Suitability and Profitability of a Cereal Aphid for the Parasitoid Aphidius
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
15 Foottit:15 Foottit
REDIA, XCII, 2009: 87-91 ROBERT G. FOOTTIT (*) - H. ERIC L. MAW (*) - KEITH S. PIKE (**) DNA BARCODES TO EXPLORE DIVERSITY IN APHIDS (HEMIPTERA APHIDIDAE AND ADELGIDAE) (*) Canadian National Collection of Insects, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada;[email protected] (**) Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350, U.S.A Foottit R.G., Maw H.E.L., Pike K.S. – DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). A tendency towards loss of taxonomically useful characters, and morphological plasticity due to host and environmental factors, complicates the identification of aphid species and the analysis of relationships. The presence of different morphological forms of a single species on different hosts and at different times of the year makes it difficult to consistently associate routinely collected field samples with particular species definitions. DNA barcoding has been proposed as a standardized approach to the characterization of life forms. We have tested the effectiveness of the standard 658-bp barcode fragment from the 5’ end of the mitochondrial cytochrome c oxidase 1 gene (COI) to differentiate among species of aphids and adelgids. Results are presented for a preliminary study on the application of DNA barcoding in which approximately 3600 specimens representing 568 species and 169 genera of the major subfamilies of aphids and the adelgids have been sequenced. Examples are provided where DNA barcoding has been used as a tool in recognizing the existence of cryptic new taxa, linking life stages on different hosts of adelgids, and as an aid in the delineation of species boundaries. -
Egg Load Dynamics and the Risk of Egg and Time Limitation Experienced by an Aphid Parasitoid in the field Christine Dieckhoff1, Julian C
Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field Christine Dieckhoff1, Julian C. Theobald2, Felix L. Wackers€ 2 & George E. Heimpel3 1Department of Entomology & Wildlife Ecology, University of Delaware, Newark, Delaware 19716 2Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University, Lancaster, LA1 4YQ, UK 3Department of Entomology, University of Minnesota, St Paul, Minnesota 55108 Keywords Abstract Aphis glycines, Binodoxys communis, biological control, egg load, soybean aphid. Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limita- Correspondence tion are mediated by oviposition and egg maturation rates as well as by starva- C. Dieckhoff, University of Delaware, tion risk and other determinants of adult lifespan. Here, we assessed egg load Entomology & Wildlife Ecology, 250 and nutritional state in the soybean aphid parasitoid Binodoxys communis under Townsend Hall, Newark, DE 19716, USA. field conditions to estimate its risk of becoming either egg- or time-limited. Tel: 302-731-7330 (ext 222); The majority of female B. communis showed no signs of egg limitation. Experi- Fax: 302-368-1674; E-mail: [email protected] mental field manipulations of B. communis females suggested that an average of 4–8 eggs were matured per hour over the course of a day. Regardless, egg loads Funding information remained constant over the course of the day at approximately 80 eggs, suggest- This research was funded through a USDA- ing that egg maturation compensates for oviposition. This is the first case of NRI grant to G. -
2009 Proceedings.Indd
Proceedings of the South Dakota Academy of Science, Vol. 88 (2009) 139 THE RELEASE OF A NEW BENEFICIAL INSECT FOR THE BIOLOGICAL CONTROL OF SOYBEAN APHID, A CROP PEST IN SOUTH DAKOTA Ana Mičijević1, Kelley J. Tilmon1, Roger Barrick2, Steve Sutera2, Larry Wag- ner2, Connie Strunk2, Paul Johnson2, Gary Erickson2, and Ray Gosmire2 1 Plant Science Department 2 South Dakota Cooperative Extension Service South Dakota State University Brookings, SD 57007 ABSTRACT The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an important insect pest of soybean, a major crop in South Dakota. First discovered in the USA in 2000, it was accidentally introduced from Asia and spread quickly throughout Midwest. Insecticides are currently the primary control method for this pest, but biological control—control of pests through beneficial species—is a promising management approach. Soybean aphid is seldom a problem in its native Asia largely because of a group of natural enemies that feed on it. Uni- versities and USDA entomologists have identified the Asian parasitoid Binodoxys communis (Gahan) (Hymenoptera: Braconidae) as a promising species to release in the US for biological control of the soybean aphid. Since 2007 South Dakota has been part of a multi-state project to introduce B. communis to the region. In the summer of 2008 seven Midwestern states participated in parasitoid releases. Releases in South Dakota were a cooperative effort between SDSU scientists, Extension Educators, and South Dakota producers. We released B. communis in ten soybean fields in ten counties in eastern South Dakota. We inoculated release sites with a small number of parasitoids which might increase and spread over time. -
On Biodiversity in Grasslands: Coexistence, Invasion and Multitrophic Interactions
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2009 On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions Petermann, J S Abstract: In a rapidly changing world suffering from extensive diversity loss, the most pressing questions remain largely unanswered: how can diversity exist in the first place and what are the consequences of its decline for ecosystems? In grasslands, resource niches have to date been considered the major mechanism responsible for plant coexistence and diversity. The neutral theory has recently challenged this view by attributing species coexistence solely to stochastic processes. Whereas the negative effects of plant diversity loss on primary productivity have been demonstrated numerous times in biodiversity experiments, its effects on higher trophic levels have rarely been explored. Here, we used aglasshouse experiment, simulation modelling approaches and field studies in the Jena biodiversity experiment to examine diversity maintenance, invasion and community assembly in plant communities and effects of plant diversity loss on higher trophic levels. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-24943 Dissertation Published Version Originally published at: Petermann, J S. On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions. 2009, University of Zurich, Faculty of Science. On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions Jana S. Petermann Die vorliegende Arbeit wurde von der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich im Herbstsemester 2009 als Dissertation angenommen. Promotionskomitee: Prof. Dr. Bernhard Schmid (Vorsitz) Prof. Dr. Christine Müller Prof. Dr. Jasmin Joshi Prof. Dr. -
Parasitism of the Soybean Aphid, Aphis Glycines by Binodoxys Communis: the Role of Aphid Defensive Behaviour and Parasitoid Reproductive Performance
Bulletin of Entomological Research (2008) 98, 361–370 doi:10.1017/S000748530800566X Ó 2008 Cambridge University Press Printed in the United Kingdom First published online 25 February 2008 Parasitism of the soybean aphid, Aphis glycines by Binodoxys communis: the role of aphid defensive behaviour and parasitoid reproductive performance K.A.G. Wyckhuys1 *, L. Stone3, N. Desneux2, K.A. Hoelmer4, K.R. Hopper4 and G.E. Heimpel2 1Horticulture Research Center, Universidad Jorge Tadeo Lozano, Chia (Cundinamarca), Colombia: 2Department of Entomology, University of Minnesota, St. Paul, USA: 3Saint Olaf College, Northfield, Minnesota, USA: 4Beneficial Insect Introductions Research Unit, USDA-ARS, Newark, Delaware, USA Abstract The Asian parasitoid, Binodoxys communis (Gahan) (Hymenoptera: Braconidae), is a candidate for release against the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America. In this study, we examined preferences by B. communis for the different developmental stages of A. glycines and investigated consequences of these preferences for parasitoid fitness. We also determined to what extent aphid defensive behaviours mediate such preferences. We found that B. communis readily attacks and successfully develops in the different A. glycines developmental stages. Binodoxys communis development time gradually increased with aphid developmental stage, and wasps took longest to develop in alates. An average (+SE) of 54.01+0.08% of parasitized A. glycines alatoid nymphs transformed into winged adult aphids prior to mummification. No-choice assays showed a higher proportion of successful attacks for immature apterous A. glycines nymphs compared to adults and alatoid nymphs. Also, choice trials indicated avoidance and lower attack and oviposition of adults and alatoid nymphs. -
Oat Aphid, Rhopalosiphum Padi
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The price of protection Leybourne, Daniel; Bos, Jorunn; Valentine, Tracy A.; Karley, Alison Published in: Insect Science DOI: 10.1111/1744-7917.12606 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Leybourne, D., Bos, J., Valentine, T. A., & Karley, A. (2020). The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherryoat aphid, Rhopalosiphum padi. Insect Science, 69-85. https://doi.org/10.1111/1744-7917.12606 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Dec. 2019 Insect Science (2020) 27, 69–85, DOI 10.1111/1744-7917.12606 ORIGINAL ARTICLE The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi Daniel J. -
A Contribution to the Aphid Fauna of Greece
Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively). -
Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions Kyle G. Koch University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Koch, Kyle G., "Analysis of Cereal Aphid Feeding Behavior and Transcriptional Responses Underlying Switchgrass-Aphid Interactions" (2017). Dissertations and Student Research in Entomology. 51. https://digitalcommons.unl.edu/entomologydiss/51 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS by Kyle Koch A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Entomology Under the Supervision of Professors Tiffany Heng-Moss and Jeff Bradshaw Lincoln, Nebraska August 2017 ANALYSIS OF CEREAL APHID FEEDING BEHAVIOR AND TRANSCRIPTIONAL RESPONSES UNDERLYING SWITCHGRASS-APHID INTERACTIONS Kyle Koch, Ph.D. University of Nebraska, 2017 Advisors: Tiffany Heng-Moss and Jeff Bradshaw Switchgrass, Panicum virgatum L., is a perennial warm-season grass that is a model species for the development of bioenergy crops. However, the sustainability of switchgrass as a bioenergy feedstock will require efforts directed at improved biomass yield under a variety of stress factors. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
Evolutionary Lability of a Complex Life Cycle in the Aphid Genus Brachycaudus Emmanuelle Jousselin*, Gwenaelle Genson, Armelle Coeur D’Acier
Jousselin et al. BMC Evolutionary Biology 2010, 10:295 http://www.biomedcentral.com/1471-2148/10/295 RESEARCH ARTICLE Open Access Evolutionary lability of a complex life cycle in the aphid genus Brachycaudus Emmanuelle Jousselin*, Gwenaelle Genson, Armelle Coeur d’acier Abstract Background: Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids. Results: Phylogenetic investigation and character reconstruction suggest that life cycle is evolutionary labile in the genus. Though ancestral character states can be ambiguous depending on optimization methods, all analyses suggest that transitions from monoecy on herbs towards heteroecy have occurred several times. Transitions from heteroecy towards monoecy, are also likely. There have been many shifts in feeding behaviour but we found no significant correlation between life cycle changes and changes in diet. -
Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
262 _____________ Mun. Ent. Zool. Vol. 8, No. 1, January 2013___________ REVISION OF GENUS BRACHYCAUDUS AND NEW RECORD SPECIES ADDED TO APHID FAUNA OF EGYPT (HEMIPTERA: STERNORRHYNCHA: APHIDIDAE) A. H. Amin*, K. A. Draz** and R. M. Tabikha** * Plant Protection Department, Faculty of Agriculture, Ain Shams University, EGYPT. ** Pest Control and Environment Protection, Faculty of Agriculture, Alexandria University, Damanhour Branch, EGYPT. [Amin, A. H., Draz, K. A. & Tabikha, R. M. 2013. Revision of genus Brachycaudus and new record species added to aphid fauna of Egypt (Hemiptera: Sternorrhyncha: Aphididae). Munis Entomology & Zoology, 8 (1): 262-266] ABSTRACT: A new aphid species, Brachycaudus (Appelia) shwartzi (Borner) was recorded for the first time in Egypt during the present work. This species was heavily infested leaves of apricot, Prunus armeniaca and peaches Prunus persica during May, 2006 at El-Tahrir, El- Behera Governorate. Identification procedure was confirmed by Prof. R. Blackman at British Museum, in London. Brief verbal and drafting description for alate viviparous female of this new recorded species was carried out. Moreover a simple bracket key was constructed to identify the three recorded species of genus Brachycaudus in Egypt. KEY WORDS: Brachycaudus, Aphididae, Egypt. Family Aphididae is one of the most important groups of Aphidoidea which contain more than 4400 aphid species placed in 493 genera, and is considered as one of the most prolific groups of insects. They are capable not only rapid increase of population though parthenogenesis but also transmission of plant viral diseases and secreting honey dew which become suitable media for sooty moulds, so they are regarded as one of the most important groups of agricultural pests. -
Species Composition and Dynamics of Aphids and Parasitoid Wasps in Maize Fields in Northeastern China
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.345215; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Species composition and dynamics of aphids and parasitoid wasps in maize fields in Northeastern China Ying Zhang1, Min-chi Zhao1, Jia Cheng1, Shuo Liu1, Hai-bin Yuan1 * 1 Jilin Agricultural University, Department of Plant Protection, Changchun,130118, China. *Corresponding author; [email protected] Abstract Maize, Zea mays L., is the most abundant field crop in China. Aphids are the most economically damaging pest on maize, particularly in the cotton agri-ecosystems of Jilin Province, northern China. Parasitic wasps are important natural enemies of aphids, but limited information exists about their species composition, richness and seasonal dynamics in northern China. In this study, the population dynamics of maize aphids and parasitoid wasps were assessed in relation to each other during the summer seasons of two consecutive years, 2018 and 2019. We selected maize fields in the Changchun, Songyuan, Huinan and Gongzhuling areas of Jilin Province. Four species of aphids were recorded from these maize fields: Rhopalosiphum padi (L), Rhopalosiphum maidis (Fitch), Aphis gossypii Glover and Macrosiphum miscanthi (Takahashi). The dominant species in each of the four areas were R. maids (Filch) and R. padi in Changchun, R .padi in Songyuan, A. gossypii and R. padi in Huinan, and A.gossypii and R.