Preparing for Smart Cities Infrastructure the Mi.Net System’S Seamless Communication Capabilities Are Key to Iot, P

Total Page:16

File Type:pdf, Size:1020Kb

Preparing for Smart Cities Infrastructure the Mi.Net System’S Seamless Communication Capabilities Are Key to Iot, P HELPING UTILITIES IMPLEMENT IoT-enabled Technologies ThaT provide acTionable daTa To learn more about IoT-enabled solutions, call 1.844.4.H2O.DATA Preparing for smart cities infrastructure The Mi.Net System’s seamless communication capabilities are key to IoT, p. 8 Experts weigh in on approaches and trends for building a smart water utility, p. 4 What an Internet- of-Things (IoT) driven water network looks like, p. 6 Table of Contents Common Utility Challenges How IoT and Data Are Helping Utilities ioT, or “internet of Things,” is a nexus of technologies incorporating sensor-based data gathering and next-generation networking. The smart technology platform harnesses this ioT networking through the deployment of smart devices a pUblicaTion of mueller WaTer prodUcTs using advanced wireless technologies for remote monitoring and management of water networks. This allows utilities Learn more to tackle problems facing the industry today, such as an aging workforce and the need for real-time water quality about the monitoring. below are five common challenges utilities face that can be addressed with data-driven solutions. impact of IoT In This Issue Challenge Data-Driven Solutions and data Call 1.844.4.H2O.DATA 3 Common Utility Challenges Traditionally, utilities replaced parts of their water mains or distribution networks (1.844.442.6328) to arrange for How IoT and Data are Helping Utilities without having access to information about the condition of the pipes. in many new cutting-edge technologies incorporate sensor- a customized presentation Aging cases, entire lengths of pipe were in good condition, with only parts of them needing based data gathering Infrastructure immediate replacement. gathering actionable data about the water network enables for your utility. utilities to decide on rehabilitation schedules and the methods used, with focus on 4 From the Experts intelligent capital and operational expense planning and controls. Industry Leaders Offer Insight on Smart Water Distribution Systems Q&as with singapore pUb, american Water, booky oren and echologics With the average age of water utility operators currently standing at 55, water Increasing utilities face the retirement of a large portion of their workforce in the next 10 to 15 6 Intelligent Water Technology Aging/Retiring years. along with the loss of skilled personnel will come the loss of system knowledge Efficiencies With IoT-Driven Water Networks Workforce accumulated over their careers. ioT technologies will play a critical role in helping visibility, control and optimization of utility operations to avert this, through the capture, centralization and sharing of data that secure Data-Driven and flexible backhaul approaches collective utility expertise for future generations of water network operators. Solutions 8 Smart Meters Mi.Net® System Prepares Utilities for Full Smart Cities Infrastructure aging water infrastructure has become a reality for Non-Revenue pressure is put on utilities to reduce water losses from both an environmental and advanced network technology enables a complete many utilities, bringing additional challenges to those Water financial standpoint. robust, simple leak detectors and algorithms enable utilities intelligent solution already facing water loss issues, scarce funding, an Management to differentiate between abnormal consumption (e.g., a running tap or a home pipe aging workforce and more. in other industries, “smart” 10 Monitoring and Control & Leak break) and leak events in the network. This capability can help prioritize repair needs internet of Things (ioT) technologies are being utilized to Detection based on the severity and location of the leak. streamline processes and increase efficiencies with great EchoShore®-DX Technology Automates Leak success. such technologies are now becoming available Detection for Smart Utilities for water utilities. continuous remote monitoring for pipeline leaks smart utilities manage their assets through the use of includes data flexibility for utilities automated devices that enable the collection and analysis of 11 Monitoring and Control Real-Time, The advancements in online water quality sensors make it possible to monitor data on usage, flow rates, conditions and more. This enables Remote Meter Shutoff Technology Offers Online Water chlorine levels, ph and temperature in real time. integrating such functionality with I them to take intelligent action that can reduce costs and Opportunity for Action Quality consumption and use-pattern data enables utilities to improve the operation of the nter ultimately deliver the best service to their customers. V disconnects and reconnects are made easier with Monitoring water distribution system, as well as the service offered to their customers. iews This publication, the smart Water handbook, is remote solution and brought to you by Mueller Water products, a single- D source supplier for utilities bringing leading technologies ata P to the industry on aMi, leak detection, remote shutoff, ro V ided automated flushing, pressure management and more. Meters, sensors, leak detection and communication protocols are often installed from Interoperability BY B Thanks to our partners and industry experts who shared multiple vendors within one distribution network, as utilities are typically reluctant of Smart luetech their thoughts and insights on the following pages, we’ve to rely on a single vendor. solutions such as the lora communications platform and Network defined what a smart water utility is and how smart www.smartwaterbook.com device-agnostic data analytics facilitate the integration of existing databases and R Devices esearch technologies solve common challenges, as well as smart networks with new solutions. how utilities of any size can start implementing Copyright © 2016 Mueller Co. LLC. All Rights Reserved. Trademarks and patents and patent applications covering products marked with a “section symbol” § are ioT technologies. owned by Mueller Co. LLC or its affiliates. For details, visit www.mwppat.com. 2 smartwater HANDBOOK smartwater HANDBOOK 3 From the Experts Industry Leaders Offer Insight on Smart Water Distribution Systems Don Shields, P.E. Michael Toh Booky Oren Marc Bracken, P.E. vice president & director director, Water supply (network) chairman and CEO, vice president & general of engineering, new Jersey department, pUb, singapore’s booky oren global Manager, echologics american Water national Water agency Water Technologies Is there a common Describe what smart water Can you provide an example Do the core technologies industry definition distribution looks like to you. of how water utilities are required to build a smart of a smart water utility? a smart water grid system integrates information effectively collecting and using data? water distribution system exist today? a smart water utility effectively manages its water and communications technologies (ICT) into the There are many with whom i am familiar, but no five years ago, the technology did not exist. The resources and efficiently uses them to best deliver on management of the water distribution system. one utility has the perfect answer, so smart water industry required low-power electronics with high both cost and quality to customers. it also collects sensors, meters, digital controls and analytics systems continue to be an evolving “process.” even onboard memory and industrial ioT communication and uses data efficiently to make informed decisions, are used to automate, monitor and control the a highly advanced water utility continues to put a technologies. We started using mesh network radio ensuring sustainability of its system. This definition transmission and distribution of water, ensuring that lot of effort into improving the way it is monitoring and achieved an 85% communication efficiency, has remained consistent throughout the industry; it is efficiently delivered only when and where it is the system. but there was still room for improvement. last however, it is evolving with time. needed, and with good quality. another dimension to this question is why a year, many technologies came to the market, an The advances in ICT enable us to capture and store utility needs a smart water system in the first example being lora from semtech—a long-range, What is an example of how American Water is enormous pools of data, and to perform powerful place. historically, water was managed based on low-power application that has plenty of bandwidth collecting and using data to optimize operations? analytics and predictive analysis to contribute toward assumption of use, and this is acceptable without and can send data up to 5 miles on a public network. american Water effectively monitors its system greater efficiency and effectiveness in our water any budget constraint and regulations. however, previously, we were only getting around a 1,500- to collect and gather information to determine resource management. as our population continues budget constraints and regulations are a reality. foot range from spread-spectrum radios. sending water quality, and for asset management purposes to grow, our water infrastructure must be ready to We are thus moving away from an era in which we data on a public network, rather than a proprietary where key aspects of the distribution systems are meet an increasing demand while maintaining good manage our infrastructure by assumption, to an era communication network, prevents utilities [from] monitored (e.g., pressure, flow and leaks). asset condition.
Recommended publications
  • Design and Production of Drinking-Water Supply Network
    OUR EXPERT ASSESSMENT DESIGN AND PRODUCTION OF A DRINKING-WATER SUPPLY NETWORK Especially committed to fighting water related diseases and unsanitary conditions, SOLIDARITES INTERNATIONAL (SI) has been involved in the field of access to drinking water and sanitation for almost 35 years. The annual number of deaths caused by these diseases has risen to 2.6 million, making it one of the world’s leading causes of death; amongst these victims, 1.8 million children, aged less than 15, still succumb... Today, when more than a billion people are still deprived of access to drinking water and permanently exposed to water-related diseases, the right to drinking water remains a vital concern in developing countries. In this regard, drinking-water supply networks represent quite a relevant technical solution for supplying water to refugees, as well as to dense populations and areas with high population growth. In order to further advance technical and socioeconomic diagnoses, SOLIDARITES INTERNATIONAL has led many projects, sometimes lasting years, in partnership with institutions and legitimate operators from the water sector. Hydraulic components and civil engineering relating to rehabilitation, growth and the construction of infrastructure are inseparable from the accompanying social measures, which involve placing sustainability, with the concerted management of water services and the participation of the community, at the heart of the process. Repairing, renovating or building a drinking-water network is a relevant ANALYSING AND ADAPTING technical response when the humanitarian emergency situation requires the re-establishment of the water supply and following the very first emergency TO COMPLEX measures (tanks, mobile treatment units).
    [Show full text]
  • Water Supply Asset Management Plan November 2012 8.12 8.1 8.10 8.9 8.8 8.7 8.6 8.5 8.4 8.2 8.1 8
    Greater Wellington Water Water Supply Asset Management Plan November 2012 Table of Contents 1. Executive summary 5 1.1 Overview 5 1.2 Asset valuation 5 1.3 Levels of service 5 1.4 Future demand 5 November 2012 1.5 Financial forecast 6 1.7 Asset management practises 6 2. Introduction 8 2.1 Asset management plan development and review process 8 2.2 Objectives of plan 8 2.3 Relationship with other plans and regulations 8 3. Business overview and activities 10 3.1 Overview of the wholesale water supply network 10 3.2 Organisational structure 13 3.3 Rationale for Greater Wellington involvement 13 3.4 Significant effects of the water supply activity 13 3.5 Key issues for activity 13 4. Levels of service 16 4.1 Identifying key stakeholders and their requirements 16 4.2 Design and consultation to define the desired service level 17 4.3 Define the current levels of service the organisation delivers 18 4.4 Measure and report to community on level of service achieved 18 5. Population and demand 20 ASSET MANAGEMENT PLAN SUPPLY WATER 5.1 Historic demand for wholesale water 20 5.2 Summer peak demand 22 5.3 Future demand drivers for wholesale water 22 5.4 Forecast demand 23 5.5 Demand management planning 24 5.6 Demand management strategies 24 6. System capacity 27 6.1 Existing system capacity 27 6.2 Meeting future demand 27 7. Risk management 30 7.1 Risk assessment of physical infrastructure 30 7.2 Asset criticality 30 7.3 Key risk mitigation measures 30 8.
    [Show full text]
  • Water Supply Network - Infrastructure Map IM7-7 Dec 2007
    SOUTHPORTSOUTHPORT Water Supply Network - Infrastructure Map IM7-7 Dec 2007 E BENOWABENOWA SURFERSSURFERS PARADISEPARADISE BUNDALLBUNDALL BROADBEACHBROADBEACH BROADBEACHBROADBEACH WATERSWATERS CLEARCLEAR ISLANDISLANDISLAND WATERSWATERS MERMAIDMERMAID BEACHBEACH MERMAIDMERMAID WATERSWATERS MIAMIMIAMI ROBINAROBINA BURLEIGHBURLEIGH WATERSWATERS BURLEIGHBURLEIGH STEPHENSSTEPHENS HEADSHEADS Adjoining Maps Series 1000 0 1000 2000 3000 m Legend 4 5 © Gold Coast City Council 2007 Based on Cadastral Data provided with the permission of the Department of Natural Resources and Water (current as at October 2007). While every care is taken to ensure the accuracy of this data, the Gold Coast 6 7 EXISTING NETWORK EXISTING RESERVIOR City Council makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all PROPOSED NETWORK PROPOSED RESERVOIR SITES responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which you might incur as a result of the data being inaccurate or 2002 - 06 2002 - 06 incomplete in any way and for any reason. 8 9 10 2007 - 11 2007 - 11 © The State of Queensland (Department of Natural Resources and Water) 2007 While every care is taken to ensure the accuracy of this data, the Department 2012 - 21 2012 - 21 of Natural Resources and Water makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and 2022 - 51 2022 - 51 all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which you might incur as a result of the data being inaccurate or incomplete in any way and for any reason.
    [Show full text]
  • Moving Towards Sustainable and Resilient Smart Water Grids
    Challenges 2014, 5, 123-137; doi:10.3390/challe5010123 OPEN ACCESS challenges ISSN 2078-1547 www.mdpi.com/journal/challenges Concept Paper Moving Towards Sustainable and Resilient Smart Water Grids Michele Mutchek 1 and Eric Williams 2,* 1 Department of Civil, Environmental & Sustainable Engineering, Arizona State University, Engineering G-Wing, 501 E Tyler Mall, Tempe, AZ 85287, USA; E-Mail: [email protected] 2 Golisano Institute for Sustainability, Rochester Institute of Technology, 111 Lomb Memorial Drive, Sustainability Hall, Rochester, NY 14623, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-585-475-7211; Fax: +1-585-475-5455. Received: 5 October 2013; in revised form: 26 February 2014 / Accepted: 5 March 2014 / Published: 21 March 2014 Abstract: Urban water systems face sustainability and resiliency challenges including water leaks, over-use, quality issues, and response to drought and natural disasters. Information and communications technology (ICT) could help address these challenges through the development of smart water grids that network and automate monitoring and control devices. While progress is being made on technology elements, as a system, the smart water grid has received scant attention. This article aims to raise awareness of the systems-level idea of smart water grids by reviewing the technology elements and their integration into smart water systems, discussing potential sustainability and resiliency benefits, and challenges relating to the adoption of smart water grids. Water losses and inefficient use stand out as promising areas for applications of smart water grids. Potential barriers to the adoption of smart water grids include lack of funding for research and development, economic disincentives as well as institutional and political structures that favor the current system.
    [Show full text]
  • A Framework for Identifying the Critical Region in Water Distribution Network for Reinforcement Strategy from Preparation Resilience
    sustainability Article A Framework for Identifying the Critical Region in Water Distribution Network for Reinforcement Strategy from Preparation Resilience Mingyuan Zhang 1,* , Juan Zhang 1 , Gang Li 2 and Yuan Zhao 1 1 Department of Construction Management, Dalian University of Technology, Dalian 116000, China; [email protected] (J.Z.); [email protected] (Y.Z.) 2 School of Civil Engineering, Dalian University of Technology, Dalian 116000, China; [email protected] * Correspondence: [email protected] Received: 21 October 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Water distribution networks (WDNs), an interconnected collection of hydraulic control elements, are susceptible to a small disturbance that may induce unbalancing flows within a WDN and trigger large-scale losses and secondary failures. Identifying critical regions in a water distribution network (WDN) to formulate a scientific reinforcement strategy is significant for improving the resilience when network disruption occurs. This paper proposes a framework that identifies critical regions within WDNs, based on the three metrics that integrate the characteristics of WDNs with an external service function; the criticality of urban function zones, nodal supply water level and water shortage. Then, the identified critical regions are reinforced to minimize service loss due to disruptions. The framework was applied for a WDN in Dalian, China, as a case study. The results showed the framework efficiently identified critical regions required for effective WDN reinforcements. In addition, this study shows that the attributes of urban function zones play an important role in the distribution of water shortage and service loss of each region.
    [Show full text]
  • Strategic Evaluation on Environment and Risk Prevention Under Structural and Cohesion Funds for the Period 2007-2013
    Strategic Evaluation of Environment and Risk Prevention – Executive Summary STRATEGIC EVALUATION ON ENVIRONMENT AND RISK PREVENTION UNDER STRUCTURAL AND COHESION FUNDS FOR THE PERIOD 2007-2013 Contract No. 2005.CE.16.0.AT.016. National Evaluation Report for Latvia Executive Summary Directorate General Regional Policy A report submitted by in association with Mrs. Evija Brante Mr. Stijn Vermoote ELLE ECOLAS nv Skolas street 10-8 Lange Nieuwstraat 43, Riga, LV-1010 2000 Antwerp Estonia Belgium TEL +371 724.24.11 TEL +32/3/233.07.03 [email protected] [email protected] Date: November 10th, 2006 GHK Brussels Rue de la Sablonnière, 25 B-1000 Brussels Tel: +32 (0)2 275 0100; Fax : +32 (2) 2750109 GHK London 526 Fulham Road London, United Kingdom SW6 5NR Tel: +44 20 7471 8000; Fax: +44 20 7736 0784 www.ghkint.com GHK, ECOLAS, IEEP, CE 1 EXECUTIVE SUMMARY – ENVIRONMENTAL INVESTMENT PRIORITIES IN LATVIA 1.1 PART 1: CURRENT SITUATION 1.1.1 State of the environment Water supply Available groundwater resources from the deep aquifer are abundant, with up to 4% of the resource currently being consumed, the total daily consumption being 1,4 million m³ of water. Water use in Latvia during 1990 – 2002 has decreased more than two times. Appropriate drinking water is being provided for only around 40% of the population. Most inhabitants in urban areas are provided with access to the centralised water supply network, however, much of this network is in bad technical condition and consumers may receive water of lower quality than that achieved by treatment.
    [Show full text]
  • The World Bank
    Document of The World Bank FOR OFFICIAL USE ONLY Report No: 84065-UA INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT PROJECT APPRAISAL DOCUMENT ON A PROPOSED LOAN IN THE AMOUNT OF US$300 MILLION AND A PROPOSED CLEAN TECHNOLOGY FUND LOAN IN THE AMOUNT OF US$50.00 MILLION TO UKRAINE FOR A SECOND URBAN INFRASTRUCTURE PROJECT Sustainable Development Department Europe and Central Asia Region This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS (Exchange Rate Effective January 16, 2014) Currency Unit = UAH 8.34 UAH = US$1 FISCAL YEAR January 1 – December 31 ABBREVIATIONS AND ACRONYMS ADSCR Annual Debt Service Coverage Ratio KfW Kreditanstalt für Wiederaufbau ACS Automatic Calling System Minregion Ministry of Regional Development, Construction, Housing and Communal Services BOD Biological Oxygen Demand MoE Ministry of Economic Development and Trade CO2eq CO2 equivalent MoF Ministry of Finance CPMU Central Project Management Unit MWH Megawatt Hours CPS Country Partnership Strategy NPV Net Present Value CSO Civil Society Organization NRW Non-Revenue Water CTF Clean Technology Fund O&M Operations and Maintenance DB Design-Build OCCR Operating Cost Coverage Ratio EBITDA ORAF Operational Risk Assessment Framework EBRD European Bank for Reconstruction and PAP Project Affected Persons Development EIRR Economic Internal Rate of Return P-RAMS Procurement Risk Assessment Module
    [Show full text]
  • WATER DISTRIBUTION NETWORK REHABILITATION: Selection and Scheduling of Pipe Rehabilitation Alternatives
    WATER DISTRIBUTION NETWORK REHABILITATION: Selection and Scheduling of Pipe Rehabilitation Alternatives Yehuda Kleiner A thesis subrnitted in conformity rith the requirernents for the degree of Doctor of Philosophy Graduate Department of Civil Engineering University of Toronto @ copyright by Yehuda Kleiner 199 7 National Library Bibliothèque nationale 1*1 .canada du Canada Acquisitions and Acquisitions et Bibliographie Services seMces bibliographiques 395 Wellington Street 335, rue Wellington Ottawa ON KiA ON4 Ottawa ON KIA ON4 Canada Canada The author has granted a non- L'auteur a accordé une Licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfoxm, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïIm, de reproduction sur papier ou sur fonnat électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts f?om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être Unprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT Kleiner, Yehuda, 199 7. Water distribution nehvork rehabilitation: srlection and scliedding of pipe rehabilitation afrernatives.A thesis subrnitted in conformity with the requirements for the degree cf Doctor of Philosophy. Graduate Department of Civil engineering. University of Toronto. The most expensive cornponent of a water supply system is the distribution network.
    [Show full text]
  • WSP) • Poorer, Dispersed, and Less Organized Communities Tend to Be Excluded; to Conceptualize a More Comprehensive Approach to PPP in the Rural Context
    The Water and Sanitation Program is an ImprovingPrivate Water Operator Utility Services ModelsFebruary Forfor 200 international partnership for improving water The PoorCommunity Through Delegated Water Supply and sanitation sector policies, practices, and Management capacities to serve poor people Field Note Rural Water Supply Series A global review of private operator experiences in rural areas Private Operator Models for Community Water Supply Poor cost recovery and the ‘feast or famine’ project approach to funding have hurt the sustainability of rural water supply and impeded scaling up coverage. This Field Note highlights findings from a global review of private operator experiences in rural areas. The current rural water supply paradigm may be best described as ‘feast or famine’ project-based funding linked with community management of the installed infrastructure. a significant advantage over international Summary firms, as the scale of operations decreases. As more and more small towns come under In cities and towns, private firms and individuals receive contracts to build, improved local private sector management regimens, it is expected that PPP in the operate, and maintain municipal water supplies as an alternative to day-to- disperse rural context will expand as well. day management by local government or user organizations. A literature review has uncovered a wide variety of approaches from around the world The current rural water supply paradigm for establishing such Public-Private Partnerships (PPP) in rural areas as well. may be best described as ‘feast or famine’ project-based funding linked with Within the past seven years, several authors have completed reviews on community management of the installed private operators managing rural water supplies and other public services.
    [Show full text]
  • Morphogenesis of Urban Water Distribution Networks: a Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply
    entropy Article Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply Jonatan Zischg * , Wolfgang Rauch and Robert Sitzenfrei Unit of Environmental Engineering, University of Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria; [email protected] (W.R.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +43-512-507-62160 Received: 26 July 2018; Accepted: 13 September 2018; Published: 14 September 2018 Abstract: Cities and their infrastructure networks are always in motion and permanently changing in structure and function. This paper presents a methodology for automatically creating future water distribution networks (WDNs) that are stressed step-by-step by disconnection and connection of WDN parts. The associated effects of demand shifting and flow rearrangements are simulated and assessed with hydraulic performances. With the methodology, it is possible to test various planning and adaptation options of the future WDN, where the unknown (future) network is approximated via the co-located and known (future) road network, and hence different topological characteristics (branched vs. strongly looped layout) can be investigated. The reliability of the planning options is evaluated with the flow entropy, a measure based on Shannon’s informational entropy. Uncertainties regarding future water consumption and water loss management are included in a scenario analysis. To avoid insufficient water supply to customers during the transition process from an initial to a final WDN state, an adaptation concept is proposed where critical WDN components are replaced over time. Finally, the method is applied to the drastic urban transition of Kiruna, Sweden.
    [Show full text]
  • Urbanization and Water Privatization in the South Author(S): Karen Bakker Source: the Geographical Journal, Vol
    Archipelagos and Networks: Urbanization and Water Privatization in the South Author(s): Karen Bakker Source: The Geographical Journal, Vol. 169, No. 4 (Dec., 2003), pp. 328-341 Published by: Blackwell Publishing on behalf of The Royal Geographical Society (with the Institute of British Geographers) Stable URL: http://www.jstor.org/stable/3451572 . Accessed: 17/08/2011 16:56 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Blackwell Publishing and The Royal Geographical Society (with the Institute of British Geographers) are collaborating with JSTOR to digitize, preserve and extend access to The Geographical Journal. http://www.jstor.org The GeographicalJournal, Vol. 169, No. 4, December2003, pp. 328-341 Archipelagosand networks: urbanization and water privatization in the South KARENBAKKER Departmentof Geography,University of BritishColumbia, 1984 WestMall, Vancouver,BC, Canada V6T 1Z2 E-mail:[email protected] Thispaper was accepted for publication in February2003 This paper examines the interrelationship between urbanization and water supply privatization in cities in the global South. The purpose of the paper is not to evaluate the impacts of privatization; rather, the paper analyses the differences in pathways and modes of water supply privatization, focusing on urban and contrasting with rural areas.
    [Show full text]
  • Deterioration and Optimal Rehabilitation Modelling for Urban Water Distribution Systems
    Deterioration and Optimal Rehabilitation Modelling for Urban Water Distribution Systems Yi Zhou DETERIORATION AND OPTIMAL REHABILITATION MODELLING FOR URBAN WATER DISTRIBUTION SYSTEMS Yi ZHOU DETERIORATION AND OPTIMAL REHABILITATION MODELLING FOR URBAN WATER DISTRIBUTION SYSTEMS DISSERTATION Submitted in fulfillment of the requirements of the Board for Doctorates of Delft University of Technology and of the Academic Board of the IHE Delft Institute for Water Education for the Degree of DOCTOR to be defended in public on Monday, 7 May 2018, at 12.30 hours in Delft, the Netherlands by Yi ZHOU Master of Science in Environment Engineering, Wuhan University born in Hubei, China This dissertation has been approved by the promotor: Prof. dr. K. Vairavamoorthy Composition of the doctoral committee: Chairman Rector Magnificus TU Delft Vice-Chairman Rector IHE Delft Prof. dr. K. Vairavamoorthy IHE Delft / TU Delft, promotor Independent members: Prof.dr.ir. L.C. Rietveld TU Delft Prof.dr.ir. C. Zevenbergen IHE Delft / TU Delft Prof.dr. S. Mohan Indian Institute of Technology, Madras, India Prof.dr. J. Xia Wuhan University, China Prof.dr. ir. A. E. Mynett TU Delft/ IHE Delft, reserve member CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informal business © 2018, Yi Zhou Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers, the author nor IHE Delft for any damage to the property or persons as a result of operation or use of this
    [Show full text]