Geomorphic and Ecological Effects of Hurricanes Katrina and Rita on Coastal Louisiana Marsh Communities

Total Page:16

File Type:pdf, Size:1020Kb

Geomorphic and Ecological Effects of Hurricanes Katrina and Rita on Coastal Louisiana Marsh Communities Prepared in cooperation with Louisiana Coastal Areas Science and Technology Program and in collaboration with Louisiana State University, the Louisiana Governor’s Office of Coastal Protection and Restoration, and the University of Louisiana at Lafayette Geomorphic and Ecological Effects of Hurricanes Katrina and Rita on Coastal Louisiana Marsh Communities Open-File Report 2011–1094 U.S. Department of the Interior U.S. Geological Survey Geomorphic and Ecological Effects of Hurricanes Katrina and Rita on Coastal Louisiana Marsh Communities By Sarai C. Piazza, Gregory D. Steyer, Kari F. Cretini, Charles E. Sasser, Jenneke M. Visser, Guerry O. Holm, Jr., Leigh Anne Sharp, D. Elaine Evers, and John R. Meriwether Prepared in cooperation with Louisiana Coastal Areas Science and Technology Program and in collaboration with Louisiana State University, the Louisiana Governor’s Office of Coastal Protection and Restoration, and the University of Louisiana at Lafayette Open-File Report 2011–1094 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 This and other USGS information products are available at http://store.usgs.gov/ U.S. Geological Survey Box 25286, Denver Federal Center Denver, CO 80225 To learn about the USGS and its information products visit http://www.usgs.gov/ 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Piazza, S.C., Steyer, G.D., Cretini, K.F., Sasser, C.E., Visser, J.M., Holm, G.O., Jr., Sharp, L.A., Evers, D.E., and Meriwether, J.R., 2011, Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities: U. S. Geological Survey Open-File Report 2011-1094, 126 p. iii Acknowledgments We wish to recognize the financial support of the Louisiana Coastal Area Science & Technology Program in accomplishing this research. We would like to thank all of the landowners who provided permission to access their properties to conduct this assessment, especially the Louisiana Department of Wildlife and Fisheries, Apache Corporation, Delacroix Corporation, Jeanerette Lumber, Louisiana Land and Exploration Company, and Miami Corporation. A tremendous amount of field, laboratory, and analytical assistance was provided by personnel from many agencies and affiliations. Five Rivers Services, LLC, staff includes Jason Byrd and Brad Griffin, and U.S. Army Engineer Research and Development Center staff includes Glen Suir. Louisiana State University personnel includes Azure Bevington, Thomas Blanchard, Dan Bond, Edward Castaneda-Moya, Jay Gore, Manoch Kongchum, Brian Milan, Alaina Owens, Eric Peterson, and Daniel Sasser. Louisiana Governor’s Office of Coastal Protection and Restoration (OCPR) personnel includes Brady Carter, Mike Miller, Tommy McGinnis, Mark Mouledous, John Troutman, and Dona Weifenbach. University of Louisiana at Lafayette personnel includes Katherine Zaunbrecher and Matt Williams. We would also like to thank Brian Perez of CH2M Hill. Evamaria Koch (University of Maryland Center for Marine Science) and Michael Beck (OCPR) reviewed the document and provided useful comments. This project could not have been completed without the field efforts, sample processing, data entry, and input of U.S. Geological Survey personnel including Gregg Snedden, Jeff Broussard, Brady Couvillion, Ada Diz, Jessica Goodwin, Arianne Logwood, Alison Martin, and Elin Sandy. iv Contents Acknowledgments ........................................................................................................................................iii Abstract ...........................................................................................................................................................1 Introduction ....................................................................................................................................................2 Materials and Methods.................................................................................................................................4 Study Area..............................................................................................................................................4 Methods..................................................................................................................................................8 Vegetation .....................................................................................................................................8 Hydrology ......................................................................................................................................8 Porewater in Soil ........................................................................................................................9 Sediment Deposition and Condition .........................................................................................9 Bulk Density and Organic Matter ..............................................................................................9 Sediment Elevation, Accretion, and Shallow Subsidence ....................................................................................................10 Statistical Analyses ............................................................................................................................10 Vegetation and Porewater Salinity .........................................................................................10 Soils .........................................................................................................................................10 Results and Discussion ...............................................................................................................................10 Recovery After Hurricanes Katrina and Rita ..................................................................................10 Summary of All Vegetation Types ...........................................................................................10 Fresh Marsh Sites ......................................................................................................................14 Brackish/Intermediate Marsh Sites .......................................................................................35 Saline Marsh Sites ....................................................................................................................39 Case Studies ........................................................................................................................................44 Case Study 1: CRMS0605-H and CRMS1277-H .....................................................................44 Overall Site Description ...................................................................................................44 Salinity Before and After the Storms .............................................................................44 Plant Biomass Before and After the Storms ................................................................44 Plant Community Change After the Storms ..................................................................49 Discussion ..........................................................................................................................56 Case Study 2: CRMS0135 ..........................................................................................................58 Overall Site Description ...................................................................................................58 Surface-Water and Porewater Salinities .....................................................................61 Vegetation Cover ...............................................................................................................61 Aboveground and Belowground Biomass ....................................................................64 Sediment Characterization, Accretion, and Elevation ................................................67 Summary of the Classification of Impacts ....................................................................67 Case Study 3: CRMS0672-H ......................................................................................................67 Overall Site Description ...................................................................................................67 Surface-Water and Porewater Salinity .........................................................................72 Vegetation Cover ...............................................................................................................72 Aboveground and Belowground Biomass ....................................................................75 Sediment Characterization, Accretion, and Elevation ................................................77 Summary of the Classification of Impacts ....................................................................80 v Case Study 4: CRMS0326-H ......................................................................................................80 Overall Site Description ...................................................................................................80 Surface-Water
Recommended publications
  • A National Survey of Willingness to Pay for Restoration of Louisiana’S Coastal Wetlands
    America’s Wetland? A National Survey of Willingness to Pay for Restoration of Louisiana’s Coastal Wetlands Final Project Report Department of Agricultural Economics Mississippi State University Revised April 1, 2013 Daniel R. Petrolia * Matthew G. Interis Joonghyun Hwang Mississippi State University Michael K. Hidrue University of Delaware Ross G. Moore USDA Farm Service Agency, Selmer, TN GwanSeon Kim University of Georgia *Corresponding Author: [email protected] The authors wish to express their sincere gratitude to Kerry St. Pe and all the staff of the Barataria-Terrebonne National Estuary Program for providing valuable information and their assistance in improving the quality of the survey instrument. This research was conducted under award NA06OAR4320264 06111039 to the Northern Gulf Institute by the NOAA Office of Ocean and Atmospheric Research, U.S. Department of Commerce; and supported by the USDA Cooperative State Research, Education & Extension Service, Multistate Project W-2133 “Benefits and costs of Natural Resources Policies Affecting Public and Private Lands” (Hatch # MIS-033120). 1 EXECUTIVE SUMMARY A nationwide survey was conducted in the summer of 2011 via Knowledge Networks to estimate the willingness to pay (WTP) for a large-scale restoration project in the Barataria-Terrebonne National Estuary in coastal Louisiana. A split-sample approach was used to administer both a binary-choice (contingent valuation) and multinomial-choice (choice experiment) version of the survey, with the latter used to estimate willingness to pay for increments in three specific wetland ecosystem services: wildlife habitat, storm surge protection, and fisheries productivity. A total of 3,464 respondents completed the valuation exercise, of which 3,228 (93%) had neither visited nor live/lived in the study region.
    [Show full text]
  • The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract.............................................................................................................................
    [Show full text]
  • Wetland Habitats
    Wetland Habitats 103 Wetlands Taste Test Teacher Instructions Focus/Overview Grade Level This lesson is designed to educate students about the different wetland Upper Elementary ecosystems found in Louisiana. The students will compare and contrast these different habitats using their sense of taste. Duration 50-55 minutes Learning Objectives The students will: Setting . Learn the definitions of a wetland and an ecosystem The classroom . Learn how various salinity levels define wetland habitats . Taste water samples with various salinity levels and determine Vocabulary what wetland habitat the water would likely have “come from” Habitat Wetland GLEs Salinity Science 4th – (SI-E-A1, A2, A3, B4) 5th – (SI-M-A1), (LS-M-C3) 6th – (SI-M-A1, A2, A3, A7, B5) English Language Arts 4th – (ELA-1-E5, E6) 5th – (ELA -4-M2) 6th – (ELA-1-M1), (ELA-7-M1), (ELA-4-M2) Materials List . Four 2-liter bottles (teachers or students should bring from home . Small disposable cups or Dixie cups (teacher provides) . Salt (teacher provides) . Water (teacher provides) Background Information We are able to taste things, because we have “taste buds” on our tongues. Taste buds are on the front, sides and back of the tongue. Taste buds allow us to determine if the food we eat is sweet, sour, bitter or salty. The front taste buds taste the salty/sweet foods, the back taste buds taste the bitter foods and the side taste buds taste the sour foods. The human tongue has almost 10,000 taste buds, and girls have more taste buds than boys. There are taste buds even on the roofs of our mouths! A habitat is defined as a location where plants and animals live.
    [Show full text]
  • Background Hurricane Katrina
    PARTPART 33 IMPACTIMPACT OFOF HURRICANESHURRICANES ONON NEWNEW ORLEANSORLEANS ANDAND THETHE GULFGULF COASTCOAST 19001900--19981998 HURRICANEHURRICANE--CAUSEDCAUSED FLOODINGFLOODING OFOF NEWNEW ORLEANSORLEANS •• SinceSince 1559,1559, 172172 hurricaneshurricanes havehave struckstruck southernsouthern LouisianaLouisiana ((ShallatShallat,, 2000).2000). •• OfOf these,these, 3838 havehave causedcaused floodingflooding inin NewNew thethe OrleansOrleans area,area, usuallyusually viavia LakeLake PonchartrainPonchartrain.. •• SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: 1812,1812, 1831,1831, 1860,1860, 1915,1915, 1947,1947, 1965,1965, 1969,1969, andand 20052005.. IsaacIsaac MonroeMonroe ClineCline USWS meteorologist Isaac Monroe Cline pioneered the study of tropical cyclones and hurricanes in the early 20th Century, by recording barometric pressures, storm surges, and wind velocities. •• Cline charted barometric gradients (right) and tracked the eyes of hurricanes as they approached landfall. This shows the event of Sept 29, 1915 hitting the New Orleans area. • Storm or tidal surges are caused by lifting of the oceanic surface by abnormal low atmospheric pressure beneath the eye of a hurricane. The faster the winds, the lower the pressure; and the greater the storm surge. At its peak, Hurricane Katrina caused a surge 53 feet high under its eye as it approached the Louisiana coast, triggering a storm surge advisory of 18 to 28 feet in New Orleans (image from USA Today). StormStorm SurgeSurge •• The surge effect is minimal in the open ocean, because the water falls back on itself •• As the storm makes landfall, water is lifted onto the continent, locally elevating the sea level, much like a tsunami, but with much higher winds Images from USA Today •• Cline showed that it was then northeast quadrant of a cyclonic event that produced the greatest storm surge, in accordance with the drop in barometric pressure.
    [Show full text]
  • Fishing Pier Design Guidance Part 1
    Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31,
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Looting After a Disaster: a Myth Or Reality?
    Volume XXXI • Number 4 March 2007 Disaster Myths...Fourth in a Series Looting After a Disaster: A Myth or Reality? his special article in the Disaster Myths series pres- among those concerned with public safety and response Tents a point-counterpoint on the signifi cance and in disasters. prevalence of looting a� er disasters. Both authors were The fi rst author, E.L. Quarantelli, provides a his- asked to answer, independently, a series of questions, torical overview of looting in disaster research to help including whether looting a� er disasters is a myth, elucidate the myth. The fi ndings of previous disaster what evidence supports that opinion, what previous research are used to support the argument that looting, research has established about looting, and how the in fact, is not prevalent a� er disasters. In the end, there myths (and realities) about looting infl uence disaster is a lack of evidence showing that this behavior is com- planning and response. While the previous articles in monplace. This article can be found on page 2. this series were meant to help dispel disaster myths, As a counterpoint, Kelly Frailing focuses on the this article demonstrates the debate surrounding the events following Hurricane Katrina as evidence that controversial issue of looting and explores it in greater looting is not a myth, but a reality of disasters. This po- depth. Together these positions reveal the arguments sition is also supported by experience during previous and evidence for both sides of the debate. The editors events, such as Hurricane Betsy, and by crime statistics.
    [Show full text]
  • HURRICANE Betsy Track Aug
    UPS. Weather Bureau, WW~icane Betsy, August 27-Sept . 12, 1.65... U.S. DEPARTMENT OF COMMERCE ENVIRONMENT L SCIENCE SERVICES ADMlNlSTkATlON % ,j. WEATHER BUREAU CANE BTETZ~SX Prelimi~yReport wilh Advisorks and Bulletins Issued WASHINGTON, D. C. SEPT National Oceanic and Atmospheric Administration Weather Bureau Hurricane Series ERRATA NOTICE One or more conditions of the original document may affect the quality of the image, such as: Discolored pages Faded or light ink Binding intrudes into the text This has been a co-operative project between the NOAA Central Library and the Climate Database Modernization Program, National Climate Data Center (NCDC). To view the original document contact the NOAA Central Library in Silver Spring, MD at (301) 7 13-2607 x124 or Libra~y.Keference(u~noaa.gov. HOV Services Imaging Contractor 12200 Kiln Court Beltsville, MD 20704-1 387 November 6,2007 HURRICANE Betsy Track Aug. 21 - Sept. 12,1965 Minimum Surface Pressure and Maximum Surface W~nd Mlnlrnum Surface Pressure and Max~mumSurlace W~nd Stippled area represents area traversed by radar eye. - 8 2' 8 6' 84' 4 I , 80' MIAMI-KEY WEST-TAMPA'I6 I COMBINED RADAR TRACK OF HURRICANE BETSY SEPTEMBER 6-9, 1965 Radar eye boundary Radar center track Stippled area represents area traversed by radar eye. &ELIMINARY REPORT ON I:URRICANE BETSY August 27 - September 10, 1965 On August 27, 1965 at 10:30 AM EST a Navy hurricane reconnaissance aircraft discovered a tropical depression at 13' North Latitude and 54' West Longitude or about 350 miles east southeast of Barbados in the Windward Islands, West Indies.
    [Show full text]
  • Historical Perspective
    kZ ­­_!% L , Ti Historical Perspective 2.1 Introduction CROSS REFERENCE Through the years, FEMA, other Federal agencies, State and For resources that augment local agencies, and other private groups have documented and the guidance and other evaluated the effects of coastal flood and wind events and the information in this Manual, performance of buildings located in coastal areas during those see the Residential Coastal Construction Web site events. These evaluations provide a historical perspective on the siting, design, and construction of buildings along the Atlantic, Pacific, Gulf of Mexico, and Great Lakes coasts. These studies provide a baseline against which the effects of later coastal flood events can be measured. Within this context, certain hurricanes, coastal storms, and other coastal flood events stand out as being especially important, either Hurricane categories reported because of the nature and extent of the damage they caused or in this Manual should be because of particular flaws they exposed in hazard identification, interpreted cautiously. Storm siting, design, construction, or maintenance practices. Many of categorization based on wind speed may differ from that these events—particularly those occurring since 1979—have been based on barometric pressure documented by FEMA in Flood Damage Assessment Reports, or storm surge. Also, storm Building Performance Assessment Team (BPAT) reports, and effects vary geographically— Mitigation Assessment Team (MAT) reports. These reports only the area near the point of summarize investigations that FEMA conducts shortly after landfall will experience effects associated with the reported major disasters. Drawing on the combined resources of a Federal, storm category. State, local, and private sector partnership, a team of investigators COASTAL CONSTRUCTION MANUAL 2-1 2 HISTORICAL PERSPECTIVE is tasked with evaluating the performance of buildings and related infrastructure in response to the effects of natural and man-made hazards.
    [Show full text]
  • Groundwater Salinization in the Lower Florida Keys Following Hurricane Irma Storm Surge
    Effects of rising seas and recent hurricanes on coastal wetlands in the lower Florida Keys Danielle E. Ogurcak and Michael S. Ross Florida International University, Miami, FL Coastal Wetlands on 8 of the lower Florida Keys Max elevation ~ 2 meters Zhang et al. 2010 Max elevation ~ 5 meters Predicted increases in sea level rise and frequency of Cat 3 - 5 hurricanes in the 21st century Sweet et al. 2017 AP Photo/J. Pat Carter Bender et al. 2010 www.srh.noaa.gov 2018 SLAMM Modeling Results Warren Pinnacle Consulting, Model runs at Stetson University 1 ft SLR 2 ft SLR 3 ft SLR Miller & Traxler, USFWS, GEER 2019 (Halley et al. 1993) Conceptual Model of Freshwater Lens Precipitation Transpiration Well Sea level Fresh Ghyben- Brackish Brackish Sea water Herzberg Lens Coastal Forest Communities of the Lower Florida Keys Hardwood Hammock Freshwater Supratidal wetland Scrub Mangrove forests, Pine Rockland woodlands, & scrublands Water table Fresh Increasingly brackish Increasingly brackish Jul 2010 Have recent hurricanes served as tipping points? Annual Sea Level at Key West Tide Gauge (1913 – 2013) Major Hurricanes Impacting the Lower Keys (1965 – 2019) Betsy 1965: Cat 3 storm at landfall in Key Largo, 125 mph winds on Big Pine Key, surge of 2.7 m documented at Sugarloaf Key Inez 1966: Cat 3 storm, with 150 mph winds estimated on Big Pine Key, above normal tides (1.5m) Georges 1998: Cat 2 storm at landfall in Key West, 90-100 mph winds, storm surge from Atlantic of 5 - 6 ft Wilma 2005: Cat 3 storm at landfall near Naples, 110mph winds , 2 storm surges – first from the Atlantic of 4 - 5 ft, second from Florida Bay of 6 - 8 ft, highest surge in Florida Keys since Hurricane Betsy (1965) (NOAA NWS).
    [Show full text]
  • Harvey, Irma, and the NFIP: Did the 2017 Hurricane Season Matter to Flood Insurance Reauthorization?
    University of Arkansas at Little Rock Law Review Volume 40 Issue 4 The Ben J. Altheimer Symposium: The Law and Unnatural Disasters: Legal Adaptations Article 1 to Climate Change 2018 Harvey, Irma, and the NFIP: Did the 2017 Hurricane Season Matter to Flood Insurance Reauthorization? Robin Kundis Craig Follow this and additional works at: https://lawrepository.ualr.edu/lawreview Part of the Environmental Law Commons, and the Insurance Law Commons Recommended Citation Robin Kundis Craig, Harvey, Irma, and the NFIP: Did the 2017 Hurricane Season Matter to Flood Insurance Reauthorization?, 40 U. ARK. LITTLE ROCK L. REV. 481 (2018). Available at: https://lawrepository.ualr.edu/lawreview/vol40/iss4/1 This Article is brought to you for free and open access by Bowen Law Repository: Scholarship & Archives. It has been accepted for inclusion in University of Arkansas at Little Rock Law Review by an authorized editor of Bowen Law Repository: Scholarship & Archives. For more information, please contact [email protected]. HARVEY, IRMA, AND THE NFIP: DID THE 2017 HURRICANE SEASON MATTER TO FLOOD INSURANCE REAUTHORIZATION? Robin Kundis Craig* I. INTRODUCTION In April 2014, Farmers Insurance Company filed nine high-profile class-action lawsuits on behalf of itself, other insurance companies, and policyholders with damaged properties against approximately 200 Chicago- area municipalities, arguing that those municipalities were failing to deal with climate change.1 Specifically, Farmers Insurance alleged that these cities and counties were aware that
    [Show full text]
  • May 2016 2 Meet Our New Meteorologist-In-Charge! (Cont)
    SouthernmostSouthernmost WeatherWeather ReporterReporter National Weather Service Weather Forecast Office Key West, FL SouthernmostSouthernmost WeatherWeather ReporterReporter National Weather Service ~ Key West, FL Welcome to Our First Report! M a y 2 0 1 6 Inside this Report: elcome to the inaugural report of the Florida Keys National Weather Service (NWS). This report details activities from the Florida Keys NWS Q&A with New MIC 2 office, as well as our many outreach and customer service initiatives. W NOAA Science 4 Many interesting weather events occurred during this last year: Saturday We ended 2015 as the warmest year on record in Key West. DSS in the Keys 5 We had a small scare with Tropical Storm Erika that threatened south Florida in Beach Hazards 6 late August. Data Acquisition 7 We saw persistent coastal flooding affect the Keys in September and October. Award Ocean Wave Experts In addition, our office accomplished several major outreach and customer service 8 initiatives of which I am quite proud: Come to Key West We hosted our first office open house (“Science Saturday”) event in five years. That’s the Spirit! 8 10th Anniversary of We had total attendance of almost 800, and this is something we are planning 9 to make an annual event. Hurricane Wilma Persistent Coastal We hosted over 50 national and international scientists at our office, as part of a 10 Flooding large international science workshop on marine forecasting held in Key West. Become a Rainfall We commemorated the anniversary of two of the strongest hurricanes on 12 Observer record to affect the Keys: Labor Day Hurricane (1935) & Hurricane Wilma (2005).
    [Show full text]