1 Animal Mind: How Similar Are Animal Mental Processes to Ours?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Operant Conditioning
Links to Learning Objectives DEFINITION OF LEARNING OPERANT CONDITIONING (Part 2) LO 5.1 Learning LO 5.8 Controlling behavior and resistance LO 5.9 Behavior modification CLASSICAL CONDITIONING LO 5.2 Study of and important elements COGNITIVE LEARNING LO 5.3 Conditioned emotional response LO 5.10 Latent learning, helplessness and insight OPERANT CONDITIONING (Part 1) LO 5.4 Operant, Skinner and Thorndike OBSERVATIONAL LEARNING LO 5.5 Important concepts LO 5.11 Observational learning theory LO 5.6 Punishment problems LO 5.7 Reinforcement schedules Learning Classical Emotions Operant Reinforce Punish Schedules Control Modify Cognitive Helpless Insight Observe Elements Operant Conditioning Operant Stimuli Behavior 5.8 How do operant stimuli control behavior? • Discriminative stimulus –cue to specific response for reinforcement Learning Classical Emotions Operant Reinforce Punish Schedules Control Modify Cognitive Helpless Insight Observe Elements 1 Biological Constraints • Instinctive drift – animal’s conditioned behavior reverts to genetic patterns – e.g., raccoon washing, pig rooting Learning Classical Emotions Operant Reinforce Punish Schedules Control Modify Cognitive Helpless Insight Observe Elements ehavior modification Application of operant conditioning to effect change Behavior Modification 5.9 What is behavior modification? • Use of operant techniques to change behavior Tokens Time out Applied Behavior Analysis Learning Classical Emotions Operant Reinforce Punish Schedules Control Modify Cognitive Helpless Insight Observe Elements -
Operant Conditioning and Pigs
Practice writing the test essay “Compare and contrast operant and classical conditioning in five areas.” 1. Take out a sheet of paper 2. You need your book today: Use page 339 in the textbook 3. Write using your own words. Exchange papers • Peer edit their paper. • Check to see if they have the needed terms and concepts. • If they don’t add them. • If they do give them a plus sign (+) • Answers in red Essay note • You won’t be able to use your notes or book on Monday’s test. .∑¨π®µªΩ∫ "≥®∫∫∞™®≥"∂µ´∞ª∞∂µ∞µÆ Remembering the five categories • B • R • A • C • E B • Biological predispositions "≥®∫∫∞™®≥ ™∂µ´∞ª∞∂µ∞µÆ©∞∂≥∂Æ∞™®≥ /π¨´∞∫∑∂∫∞ª∞∂µ∫ ≥¨®πµ∞µÆ∞∫™∂µ∫ªπ®∞µ¨´©¿®µ®µ∞¥ ®≥∫©∞∂≥∂Æ¿ µ®ªºπ®≥∑π¨´∞∫∑∂∫∞ª∞∂µ∫™∂µ∫ªπ®∞µ∫∂π≥∞¥ ∞ª∫ æ Ø®ª∫ª∞¥ º≥∞®µ´π¨∫∑∂µ∫¨∫™®µ©¨®∫∫∂™∞®ª¨´ ©¿ªØ¨®µ∞¥ ®≥ John Garcia’s research, 322 • Biological predispositions • John Garcia: animals can learn to avoid a drink that will make them sick, but not when its announced by a noise or a light; !≥∂Æ∞™®≥/π¨´∞∫∑∂∫∞ª∞∂µ∫ C o u r t e s & ®π™∞®∫Ø∂æ ¨´ªØ®ªª ¨´ºπ®ª∞∂µ y o f J o ©¨ªæ ¨¨µª ¨"2®µ´ªØ¨4 2¥ ®¿©¨ h n G a r ≥∂µÆ&Ø∂ºπ∫'©ºª¿¨ªπ¨∫º≥ª∞µ c i a ™∂µ´∞ª∞∂µ∞µÆ ©∞∂≥∂Æ∞™®≥≥¿®´®∑ª∞Ω¨ )∂ص& ®π™∞® "2&ª®∫ª¨'≥¨´ª∂™∂µ´∞ª∞∂µ∞µÆ®µ´µ∂ª ª∂∂ªØ¨π∫&≥∞ÆØª∂π∫∂ºµ´' Human example • We more easily are classically conditioned to fear snakes or spiders, rather than flowers. -
Edward C. Tolman (1886-1959)
Edward C. Tolman (1886-1959) Chapter 12 1 Edward C. Tolman 1. Born (1886) in West Newton, Massachusetts. 2. B.S from MIT. PhD from Harvard. 3. Studied under Koffka. 4. 1915-1918 taught at www.uned.es Northwestern University. Released from university. Pacifism! (1886-1959) 2 Edward C. Tolman 5. Moved to University of California-Berkeley and remained till retirement. 6. Dismissed from his position for not signing the “loyalty oath”. Fought for academic freedom and www.uned.es reinstated. 7. Quaker background (1886-1959) therefore hated war. Rebel in life and psychology. 3 1 Edward C. Tolman 8. Did not believe in the unit of behavior pursued by Pavlov, Guthrie, Skinner and Hull. “Twitchism” vs. molar behavior. 9. Learning theory a blend of Gestalt psychology and www.uned.es behaviorism. 10. Died 19 Nov. 1959. (1886-1959) 4 Comparison of Schools Behaviorism Gestalt Gestalt psychologists Behaviorists believed believed in the in “elements” of S-R “whole” mind or associations. mental processes. Observation, Observation and Experimentation and Experimentation Introspection Approach: Behavioral Approach: Cognitive 5 Tolman’s idea about behavior 1. Conventional behaviorists do not explain phenomena like knowledge, thinking, planning, inference, intention and purpose in animals. In fact, they do not believe in mental phenomena like these. 2. Tolman on the other hand describes animal behavior in all of these terms and takes a “Gestalt” viewpoint on behavior, which is to look at behavior in molar or holistic terms. 6 2 Tolman’s idea about behavior 3. So rat running a maze, cat escaping the puzzle box and a man talking on the phone are all molar behaviors. -
14 Learning, I: the Acquisition of Knowledge
14 LEARNING, I: THE ACQUISITION OF KNOWLEDGE Most animals are small and don’t live long; flies, fleas, protists, nematodes and similar small creatures comprise most of the fauna of the planet. A small animal with short life span has little reason to evolve much learning ability. Because it is small, it can have little of the complex neu- ral apparatus needed; because it is short-lived it has little time to exploit what it learns. Life is a tradeoff between spending time and energy learning new things, and exploiting things already known. The longer an animal’s life span, and the more varied its niche, the more worthwhile it is to spend time learning.1 It is no surprise; therefore, that learning plays a rather small part in the lives of most ani- mals. Learning is not central to the study of behavior, as was at one time believed. Learning is interesting for other reasons: it is involved in most behavior we would call intelligent, and it is central to the behavior of people. “Learning”, like “memory”, is a concept with no generally agreed meaning. Learning cannot be directly observed because it represents a change in an animal’s potential. We say that an animal has learned something when it behaves differently now because of some earlier ex- perience. Learning is also situation-specific: the animal behaves differently in some situations, but not in others. Hence, a conclusion about whether or not an animal has learned is valid only for the range of situations in which some test for learning has been applied. -
Studying Professional Learning from the Perspective Of
STUDYING PROFESSIONAL LEARNING FROM THE PERSPECTIVE OF WITTGENSTEIN’S PICTURE OF LANGUAGE AND MEANING JOSEPH SAMUEL GARDNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN EDUCATION YORK UNIVERSITY TORONTO, ONTARIO March 2019 © Joseph Sam Gardner, 2019 Abstract My own experience working with professionals is that while ongoing professional learning is valued, in most cases there is little that is done well to support such learning. The dominant foci in both practice and the relevant academic fields tend more towards issues connected to linear features of dissemination, to the development of programmatic change approaches, and to scientism. My perception is that these fields are wedded to outdated and problematic foundational metaphors such as ‘trajectories,’ ‘impacts,’ and ‘outcomes,’ to the quantification of learning processes and outcomes, and to the idea of knowledge and research as things that are somehow “transferable.” The aim of this dissertation is, therefore, to find a grounding way to think and talk about professionals’ learning in situ. In turning to Wittgenstein I shift the fundamentals underlying our talk about professional learning towards a picture of language and meaning. I draw a picture of professional learning based on Wittgenstein’s picture of language and meaning, emphasizing Wittgenstein’s notion of a ‘picture,’ versus a ‘theory’ (i.e., a hypothetical, causal explanatory account), of language. Wittgenstein’s picture of language and meaning can be seen as a reaction to the representationalist (cognitivist, intellectualist) approach to language and meaning initiated mainly by Frege. Wittgenstein sketches a picture of language and meaning consisting of the interrelated parts of ‘language-games,’ ‘grammar,’ and ‘rules,’ focused around the ‘use’ of signs. -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Behavioural Processes 85 (2010) 246–251 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc Functional relationships for determining similarities and differences in comparative cognition Anthony A. Wright ∗ Department of Neurobiology and Anatomy, Medical School, University of Texas Health Center at Houston, P.O. Box 20708, Houston, TX 77225, United States article info abstract Article history: Pigeons, capuchin monkeys and rhesus monkeys were trained in nearly identical same/different tasks Received 6 May 2010 with an expanding 8-item training set and showed qualitatively similar functional relationships: increas- Received in revised form 22 July 2010 ing novel-stimulus transfer (i.e., concept learning) as a function of the training-set size and the level of Accepted 30 July 2010 transfer eventually becoming equivalent to baseline training performance. There were also some quan- titative functional differences: pigeon transfer increases were more gradual and baseline-equivalent Keywords: transfer occurred at a larger set size (256 items) than for monkeys (128 items). -
Concept Learning for Robot Intelligence Justus Piater, University of Innsbruck
Concept Learning For Robot Intelligence Justus Piater, University of Innsbruck Abstract Current robot learning, and machine learning in general, requires carefully- engineered setups (environments, objective functions, training data, etc.) for learning to succeed. Perception and action spaces are specially crafted to meet the requirements of the learning objective, which is specified in advance. How can we construct robot learning systems that can learn in an open-ended fashion, acquire skills not foreseen by its designers, and scale up to virtually unlimited levels of complexity? I argue that a key to achieving this lies in the robot's ability to learn abstract concepts that can be reused as a basis for future learning, both in autonomous exploration and for teaching by humans. Table of Contents 1. Preface ..................................................................................... 1 2. Skill Learning Using Stacked Classifiers .......................................... 4 3. Skill Learning Using Projective Simulation ...................................... 7 4. Search Space Management ......................................................... 11 5. Conclusions ............................................................................. 13 1. Preface 1.1. Classical Machine Learning [Image1 from New Scientist2] [From my LinkedIn page] [Source3] [Image4 from The Next Web5] 1 https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2017/05/23120156/ rexfeatures_8828108ac1.jpg 2 https://www.newscientist.com/article/2132086-deepminds-ai-beats-worlds-best-go-player-in- latest-face-off/ 3 http://5.imimg.com/data5/YN/EU/MY-54329049/face-detection-and-recognition-500x500.jpg 4 https://cdn0.tnwcdn.com/wp-content/blogs.dir/1/files/2016/09/SwiftKey-neural-networks- hed-796x398.jpg 5 https://thenextweb.com/apps/2016/09/16/swiftkey-improves-its-android-keyboard-predictions- with-neural-networks/ 1 Preface 1.2. Autonomous Airshow Apprenticeship Learning Via Inverse Reinforcement Learning [Abbeel et al. -
AP Psychology Essential Information
AP Psychology Essential Information Introduction to Psychology 1. What is the definition of psychology? a. The study of behavior and mental processes 2. How did psychology as a study of behavior and mental processes develop? a. The roots of psychology can be traced back to the philosophy of Empiricism: emphasizing the role of experience and evidence, especially sensory perception, in the formation of ideas, while discounting the notion of innate ideas.- Greeks like Socrates, Plato and Aristotle. Later studied by Francis Bacon, Rene Decartes and John Locke. 3. What is the historical development of psychology? a. The evolution of psychology includes structuralism, functionalism, psychoanalysis, behaviorism and Gestalt psychology b. Wilhelm Wundt: set up the first psychological laboratory. i. trained subjects in introspection: examine your own cognitive processing- known as structuralism ii. study the role of consciousness; changes from philosophy to a science ii. Also used by Edward Titchener c. William James: published first psychology textbook; examined how the structures identified by Wundt function in our lives- functionalism i. Based off of Darwin’s theory of evolution 4. What are the different approaches to studying behavior and mental processes? a. biological, evolutionary, psychoanalysis (Freud), behavioral (Watson, Ivan Pavlov, B.F. Skinner), cognitive, humanistic (Abraham Maslow, Carl Rogers), social (Bandura) and Gestalt 5. Who are the individuals associated with different approaches to psychology? a. Darwin, Freud, Watson, Skinner and Maslow 6. What are each of the subfields within psychology? a. cognitive, biological, personality, developmental, quantitative, clinical, counseling, psychiatry, community, educational, school, social, industrial Methods and Testing 1. What are the two main forms of research? a. -
Learning Theory This Course Will Cover the Fundamentals Of
Learning Theory This course will cover the fundamentals of pedagogy and andragogy, as well as examine different theories in learning. We will analyze the particular characteristics of adult learning, identifying the contributions of theoretical and scientific support to andragogy, its principles and applications. Also we will evaluate the concept and importance of permanent or life-long education. Hopefully you will come away with a better sense of how humans learn and how you in particular can continue to learn. What is learning? Learning involves change. It is concerned with the acquisition of habits, knowledge, and attitudes. It enables the individual to make both personal and social adjustments. Since the concept of change is inherent in the concept of learning, any change in behavior implies that learning is taking place or has taken place. Learning that occurs during the process of change can be referred to as the learning process. Learning is a change in the individual, due to the interaction of that individual, and his environment, which fills a need to make him more capable of dealing adequately with his environment. A distinction is frequently made between education and learning. Education is an activity undertaken or initiated by one or more agents that is designed to effect changes in the knowledge, skill, and attitudes of individuals, groups, or communities. The term education emphasizes the educator, the agent of change who presents stimuli and reinforcement for learning and designs activities to induce change. The term learning, in contrast, emphasizes the person in whom the change occurs or is expected to occur. -
The General Psychological Crisis and Its Comparative Psychological Resolution
eScholarship International Journal of Comparative Psychology Title The General Psychological Crisis and its Comparative Psychological Resolution Permalink https://escholarship.org/uc/item/2g60z086 Journal International Journal of Comparative Psychology, 2(3) ISSN 0889-3675 Author Tolman, Charles W. Publication Date 1989 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The International Journal of Comparative Psychology, Vol. 2, No. 3, Spring 1989 THE GENERAL PSYCHOLOGICAL CRISIS AND ITS COMPARATIVE PSYCHOLOGICAL RESOLUTION Charles W. Tolman University of Victoria ABSTRACT: The crisis in general psychology is identified as one of theoretical indeter- minacy. An important source of indeterminacy is the form of generalization that empha- sizes classification and common characters and identifies the general with the abstract. Determinate theory requires a form of generalization that identifies the general with the concrete and emphasizes genesis and interconnection. In order to overcome its crisis, general psychology thus requires the kind of evolutionary methodology that comparative psychology is, historically speaking, best prepared to provide. Science must begin w^ith that w^ith which real history began. Logical devel- opment of theoretical definitions must therefore express the concrete historical process of the emergence and development of the object. Logical deduction is nothing but a theoretical expression of a real historical development of the concreteness under study. (Ilyenkov, 1982, p. 200) The decade of the 1970s w^as a difficult period for comparative psychology. The troubles first became apparent somewhere around 1950 M^hen Frank Beach called attention, in a deploring tone, to our "excessive concentration" on a very limited number of species, especially the ubiq- uitous Rattus norvegicus. -
Psychophysiological Concomitants of Levels of Cognitive Processing. Ronald Alan Cohen Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1982 Psychophysiological Concomitants of Levels of Cognitive Processing. Ronald Alan Cohen Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Cohen, Ronald Alan, "Psychophysiological Concomitants of Levels of Cognitive Processing." (1982). LSU Historical Dissertations and Theses. 3794. https://digitalcommons.lsu.edu/gradschool_disstheses/3794 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. -
Beyond Pavlov, Thorndike, and Skinner: Other Early Behaviorist Theories
Supplementary reading in the Companion Website accompanying HUMAN LEARNING 5/E by J. E. Ormrod, 2008, Upper Saddle River, NJ: Merrill/Prentice Hall. Copyright© 2007 by Pearson Education, Inc. All rights reserved. BEYOND PAVLOV, THORNDIKE, AND SKINNER: OTHER EARLY BEHAVIORIST THEORIES Chapters 3 and 4 in Human Learning describe the work of three prominent early behaviorists: Ivan Pavlov, Edward Thorndike, and B. F. Skinner. But other theorists had a significant impact on early behaviorist thinking as well. Here we’ll focus on three especially notable ones: John Watson, Edwin Guthrie, and Clark Hull. John Watson It was actually John Watson (1913) who introduced the term behaviorism and served as the most vocal advocate for the behaviorist perspective in the early part of the twentieth century. In his major writings, Watson (1914, 1916, 1919, 1925) adamantly called for the introduction of scientific objectivity and experimentation into the study of psychological phenomena. He emphasized the need for focusing scientific inquiry on observable behaviors rather than on such nonobservable phenomena as “thinking.” Not only did Watson oppose the study of internal mental events, but he also denied any existence of the mind at all! Thought, he proposed, was nothing more than tiny movements of the tongue and larynx and thus was a behavior just like any other. Greatly influenced by the work of both Pavlov and another Russian, Vladimir Bechterev (1913), Watson adopted the classically conditioned S-R habit as the basic unit of learning and extended it to human learning (e.g., see Watson and Rayner’s study with an infant named Albert, described in Chapter 3).1 Watson proposed two laws describing how such habits develop.