99%).
    [Show full text]
  • WO 2017/033208 A2 2 March 2017 (02.03.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/033208 A2 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/485 (2006.01) A61K 9/28 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/IN20 16/050280 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 23 August 2016 (23.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 3223/MUM/2015 24 August 2015 (24.08.2015) IN TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: RUSAN PHARMA LIMITED [IN/IN]; 58-D, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Government Industrial Estate, Charkop, Kandivali (West), SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Mumbai 400067 (IN).
    [Show full text]
  • TOPAS® COC Cyclic Olefin Copolymer Cyclic Olefin Copolymer
    TOPAS® COC Cyclic Olefin Copolymer Cyclic Olefin Copolymer Important: Properties of molded parts, sheets and films can be influenced by a provided otherwise, values shown merely serve as an orientation; wide variety of factors involving material selection, further additives, such values alone do not represent a sufficient basis for any part part design, processing conditions and environmental exposure. It design. – Our processing and other instructions must be followed. is the obligation of the customer to determinewhether a particular We do not hereby promise or guarantee specific properties of our material and part design is suit-able for a particular application. The products. Any existing industrial property rights must be observed. customer is responsible for evaluating the performance of all parts containing plastics prior to their commercialization.Our products are not intended for use in medical ordental implants. – Unless Published in June 2019 2 TOPAS® COC Contents 1. Introduction 4 2. Grades, supply form, colors 5 3. Physical properties 6 3.1 Mechanical properties 7 3.1.1 Behaviour under short-term stress 7 3.1.2 Behaviour under long-term stress 8 3.2 Thermal properties 8 3.3 Electrical properties 9 3.4 Optical properties 10 4. Effect of service environment 11 on properties of TOPAS® COC 4.1 Behaviour in air and water 11 4.2 Chemical resistance 11 4.3 Stress cracking resistance 12 4.4 Light and weathering resistance 12 5. Food packaging, medical and diagnostic 13 5.1 Sterilizability 13 5.2 Biocompatibility 13 5.3 Regulatory 13 6. Processing 14 6.1 Safety and health information 14 6.2 Injection molding 14 6.2.1 Machine requirements 14 6.2.2 Flow behaviour 14 6.2.3 Gate and mold design 15 6.2.4 Range of processing conditions 15 6.2.5 Shrinkage 16 6.2.6 Demolding 16 6.2.7 Compatibility with thermoplastics 16 6.3 Extrusion/injection blow molding/ 16 extrusion blowing 6.3.1 Film extrusion 16 6.3.2 Injection blow molding/extrusion blowing 16 6.4 Secondary operations 17 6.4.1 Welding 17 6.4.2 Adhesive bonding 17 6.4.3 Metallization 17 7.
    [Show full text]
  • Material Composition Having Reduced Friction
    (19) TZZ ¥ _T (11) EP 2 863 962 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61L 29/04 (2006.01) A61L 29/08 (2006.01) 31.08.2016 Bulletin 2016/35 A61L 29/14 (2006.01) (21) Application number: 13725597.2 (86) International application number: PCT/EP2013/060183 (22) Date of filing: 16.05.2013 (87) International publication number: WO 2013/189672 (27.12.2013 Gazette 2013/52) (54) MATERIAL COMPOSITION HAVING REDUCED FRICTION COEFFICIENT USED FOR MEDICAL TUBES MATERIALZUSAMMENSETZUNG ZUR VERRINGERUNG DES REIBUNGSKOEFFIZIENTEN FÜR MEDIZINISCHE SCHLÄUCHE COMPOSITION DE MATIÈRE AYANT UN COEFFICIENT DE FROTTEMENT RÉDUIT UTILISÉE POUR DES TUBES MÉDICAUX (84) Designated Contracting States: • J.KOLARIK ET AL.: "High-density AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Polyethylene/cycloolefin copolymer blends. GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Part.1: Phase structure, dynamic mechanical, PL PT RO RS SE SI SK SM TR tensile, and impact properties", POLYMERIC ENGINEERING AND SCIENCE, 2005, pages (30) Priority: 20.06.2012 US 201261661812 P 817-826, XP002712371, • JAN KOLARIK ET AL.: "High-density (43) Date of publication of application: polyethylene/cycloolefin copolymer blends, 29.04.2015 Bulletin 2015/18 Part.2: non linear tensile creep", POLYMER ENGINEERING AND SCIENCE, 2006, pages (73) Proprietor: Biotronik AG 1363-1373, XP002712372, 8180 Bülach (CH) • DATABASECA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; CONSTANT, (72) Inventor: SCHWITZER, Alwin DAVID R.: "Cyclic-olefinic copolymers as 8180 Buelach (CH) non-migrating, polymeric slip additives in", XP002712375, retrieved from STN Database (74) Representative: Randoll, Sören et al accession no.
    [Show full text]