Ly-49D Signal Transduction 16-Kda Tyrosine Phosphoprotein Required

Total Page:16

File Type:pdf, Size:1020Kb

Ly-49D Signal Transduction 16-Kda Tyrosine Phosphoprotein Required Cutting Edge: Characterization of an Associated 16-kDa Tyrosine Phosphoprotein Required for Ly-49D Signal Transduction This information is current as Llewellyn H. Mason, Jami Willette-Brown, Stephen K. Anderson, of October 1, 2021. Pierre Gosselin, Elizabeth W. Shores, Paul E. Love, John R. Ortaldo and Daniel W. McVicar J Immunol 1998; 160:4148-4152; ; http://www.jimmunol.org/content/160/9/4148 Downloaded from References This article cites 20 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/160/9/4148.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. c Cutting Edge: Characterization of an Associated 16-kDa Tyrosine Phosphoprotein Required for Ly-49D Signal Transduction1 Llewellyn H. Mason,2* Jami Willette-Brown,* Stephen K. Anderson,† Pierre Gosselin,* Elizabeth W. Shores,‡ Paul E. Love,§ John R. Ortaldo,* and Daniel W. McVicar* Downloaded from ITIMs3 in their cytoplasmic domains that are phosphorylated on Ly-49D is an activating receptor on NK cells that does not become stimulation, leading to the recruitment of SHP-1 phosphatase and tyrosine phosphorylated upon activation. This report demon- attenuation of intracellular signals (4, 5). A similar system exists in strates that immunoprecipitation of Ly-49D, following pervana- human NK cells, where signaling by the p58 receptor family also date treatment or specific Ab cross-linking, coprecipitates a 16- uses SHP-1 phosphatase to inhibit NK cell activation (6). How- http://www.jimmunol.org/ kDa tyrosine-phosphorylated protein (pp16). Immunoblotting ever, receptors exist in both systems that can activate NK cells. In experiments and data from TCR-z/FceRIg double knockout mice the human, p50 receptors have truncated cytoplasmic domains that confirm that pp16 is not TCR-z, TCR-h,orFceRIg. Association lack ITIMs (7) and have been shown to mediate reverse Ab-de- of pp16 with Ly-49D involves a transmembrane arginine since 21 pendent cellular cytotoxicity and mobilize intracellular Ca in the R54L) abolishes association with pp16 mutation to leucine (Ly-49D presence of specific mAb (8). Olcese et al. have recently demon- in transfected P815 cells. In addition, Ly-49DR54L transfectants strated that p50 receptors are associated with a multimeric com- fail to mediate Ca21 mobilization following Ab cross-linking. plex of proteins that when appropriately stimulated become phos- Therefore, signaling through Ly-49D on NK cells depends on as- phorylated (killer cell-activatory receptor-associated polypeptides) sociation with a distinct tyrosine phosphoprotein (pp16) in a man- by guest on October 1, 2021 (9). These molecules exist as a 12–16 kDa group of polypeptides ner analogous to that of TCR and FcR. Expression of this novel that can be detected upon internal radiolabeling of NK cells and signaling peptide in both the NK and myeloid lineages indicates immunoprecipitation. Since the human killer cell-activatory recep- that pp16 is likely involved in the signal transduction cascade of tors contain a lysine in their transmembrane domain, they specu- additional receptor families. The Journal of Immunology, 1998, lated that this amino acid is important for the association of killer 160: 4148–4152. cell-activatory receptor with killer cell-activatory receptor-associ- ated polypeptides (9). urine NK cells express Ly-49 receptors that can initi- Our laboratory has shown that murine Ly-49D, in the presence ate either inhibitory or activating signals to regulate of mAb 12A8, activates NK cells by inducing reverse Ab-depen- 1 M lytic function. Ly-49A, Ly-49C, and Ly-49G2 have dent cellular cytotoxicity of FcR targets (10). Ly-49D contains a been shown to inhibit NK cell function on recognition of class I cytoplasmic domain that is comparable in length with other Ly-49 ligands on target cells (1–3). These inhibitory receptors contain receptors. We have recently demonstrated that Ly-49D is not phos- phorylated following pervanadate stimulation, consistent with its *Laboratory of Experimental Immunology, Division of Basic Sciences, and †Intra- lack of an ITIM. However, stimulation of NK cells with pervana- mural Research Support Program, SAIC Frederick, National Cancer Institute-Fred- date and immunoprecipitation of Ly-49D did reveal associated ty- erick Cancer Reseach and Development Center, Frederick, MD 21702; ‡Division of Hematologic Products, Center for Biologics Evaluation and Research, Food and Drug rosine-phosphorylated proteins (pp16). These associated phospho- Administration, Washington, DC; and §Laboratory of Mammalian Genes and Devel- proteins exist as disulfide-linked dimers that are highly opment, National Institute of Child Health and Human Development, National Insti- phosphorylated following either pervanadate stimulation of NK tutes of Health, Bethesda, MD 20892 cells or specific receptor cross-linking. In this report, we charac- Received for publication January 15, 1998. Accepted for publication February 23, 1998. terize these phosphoproteins and provide data to prove that the The costs of publication of this article were defrayed in part by the payment of page arginine in the transmembrane domain of Ly-49D is critical for charges. This article must therefore be hereby marked advertisement in accordance pp16 association and subsequent signaling by this receptor. with 18 U.S.C. Section 1734 solely to indicate this fact. 1 The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. 2 Address correspondence and reprint requests to Dr. L. H. Mason, NCI-FCRDC 3 Abbreviations used in this paper: ITIM, immunoreceptor tyrosine-based inhibitory Building 560, Room 31-93, Frederick, MD 21702-1201. E-mail address: motif; pp16, 16-kDa tyrosine-phosphorylated protein; SA-HRP, streptavidin-horse- [email protected] radish peroxidase. Copyright © 1998 by The American Association of Immunologists 0022-1767/98/$02.00 c The Journal of Immunology 4149 FIGURE 1. Immunoprecipitation and anti- phosphotyrosine blotting of Ly-49D receptor- associated phosphoproteins. A, IL-2-cultured C57BL/6 (B6) NK cells were surface biotinyl- ated, lysed, and immunoprecipitated, and pro- teins were separated on 8 to 16% SDS-PAGE under nonreducing conditions. Proteins were transferred to Immobilon and blotted with SA- HRP. B, NK cells were treated with pervana- date (1 mM), lysed in Triton X-100, immuno- precipitated, separated on SDS-PAGE as above, and immunoblotted with biotinylated 4G10 fol- lowed by SA-HRP. C, NK cells treated as in B were separated on 16% SDS-PAGE under re- ducing conditions. Downloaded from Materials and Methods lecular masses of 28 to 32 kDa were readily observed. Since mAb NK cell isolation 12A8 reacts with both Ly-49A and Ly-49D, we repeated these experiments with a new mAb (4E5) that reacts with Ly-49D, but http://www.jimmunol.org/ Splenic NK cells were isolated from C57BL/6 (B6) mice4 and grown for 7 to 10 days in 1000 U/ml Cetus recombinant IL-2 as previously not Ly-49A, Ly-49B, Ly-49C/I, Ly-49H, or Ly-49G2 (data not described (11). shown). Figure 1A shows a representative experiment in which pervanadate-treated B6 NK cells were surface biotinylated, immu- Antibodies noprecipitated, separated on SDS-PAGE without reduction, and The following mAb were used: 4D11 (Ly-49G2 (3)); 12A8 (Ly-49A/D blotted with SA-HRP. Immunoprecipitation with mAb 4D11 (Ly- (10)); 4E5 (Ly-49D; manuscript in preparation); and RM2-1 (CD2 (12)). 49G2) and mAb 12A8 (Ly-49A&D) resulted in 90- to 100-kDa Antisera to FceRIg and TCR-z were kindly provided by Dr. J. P. Kinet and Dr. A. Weissman, respectively. proteins, consistent with the reported molecular masses for these receptors. Immunoprecipitation with mAb 4E5 yields a band of 95 Stimulation, immunoprecipitation, electrophoresis, and blotting to 100 kDa, consistent with that reported for Ly-49D. Furthermore, by guest on October 1, 2021 Cell stimulation, immunoprecipitation, and immunoblotting were per- transfection of Cos-7 cells with Ly-49D cDNA, and immunopre- formed as previously described (5). Pervanadate stimulation of cells uti- cipitation with both mAb12A8 and 4E5 detected proteins of sim- lized 1 mM pervanadate for 15 min at 37°C. ilar size (data not shown). These data confirmed the ability of both Site-directed mutagenesis and transfection mAb 12A8 and 4E5 to immunoprecipitate Ly-49D. In Figure 1B, a parallel blot with anti-phosphotyrosine blotting of immunopre- A substitution mutant was generated within the Ly-49D transmembrane domain in which the arginine at position 54 was mutated to a leucine
Recommended publications
  • Casein Kinase 1 Isoforms in Degenerative Disorders
    CASEIN KINASE 1 ISOFORMS IN DEGENERATIVE DISORDERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Theresa Joseph Kannanayakal, M.Sc., M.S. * * * * * The Ohio State University 2004 Dissertation Committee: Approved by Professor Jeff A. Kuret, Adviser Professor John D. Oberdick Professor Dale D. Vandre Adviser Professor Mike X. Zhu Biophysics Graduate Program ABSTRACT Casein Kinase 1 (CK1) enzyme is one of the largest family of Serine/Threonine protein kinases. CK1 has a wide distribution spanning many eukaryotic families. In cells, its kinase activity has been found in various sub-cellular compartments enabling it to phosphorylate many proteins involved in cellular maintenance and disease pathogenesis. Tau is one such substrate whose hyperphosphorylation results in degeneration of neurons in Alzheimer’s disease (AD). AD is a slow neuroprogessive disorder histopathologically characterized by Granulovacuolar degeneration bodies (GVBs) and intraneuronal accumulation of tau in Neurofibrillary Tangles (NFTs). The level of CK1 isoforms, CK1α, CK1δ and CK1ε has been shown to be elevated in AD. Previous studies of the correlation of CK1δ with lesions had demonstrated its importance in tau hyperphosphorylation. Hence we investigated distribution of CK1α and CK1ε with the lesions to understand if they would play role in tau hyperphosphorylation similar to CK1δ. The kinase results were also compared with lesion correlation studies of peptidyl cis/trans prolyl isomerase (Pin1) and caspase-3. Our results showed that among the enzymes investigated, CK1 isoforms have the greatest extent of colocalization with the lesions. We have also investigated the distribution of CK1α with different stages of NFTs that follow AD progression.
    [Show full text]
  • MP Kinase (Phosphoprotein) Assay
    MSD® MAP Kinase Phosphoprotein Assay: Whole Cell Lysate Kit For quantitative determination of phosphorylated p38(Thr180/Tyr182), ERK1/2 (Thr202/Tyr204; Thr185/Tyr187), and JNK (Thr183/Tyr185) in human, mouse, and rat whole cell lysate samples Alzheimer’s Disease Angiogenesis BioProcess Cardiac 1. Phospho-p38 Cell Signaling 2. BSA blocked Clinical Immunology 3. Phospho-JNK Cytokines 4. Phospho-ERK1/2 Growth Factors Hypoxia Immunogenicity Inflammation Metabolic MAP (Mitogen-Activated Protein) kinases are a family of evolutionarily conserved eukaryotic serine/threonine protein kinases which link Oncology receptors on the cell surface to important intracellular regulatory targets. MAP kinases also elicit an intracellular effect in response to physical and Toxicology chemical cellular stress. MAP kinase cascades within the cell are composed of a series of proteins, the first of which is a MAP kinase kinase kinase Vascular (MAPKKK).1 The MAPKKK is activated by phosphorylation in response to growth factors, mitogens, inflammatory cytokines, G-protein coupled receptors (GPCRs) or stress. The MAPKKK in turn phosphorylates MAPKK, which then phosphorylates MAPK.2 The activated terminal MAPK translocates into the nucleus, thereby exerting an effect on gene transcription. Through these pathways, the cell regulates responses leading to cell Catalog Numbers proliferation and differentiation, development, inflammation, and cell survival or apoptosis.2 ERK1/2, p38, and JNK are all MAP kinases, activated by the MAPK kinases MEK1/2, MKK3/6, and MKK4/7, respectively.2 Because these pathways are critical for the regulation of cell growth and survival, MAP Kinase 3 Phosphoprotein Assay: the MAP kinase family of enzymes offers desirable targets for the development of anti-cancer therapeutics.
    [Show full text]
  • 1519038862M28translationand
    Paper No. : 15 Molecular Cell Biology Module : 28 Translation and Post-translation Modifications in Eukaryotes Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Prof. Kuldeep K. Sharma Department of Zoology, University of Jammu Content Writer : Dr. Renu Solanki, Deen Dayal Upadhyaya College Dr. Sudhida Gautam, Hansraj College, University of Delhi Mr. Kiran K. Salam, Hindu College, University of Delhi Content Reviewer : Prof. Rup Lal Department of Zoology, University of Delhi 1 Molecular Genetics ZOOLOGY Translation and Post-translation Modifications in Eukaryotes Description of Module Subject Name ZOOLOGY Paper Name Molecular Cell Biology; Zool 015 Module Name/Title Cell regulatory mechanisms Module Id M28: Translation and Post-translation Modifications in Eukaryotes Keywords Genome, Proteome diversity, post-translational modifications, glycosylation, phosphorylation, methylation Contents 1. Learning Objectives 2. Introduction 3. Purpose of post translational modifications 4. Post translational modifications 4.1. Phosphorylation, the addition of a phosphate group 4.2. Methylation, the addition of a methyl group 4.3. Glycosylation, the addition of sugar groups 4.4. Disulfide bonds, the formation of covalent bonds between 2 cysteine amino acids 4.5. Proteolysis/ Proteolytic Cleavage 4.6. Subunit binding to form a multisubunit protein 4.7. S-nitrosylation 4.8. Lipidation 4.9. Acetylation 4.10. Ubiquitylation 4.11. SUMOlytion 4.12. Vitamin C-Dependent Modifications 4.13. Vitamin K-Dependent Modifications 4.14. Selenoproteins 4.15. Myristoylation 5. Chaperones: Role in PTM and mechanism 6. Role of PTMs in diseases 7. Detecting and Quantifying Post-Translational Modifications 8.
    [Show full text]
  • Phosphorylation of Protein 4.1 on Tyrosine-418 Modulates Its Function
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 5222-5226, June 1991 Biochemistry Phosphorylation of protein 4.1 on tyrosine-418 modulates its function in vitro (epidermal growth factor receptor/spectrin/actin assembly) GOSUKONDA SUBRAHMANYAM*, PAUL J. BERTICStt, AND RICHARD A. ANDERSON**§ Department of *Pharmacology and tPhysiological Chemistry, and the tCell and Molecular Biology Program, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706 Communicated by Vincent T. Marchesi, March IS, 1991 ABSTRACT Protein 4.1 was initially characterized as a actin/protein 4.1 complex (12). However, phosphorylation of protein that regulates cytoskeletal assembly in erythrocytes. protein 4.1 by protein kinase C also reduces protein 4.1 However, recent studies have shown that protein 4.1 is ubiq- binding to band 3 but not to glycophorin, while phosphory- uitous in mammalian cells. Here, we show that protein 4.1 is lation by cAMP-dependent kinase does not affect membrane phosphorylated on tyrosine by the epidermal growth factor interactions (12). These results suggest that protein 4.1 is receptor (EGFR) tyrosine kinase. The phosphorylation site has phosphorylated at multiple sites by different protein kinases, been localized to the 8-kDa domain, which has one tyrosine, and each phosphorylation event selectively modulates pro- tyrosine-418. The 8-kDa region is required for the assembly of tein 4.1 function. The phosphorylation sites by cAMP- the spectrin/actin complex, and phosphorylation by EGFR dependent protein kinase and protein kinase C are in the reduced the ability ofprotein 4.1 to promote the assembly ofthe 8-kDa and 16-kDa domains (10).
    [Show full text]
  • The Structure and Mechanism of Phosphoprotein Phosphatases Many Phosphatases Require Two Metal Ions for Catalysis
    WILLIAM P TAYLOR AND THEODORE S WIDLANSKI MINIREVIEW Charged with meaning: the structure and mechanism of phosphoprotein phosphatases Many phosphatases require two metal ions for catalysis. New structural information on two serinekhreonine phosphatases offers insight into how the metals contribute to catalysis. A comparison with the structures of protein tyrosine phosphatases, which do not use metal ions, shows that the only similarity at the active site is that of charge. Chemistry & Biology November 1995, 2:713-718 Many biological processes are regulated by J simple substrates; and (3) small-molecule specific - enzymes chcniical event - the cleavage or formation of phos- that hydrolyze one (or a group of structurally similar) phdte esters. In nature, these reactions are catalyzed by substrate(s), for example, phosphoinocitol nlonophos- tv,m sets of enzynws, phosphatases and kinnses. Kinases phatasc (this cnzyrne may be the clinical target of operate in the synthetic direction (phocphorylation) lithium ion therapy for depression [A]). while phosphatases catalyze the hydrolysis (cleavage) reaction. Over the last decade there has been a growing A second useful classification scheme is our according rcalizCition that phosphataws are extremely important in to the enzyme’s mechanism of action. Some phos- ccllulx and organismal functions [ 1 1. Here, we focus on phatascs use an active site nucleophile 3s the initi,J recent Ed\-antes in our understanding of phosphatases. phosphoryl group acceptor; others transfer it inuned- especially phosphoprotein phosphatases, with J vielv to atcly to water (Fig. 3). The first group cm be further clarifyiiig some of the mrchanictic and structural con- subdivided according to the phosphoryl group acceptor plcsitie and mlbiguities presented by this diverse group (cysteine.
    [Show full text]
  • The Role of Casein Kinase 1 in Meiosis
    e & Ch m rom ro o d s n o y m S Zhao and Liang, J Down Syndr Chr Abnorm 2016, 2:1 e n A Journal of Down Syndrome & w b o n DOI: 10.4172/2472-1115.1000106 D o f r m o l ISSN: 2472-1115a a l i n t r i e u s o J Chromosome Abnormalities Review Article Open Access The Role of Casein Kinase 1 in Meiosis Yue-Fang Zhao and Cheng-Guang Liang* The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China Abstract The casein kinase 1 (CK1) belongs to the serine/threonine protein kinases. CK1 members, which commonly exist in all eukaryotes, are involved in the regulation of many cellular processes linked to cell cycle progression, spindle- dynamics, and chromosome segregation. Additionally, CK1 regulate key signaling pathways such as Wnt (Wingless/ Int-1), Hh (Hedgehog), and Hippo, known to be critically involved in tumor progression. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising scientific effort has enormously increased. In mammals, CK1 regulate the transition from interphase to metaphase in mitosis. In budding yeast and fission yeast, CK1 phosphorylate Rec8 subunits of cohesin complex and regulate chromosome segregation in meiosis. During meiosis, two rounds of chromosome segregation after a single round of DNA replication produce haploid gametes from diploid precursors. Any mistake in chromosome segregation may result in aneuploidy, which in meiosis are one of the main causes of infertility, abortion and many genetic diseases in humans.
    [Show full text]
  • Phosphorylation by Cellular Casein Kinase II Is Essential For
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6570-6574, July 1992 Biochemistry Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P (protein phosphorylation/casein kinase il/transcripfion) SAILEN BARIK* AND AMIYA K. BANERJEE Department of Molecular Biology, Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195-5069 Communicated by W. K. Joklik, April 3, 1992 ABSTRACT We have previously shown that phosphory- kinases revealed that they were distinct and different from latfon of vesicular stomatitis virus (VSV) phosphoprotein P by each other. In this communication, we report the purification cellular protein kinase activity is an essential prerequisite for its and detailed characterization of the cellular protein kinase transcriptional function. We have now purified this protein and show that it is a single enzyme with properties identical kinase by monitoring its ability to phosphorylate bacterially to that ofcellular casein kinase II (CKII). Phosphorylation of expressed, unphosphorylated P protein. Biochemical studies the phosphate-free P protein (PO) by purified CKII and L showed that the kinase is indi uihable from casein kinase kinase in vitro fully restored transcriptional activity of P H, a ubiquitous cyclic AMP-independent protein kinase pres- protein. ent in a wide variety ofeukaryotic cells and tissues. Functional VSV transcription could be reconstituted with viral L protein, N-RNA template, and P protein phosphorylated by either MATERIALS AND METHODS purified cellular protein kinase or purified casein kinase Il. The Viral (VSV, New Jersey serotype, Ogden subtype) L protein unusual role of casein kinase II in the transcription process of and N-RNA template and bacterially expressed P protein of a nonsegmented negative-strand RNA virus would have im- the same serotype were purified as described (3).
    [Show full text]
  • Stability of Phosphoprotein As a Biological Marker of Tumor Signaling Amanda F
    Imaging, Diagnosis, Prognosis Stability of Phosphoprotein as a Biological Marker of Tumor Signaling Amanda F. Baker,1Tomislav Dragovich,1Nathan T.Ihle,1RyanWilliams,1 Cecilia Fenoglio-Preiser,2 and Garth Powis1 Abstract Purpose:The purpose of the study was to evaluate the stability of phosphoprotein as a marker of signaling activity in human tumors using clinical samples and xenografts. Experimental Design: The expression of phospho-Ser473-Akt (p-Akt) was assessed by immunohistochemistry in paraffin-embedded samples from patients enrolled in a Southwest Oncology Group clinical trial of gastroesophageal junction tumors and by immunohistochemistry and Western blotting in human colon tumor xenografts at various times after removal from the animal. Results: Clinical samples had evaluable p-Akt staining only when obtained as biopsies (9 of 13) and no staining was observed in tumors obtained as surgically resected samples (0 of 15). In HT- 29 colon cancer xenografts, p-Akt staining was present in fresh sample but not in tissue that had been allowed to stand for 30 minutes at room temperature.Western blotting of HT-29 tumor xen- ografts at room temperature showed a slow decrease in total Akt with a half-life of 180 minutes and a rapid decrease in p-Akt with a half-life of 20 minutes. Conclusions: Caution should be used when using phosphoprotein levels in human tumor speci- mens to measure intrinsic signaling activity or drug effects because of the potential for rapid de- phosphorylation. Rapid processing of biopsies is essential and postoperative surgical samples may be of limited value because of the time to fixation.
    [Show full text]
  • Structure, Function and Evolution of Phosphoprotein P0 and Its Unique Insert in Tetrahymena Thermophila
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2014 STRUCTURE, FUNCTION AND EVOLUTION OF PHOSPHOPROTEIN P0 AND ITS UNIQUE INSERT IN TETRAHYMENA THERMOPHILA Giovanni Pagano University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Pagano, Giovanni, "STRUCTURE, FUNCTION AND EVOLUTION OF PHOSPHOPROTEIN P0 AND ITS UNIQUE INSERT IN TETRAHYMENA THERMOPHILA" (2014). Open Access Master's Theses. Paper 358. https://digitalcommons.uri.edu/theses/358 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. STRUCTURE, FUNCTION AND EVOLUTION OF PHOSPHOPROTEIN P0 AND ITS UNIQUE INSERT IN TETRAHYMENA THERMOPHILA BY GIOVANNI PAGANO A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGICAL AND ENVIRONMENTAL SCIENCES UNIVERSITY OF RHODE ISLAND 2014 MASTER OF SCIENCE OF GIOVANNI PAGANO APPROVED: Thesis Committee: Major Professor Linda A. Hufnagel Lenore M. Martin Roberta King Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2014 ABSTRACT Phosphoprotein P0 is a highly conserved ribosomal protein that forms the central scaffold of the large ribosomal subunit’s “stalk complex”, which is necessary for recruiting protein elongation factors to the ribosome. Evidence in the literature suggests that P0 may be involved in diseases such as malaria and systemic lupus erythematosus. We are interested in the possibility that the P0 of the “ciliated protozoa” Tetrahymena thermophila may be useful as a model system for vaccine research and drug development.
    [Show full text]
  • Phosphoprotein Fl: Purification and Characterization of a Brain Kinase C Substrate Related to Plasticity
    The Journal of Neuroscience December 1986, 6(12): 36184627 Phosphoprotein Fl: Purification and Characterization of a Brain Kinase C Substrate Related to Plasticity S. Y. Chan, K. Murakami, and A. Routtenberg Cresap Neuroscience Laboratory, Northwestern University, Evanston, Illinois 60201 To study the role of protein kinase C (PKC) and its substrates b). For example, the PKC phosphorylation of human epidermal in neuronal function, we have investigated the in vitro endoge- growth factor receptor (EGF-R) from A431 epidermoid carci- nous phosphorylation of the neuronal phosphoprotein Fl after noma cells caused an inhibition of tyrosine kinase activity of induction of synaptic plasticity by long-term potentiation (LTP). the receptor (Davis et al., 1985a; Hunter et al., 1984) and stim- The protein Fl phosphorylation was found to increase 5 min ulated the mitogenic response of cultured A43 1 cells (Davis et (Routtenberg et al., 1985), 1 hr (Lovinger et al., 1986) and 3 d al., 1985b). The PKC phosphorylation of a 40,000 Da human (Lovinger et al., 1985) after LTP. The characteristics of this platelet protein, on the other hand, was found to correlate closely protein bear close similarities to a number of proteins charac- with thrombin-induced 5-HT secretion in platelets (Imaoka et terized in various neuronal systems, such as BSO (brain specific, al., 1983; Kawahara et al., 1980). synaptosome-enriched protein), pp46 (a growth cone protein), The functional role of PKC and its substrates in neuronal and GAP 43 (nerve growth and regeneration-associated pro- systems is not well understood, and the study of PKC-mediated tein). A positive identification of the purified protein Fl with events in nervous tissue has only recently been developed.
    [Show full text]
  • Protein-Tyrosine-Phosphatase 2C Is Phosphorylated and Inhibited by 44
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 5002-5006, May 1994 Biochemistry Protein-tyrosine-phosphatase 2C is phosphorylated and inhibited by 44-kDa mitogen-activated protein kinase PASCAL PERALDI*, ZHIZHUANG ZHAOt, CHANTAL FILLOUX*, EDMOND H. FISCHERt, AND EMMANUEL VAN OBBERGHEN** *Institut National de la Sante et de la Recherche M6dicale Unite 145, Facult6 de M6decine, 06107 Nice Cddex 2, France; and tDepartment of Biochemistry, University of Washington, Seattle, WA 98195 Contributed by Edmond H. Fischer, February 18, 1994 ABSTRACT Protein-tyroslne-phosphatase 2C (PTZC, PTP2C activity 5- to 10-fold (17). However, the precise role also named SHPTP2, SHPTP3, or PTP1D) is a cytosolic of the association between the phosphatase and other mol- enzyme with two Src homology 2 dons. We have investi- ecules remains to be defined. Finally, in cells overexpressing gated its regulation by phosphorylation in PC12 rat phe both PTP2C and the EGF receptor, a marginal increase mocytoma cells. In untreated cells, PIP2C was phosphorylated (1.2-fold) in PTP2C activity can be induced by EGF (13). predominantly on serine residues. A 5-min treatment with In nonstimulated cells, PTP2C is phosphorylated mainly on epidermal growth factor (EGF) induced an increase in phos- serine and threonine residues (15), whereas growth factors phorylation on threonine and, to a lesser degree, on serine. such as EGF and PDGF appear to lead to an increase mainly After 45 min of exposure to EGF, PTP2C phosphorylation in phosphotyrosine (13-15) with a smaller increment in returned to basal levels. Using an in vitro kinase assay, we phosphothreonine (14). The role of these multiple phospho- found that the 44-kDa mitogen-activated protein kinase, rylations of PTP2C has not been established.
    [Show full text]
  • Phosphoprotein Analysis
    Standardized Approach for Identification of Focal Adhesion Proteins’ Phosphorylation Sites Antonio F. M. Pinto, David M. Smalley, Li Ma, Pablo R. Grigera, Nicholas E. Sherman, J. Thomas Parsons and Jay W. Fox. University of Virginia, Charlottesville, VA. 6112 Table II. Phosphorylation site coverage of seven proteins analyzed over the past year by the Protein C18 4.0E+07 Discovery Initiative. Cell Migration Consortium data are compared with two phosphorylation 4684 databases, PhosphoSITE (http://www.phosphosite.org) and Phospho.ELM 3.5E+07 4716 (http://phospho.elm.eu.org). Total, unique and shared number of phosphorylation sites are indicated. 3.0E+07 4744 5095 y 5968 Abstract t Protein Discovery Initiative PhosphoSITE Phospho.ELM i 2.5E+07 5120 s Protein n e total(unique/shared) total(unique/shared) total(unique/shared) t 4508 5141 n I 2.0E+07 β−PIX 16(13/3) 6(3/3) 2(1/1) 1.5E+07 5869 CORTACTIN 18(12/6) 25(19/6) 8(7/1) The Protein Discovery Initiative goal is to develop a census of the migration proteome by FAK 25(19/6) 14(8/6) 11(7/4) 1.0E+07 4222 5492 identifying interactions and post-translational modifications, i.e. phosphorylation, of novel 3064 GIT1 32(25/7) 10(3/7) 4(1/3) 0.5E+07 3020 3184 3806 PAK 3(0/3) 11(8/3) 1(1/0) molecules involved in cell migration. Over the past few years, identification of these 2724 2869 3227 38 318 452 665 785 1141 1359 1523 1890 2202 2413 PAXILLIN 45(13/32) 51(19/32) 7(0/7) phosphorylation sites have been done by a variety of methodologies, such as mutation of 0 0 10 20 30 40 50 60 70 80 90 100 110 120 TALIN 31(26/5) 8(4/4) 1(0/1) Time (min) phosphorylation sites, phospho-antibodies, electrophoretic mobility shifts, immobilized metal gi|1722836|sp|P42768|WASP_HUMAN (100%), 54451.5 Da Wiskott-Aldrich syndrome protein (WASp) ion affinity chromatography (IMAC), titanium dioxide (TiO2) affinity chromatography and LC- 29 unique peptides, 107 unique spectra, 526 total spectra, 338/515 amino acids (66% coverage) Table III.
    [Show full text]