An Observation on the Historical Geography of the Prehistoric Production in China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region
sustainability Article Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region Meijia Xiao 1 , Qingwen Zhang 1,*, Liqin Qu 2, Hafiz Athar Hussain 1 , Yuequn Dong 1 and Li Zheng 1 1 Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; [email protected] (M.X.); [email protected] (H.A.H.); [email protected] (Y.D.); [email protected] (L.Z.) 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82106031 Received: 12 December 2018; Accepted: 31 January 2019; Published: 11 February 2019 Abstract: Sloping farmland is an essential type of the farmland resource in China. In the Sichuan province, livelihood security and social development are particularly sensitive to changes in the sloping farmland, due to the region’s large portion of hilly territory and its over-dense population. In this study, we focused on spatiotemporal change of the sloping farmland and its driving forces in the Sichuan province. Sloping farmland areas were extracted from geographic data from digital elevation model (DEM) and land use maps, and the driving forces of the spatiotemporal change were analyzed using a principal component analysis (PCA). The results indicated that, from 2000 to 2015, sloping farmland decreased by 3263 km2 in the Sichuan province. The area of gently sloping farmland (<10◦) decreased dramatically by 1467 km2, especially in the capital city, Chengdu, and its surrounding areas. -
Crop Systems on a County-Scale
Supporting information Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration Bing Gaoa,b, c, Tao Huangc,d, Xiaotang Juc*, Baojing Gue,f, Wei Huanga,b, Lilai Xua,b, Robert M. Reesg, David S. Powlsonh, Pete Smithi, Shenghui Cuia,b* a Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China b Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China c College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China d College of Geography Science, Nanjing Normal University, Nanjing 210046, China e Department of Land Management, Zhejiang University, Hangzhou, 310058, PR China f School of Agriculture and Food, The University of Melbourne, Victoria, 3010 Australia g SRUC, West Mains Rd. Edinburgh, EH9 3JG, Scotland, UK h Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, AL5 2JQ. UK i Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK Bing Gao & Tao Huang contributed equally to this work. Corresponding author: Xiaotang Ju and Shenghui Cui College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China. Phone: +86-10-62732006; Fax: +86-10-62731016. E-mail: [email protected] Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. Phone: +86-592-6190777; Fax: +86-592-6190977. E-mail: [email protected] S1. The proportions of the different cropping systems to national crop yields and sowing area Maize was mainly distributed in the “Corn Belt” from Northeastern to Southwestern China (Liu et al., 2016a). -
Gu Yuxuan, Shijiazhuang Foreign Language School Shijiazhuang, Hebei Province, China China, Factor 6: Sustainable Agriculture
Gu Yuxuan, Shijiazhuang Foreign Language School Shijiazhuang, HeBei Province, China China, Factor 6: Sustainable Agriculture China: Sustainable Land Use on Sanjiang Plain Located in the northeast corner of China, Sanjiang Plain is in the administrative divisions of Heilongjiang Province. Amur River, Ussuri River and Songhua River joining together, with their waves impacting the soil, formed this flat and fertile alluvial plain whose total area is 108,900 square kilometers. The surface is wet and always has surplus water because of the broad and flat terrain. The cold and wet climate condition causes heavy precipitations in summer and autumn. Rivers run slowly with sudden flood peak periods. Seasonal freezing-thawing soil covers the whole plain. All those account for large areas of swamp water and vegetation which involves 2.4 million hectares of swamp and marsh soil, ranking China’s largest swamp area. Ten wetland nature reserves were set up, attracting many international ecological and environmental protection organizations. The region, which is covered with 10 to 15 cm of water and the total quantity is 18.764 billion cubic meters, is home to many first-class national protected animals. For instance, the red-crowned cranes in the IUCN (World Conservation Union) red list, the Chinese merganser and the Siberian tiger all find their habit in this plain. Sod layer soils are thick, generally 30 to 40 cm. In the area lies the most fertile black earth in China, and it’s one of the three black earth terrains in the world. High in organic matter, the organic matter is 3% to 10%. -
Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes Within the Yangtze River Basin Michael V
Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 4-5-2016 Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin Michael V. Schaefer Stanford University Samantha C. Ying University of California - Riverside Shawn G. Benner Boise State University Yanhua Duan China University of Geosciences Yanxin Wang China University of Geosciences See next page for additional authors This document was originally published in Environmental Science & Technology by the American Chemical Society under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html). Copyright restrictions may apply. doi: 10.1021/acs.est.5b04986 Authors Michael V. Schaefer, Samantha C. Ying, Shawn G. Benner, Yanhua Duan, Yanxin Wang, and Scott eF ndorf This article is available at ScholarWorks: http://scholarworks.boisestate.edu/geo_facpubs/298 This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/est Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin † ‡ § ∥ ∥ Michael V. Schaefer, Samantha C. Ying, Shawn G. Benner, Yanhua Duan, Yanxin Wang, † and Scott Fendorf*, † Earth System Science Department, Stanford University, Stanford, California 94305, United States ‡ Environmental Sciences Department, University of California - Riverside, Riverside, California 92521, United States § Department of Geosciences, Boise State University, Boise, Idaho 83725, United States ∥ State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China *S Supporting Information ABSTRACT: Consumption of groundwater containing >10 μgL−1 arsenic (As) adversely impacts more than 100 million people worldwide. -
Estimating Frost During Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China
remote sensing Article Estimating Frost during Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China Guorong Deng 1,2 , Hongyan Zhang 1,2,*, Lingbin Yang 1,2, Jianjun Zhao 1,2 , Xiaoyi Guo 1,2 , Hong Ying 1,2, Wu Rihan 1,2 and Dan Guo 3 1 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; [email protected] (G.D.); [email protected] (L.Y.); [email protected] (J.Z.); [email protected] (X.G.); [email protected] (H.Y.); [email protected] (W.R.) 2 Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China 3 College of Resources and Environment, Jilin Agricultural University, Changchun 130024, China; [email protected] * Correspondence: [email protected]; Tel.: +86-431-8509-9550 Received: 31 March 2020; Accepted: 23 April 2020; Published: 25 April 2020 Abstract: Vegetationphenology and photosynthetic primary production have changed simultaneously over the past three decades, thus impacting the velocity of vegetation greenup (Vgreenup) and withering (Vwithering). Although climate warming reduces the frequency of frost events, vegetation is exposed more frequently to frost due to the extension of the growing season. Currently, little is known about the effect of frost during the growing season on Vgreenup and Vwithering. This study analyzed spatiotemporal variations in Vgreenup and Vwithering in Northeast China between 1982 to 2015 using Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS 3g NDVI) data. -
2 Days Leshan Giant Buddha and Mount Emei Tour
[email protected] +86-28-85593923 2 days Leshan Giant Buddha and Mount Emei tour https://windhorsetour.com/emei-leshan-tour/leshan-emei-2-day-tour Chengdu Mount Emei Leshan Chengdu A classic trip to Leshan and Mount Emei only takes 2 days. Leshan Grand Buddha is the biggest sitting Buddha in the world and Mount Emei is one of the four Buddhist Mountains in China. Type Private Duration 2 days Theme Culture and Heritage Trip code WS-302 From £ 214 per person £ 195 you save £ 19 (10%) Itinerary Mt.Emei lies in the southern area of Sichuan basin. It is one of the four sacred Buddhist Mountains in China. It is towering, beautiful, old and mysterious and is like a huge green screen standing in the southwest of the Chengdu Plain. Its main peak, the Golden Summit, is 3099 meters above the sea level, seemingly reaching the sky. Standing on the top of it, you can enjoy the snowy mountains in the west and the vast plain in the east. In addition in Golden Summit there are four spectacles: clouds sea, sunrise, Buddha rays and saint lamps. Leshan Grand Buddha is the biggest sitting Buddha in the world. It was begun to built in 713AD in Tang Dynasty, took more than 90 years to finish this huge statue. And it sits at Lingyue Mountain, at the Giant Buddha Cliff, you will find out a lot of stunning small buddha caves, you will be astonished by this human project. Leshan Grand Buddha and Mt.Emei both were enlisted in the world natural and cultural heritage by the UNESCO in 1996. -
HODS of COMPUTING SEDIMENTATION in LAKES and RESERVOIRS a Contribution to the International Hydrological Programme, IHP - II Project A
2 14. 8 5 M E HODS OF COMPUTING SEDIMENTATION IN LAKES AND RESERVOIRS A contribution to the International Hydrological Programme, IHP - II Project A. 2.6.1 Panel Stevan Bruk, Rapporteur Unesco, Paris lO:£/q.C?SSrf& llsn-. ^2>l Unesco, Paris ~-F::\r>Y J^TCRX'AT.'OfvAL REFERENCE C7.X~RF: ; aAAi. vAT::v.'v ;;;;r/ METHODS OF COMPUTING SEDIMENTATION IN LAKES AND RESERVOIRS A contribution to the International Hydrological Programme, I HP - II Project A. 2.6.1 Panel r- ••••' — - -,-•• „ _ Stevan Bruk, Rapporteur '; t^'^S-^' -^::V WA'r--R SUPPLY | A.\U b -.' -n„. ,,._.,, ,....•"""••" ' ^s Hague .SKI 3iS£ February 1985 The Yugoslav National Committee for the International Hydrological Programme contributed to the printing Of this book Unesco'1985 Printed by the Printing Department of the Jaroslav Cemi Institute for the Development of Water Resources P.O. Box 530,11000 Belgrade, Yugoslavia Preface Although the total amount of water on earth is generally assumed to have Remained virtually constant, the rapid growth of population, together with the extension of irrigated agriculture and industrial development, are stressing the quantity and quality aspects of the natural system. Because of the increasing problems, man has begun to realize that he can no longer follow a "use and discard" philosophy ~ either with water resources or any other natural resources. Asa result, the need for a consistent policy of rational management of water resources has become evident. Rational water management, however, should be founded upon a thorough understanding of water availability and movement. Thus, as a contribution to the solution of the worlds water problems, Unesco, in 1965, began the first world-wide programme of studies of the hydrological cycle - the International Hydrological Decade (IHD). -
47030-002: Lishui River, Jinshan River
Resettlement Plan May 2015 People’s Republic of China: Jiangxi Pingxiang Integrated Rural-Urban Infrastructure Development Prepared by Shangli Project management office of the Jiangxi Pingxiang Integrated Urban and Rural Infrastructure Improvement Project for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 15 May 2015) Currency unit – yuan (CNY) CNY1.00 = $0.1613 $1.00 = CNY6.2012 ABBREVIATIONS AAOV – average annual output value ADB – Asian Development Bank ADG – Anyuan District Government AHs – affected households APs – affected persons DMS – detailed measurement survey DRC – Development and Reform Committee FGD – female group discussion FSR – feasibility study report HD – house demolition HH – household IA – implementation agency JMG – Jiangxi Municipal Government LA – land acquisition LLFs – land-loss farmers LCG – Luxi County Government M&E – monitoring and evaluation MLS – minimum living security O&M – operation and maintenance PMO – Project Management Office PMG – Pingxiang Municipal Government PMTB – Pingxiang Municipal Transportation Bureau RP – resettlement plan SCG – Shangli County Government WWTP – wastewater treatment plant NOTE In this report, "$" refers to US dollars. This resettlement plan is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. -
Holocene Environmental Archaeology of the Yangtze River Valley in China: a Review
land Review Holocene Environmental Archaeology of the Yangtze River Valley in China: A Review Li Wu 1,2,*, Shuguang Lu 1, Cheng Zhu 3, Chunmei Ma 3, Xiaoling Sun 1, Xiaoxue Li 1, Chenchen Li 1 and Qingchun Guo 4 1 Provincial Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; [email protected] (S.L.); [email protected] (X.S.); [email protected] (X.L.); [email protected] (C.L.) 2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China 3 School of Geograpy and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (C.Z.); [email protected] (C.M.) 4 School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; [email protected] * Correspondence: [email protected] Abstract: The Yangtze River Valley is an important economic region and one of the cradles of human civilization. It is also the site of frequent floods, droughts, and other natural disasters. Conducting Holocene environmental archaeology research in this region is of great importance when studying the evolution of the relationship between humans and the environment and the interactive effects humans had on the environment from 10.0 to 3.0 ka BP, for which no written records exist. This Citation: Wu, L.; Lu, S.; Zhu, C.; review provides a comprehensive summary of materials that have been published over the past Ma, C.; Sun, X.; Li, X.; Li, C.; Guo, Q. -
Damright! WWF’S Dams Initiative
DamRight! WWF’s Dams Initiative An Investor’s Guide to Dams DamRight! WWF’s Dams Initiative An Investor’s Guide to Dams Contents: Foreword by WWF Executive summary An investor’s checklist 1 Introduction 1.1 The benefits and costs of dams 1.2 The World Commission on Dams 1.3 Trends in dams finance 1.4 Aim of the guide 2 When is it appropriate to invest in dams? 2.1 Needs assessments 2.2 Alternative ways of providing services - assessing options Contents2.3 Ongoing review 3 Financial pitfalls to avoid when investing in dams 3.1 Exaggerated projections of benefits 3.2 Time and cost overruns 34 - 35 3.3 Inaccurate assessment of displaced peoples and inundated lands 32 - 33 3.4 Geological instability and dam failure 30 - 31 3.5 Displaced business spin-off 3.6 Sovereign risk and corruption 28 - 29 3.7 Maintenance and decommissioning costs 26 - 27 3.8 Cost recovery and dam beneficiaries 3.9 Inadequate insurance cover 24 - 25 4 Impact mitigation and avoidance 22 - 23 5 More information 6 References 20 - 21 7 Glossary 18 - 19 Annexes 16 - 17 Annex-1: Case study: Bakun dam, Malaysia 14 - 15 Annex-2: Mitigating environmental impacts 12 - 13 Cover image: 10 - 11 Itaipu dam – The biggest 8 - 9 dam in the world, located on the Paraná River 6 - 7 between Brazil and 4 - 5 Paraguay. 2 - 3 M GUNTHER, WWF-CANON DamRight! WWF’s Dams Initiative Foreword Dams are among the most destructive developments that impact on rivers and ecosystems, threatening both wildlife and people. -
Accessing Future Crop Yield and Crop Water Productivity Over the Heihe
Liu et al. Geosci. Lett. (2021) 8:2 https://doi.org/10.1186/s40562-020-00172-6 RESEARCH LETTER Open Access Accessing future crop yield and crop water productivity over the Heihe River basin in northwest China under a changing climate Qi Liu1,2, Jun Niu1,2* , Bellie Sivakumar3, Risheng Ding1,2 and Sien Li1,2 Abstract Quantitative evaluation of the response of crop yield and crop water productivity (CWP) to future climate change is important to prevent or mitigate the adverse efects of climate change. This study made such an evaluation for the agricultural land over the Heihe River basin in northwest China. The ability of 31 climate models for simulating the precipitation, maximum temperature, and minimum temperature was evaluated for the studied area, and a multi- model ensemble was employed. Using the previously well-established Soil and Water Assessment Tool (SWAT), crop yield and crop water productivity of four major crops (corn, wheat, barley, and spring canola-Polish) in the Heihe River basin were simulated for three future time periods (2025–2049, 2050–2074, and 2075–2099) under two Representa- tive Concentration Pathways (RCP4.5 and RCP8.5). The results revealed that the impacts of future climate change on crop yield and CWP of wheat, barley, and canola would all be negative, whereas the impact on corn in the eastern part of the middle reaches of the Heihe River basin would be positive. On the whole, climate change under RCP8.5 scenario would be more harmful to crops, while the corn crops in the Minle and Shandan counties have better ability to cope with climate change. -
Journal of Asian Earth Sciences 152 (2018) 52–68
Journal of Asian Earth Sciences 152 (2018) 52–68 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Full length article Holocene evolution of the Liaohe Delta, a tide-dominated delta formed by T multiple rivers in Northeast China ⁎ Lei Hea,b, Chunting Xuec, Siyuan Yea,b, , Edward Allen Lawsd, Hongming Yuana, Shixiong Yanga, Xiaolei Due a Key Laboratory of Coastal Wetland Biogeosciences, China Geologic Survey, Qingdao, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China c Department of Coastal Geology, Qingdao Institute of Marine Geology, Qingdao, China d College of the Coast & Environment, Department of Environmental Sciences, Louisiana State University, Baton Rouge, USA e Inspection & Test Center of Marine Geology, Ministry of Land and Resources, Qingdao, China ARTICLE INFO ABSTRACT Keywords: The Liaohe Delta in Northeast China is one of the ecologically important estuarine deltas in China. It has been Sedimentary evolution formed via the accumulation of sediment discharged by four rivers in the Liaohe Plain that enter Liaodong Bay. Climate changes Twenty-seven 30–40 m long cores recovered from the Liaohe Plain and Liaodong Bay were analyzed for sedi- Human impacts mentary characteristics, grain size, foraminifera species, and ages determined by accelerator mass spectrometry Holocene (AMS) 14C to document the stratigraphical sequence and the spatio-temporal evolution of the Liaohe Delta. Our Liaohe Delta results revealed that the sedimentary environments have evolved from fluvial, tidal flat/estuarine, to neritic and finally to a deltaic environment since the Late Pleistocene. The Holocene transgression arrived at the present coastline at ∼8500 cal a BP and flooded the maximum area of land at ∼7000 cal a BP.