Notes on Super Math Bernstein–Deligne–Morgan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Operad Theory
AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification. -
1. Introduction There Is a Deep Connection Between Algebras and the Categories of Their Modules
Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 09{15 SEMI-PERFECT CATEGORY-GRADED ALGEBRAS IVAN YUDIN Abstract: We introduce the notion of algebras graded over a small category and give a criterion for such algebras to be semi-perfect. AMS Subject Classification (2000): 18E15,16W50. 1. Introduction There is a deep connection between algebras and the categories of their modules. The interplay between their properties contributes to both the structure theory of algebras and the theory of abelian categories. It is often the case that the study of the category of modules over a par- ticular algebra can lead to the use of other abelian categories, which are non-equivalent to module categories over any algebra. One of such exam- ples is the category of modules over a C-graded algebra, where C is a small category. Such categories appear in the joint work of the author and A. P. Santana [18] on homological properties of Schur algebras. Algebras graded over a small category generalise the widely known group graded algebras (see [16, 12, 8, 15, 14]), the recently introduced groupoid graded algebras (see [10, 11, 9]), and Z-algebras, used in the theory of operads (see [17]). One of the important properties of some abelian categories, that consider- ably simplifies the study of their homological properties, is the existence of projective covers for finitely generated objects. Such categories were called semi-perfect in [7]. We give in this article the characterisation of C-graded algebras whose categories of modules are semi-perfect. -
Equivariant De Rham Cohomology and Gauged Field Theories
Equivariant de Rham cohomology and gauged field theories August 15, 2013 Contents 1 Introduction 2 1.1 Differential forms and de Rham cohomology . .2 1.2 A commercial for supermanifolds . .3 1.3 Topological field theories . .5 2 Super vector spaces, super algebras and super Lie algebras 11 2.1 Super algebras . 12 2.2 Super Lie algebra . 14 3 A categorical Digression 15 3.1 Monoidal categories . 15 3.2 Symmetric monoidal categories . 17 4 Supermanifolds 19 4.1 Definition and examples of supermanifolds . 19 4.2 Super Lie groups and their Lie algebras . 23 4.3 Determining maps from a supermanifold to Rpjq ................ 26 5 Mapping supermanifolds and the functor of points formalism 31 5.1 Internal hom objects . 32 5.2 The functor of points formalism . 34 5.3 The supermanifold of endomorphisms of R0j1 .................. 36 5.4 Vector bundles on supermanifolds . 37 5.5 The supermanifold of maps R0j1 ! X ...................... 41 5.6 The algebra of functions on a generalized supermanifold . 43 1 1 INTRODUCTION 2 6 Gauged field theories and equivariant de Rham cohomology 47 6.1 Equivariant cohomology . 47 6.2 Differential forms on G-manifolds. 49 6.3 The Weil algebra . 53 6.4 A geometric interpretation of the Weil algebra . 57 1 Introduction 1.1 Differential forms and de Rham cohomology Let X be a smooth manifold of dimension n. We recall that Ωk(X) := C1(X; ΛkT ∗X) is the vector space of differential k-forms on X. What is the available structure on differential forms? 1. There is the wedge product Ωk(M) ⊗ Ω`(M) −!^ Ωk+`(X) induced by a vector bundle homomorphism ΛkT ∗X ⊗ Λ`T ∗X −! Λk+`T ∗X ∗ Ln k This gives Ω (X) := k=0 Ω (X) the structure of a Z-graded algebra. -
Dissertation Superrings and Supergroups
DISSERTATION Titel der Dissertation Superrings and Supergroups Verfasser Dr. Dennis Bouke Westra zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr.rer.nat.) Wien, Oktober 2009 Studienkennzahl lt. Studienblatt: A 091 405 Studienrichtung lt. Studienblatt: Mathematik Betreuer: Univ.-Prof. Dr. Peter Michor Contents 1 Introduction 1 1.1 Anexample....................................... .. 1 1.2 Motivation ...................................... ... 1 1.3 Plan............................................ 2 1.4 Notationandconventions . ....... 2 2 Super vector spaces 5 2.1 Supervectorspaces............................... ...... 5 2.2 Liesuperalgebras................................ ...... 7 3 Basics of superrings and supermodules 11 3.1 Superringsandsuperalgebras . ......... 11 3.2 Supermodules.................................... .... 15 3.3 Noetheriansuperrings . ....... 17 3.4 Artiniansuperrings. .. .. .. .. .. .. .. .. .. .. .. .. .. ....... 20 3.5 Splitsuperrings................................. ...... 22 3.6 Grassmannenvelopes.. .. .. .. .. .. .. .. .. .. .. .. .. ...... 23 3.7 Freemodulesandsupermatrices . ........ 24 4 Primes and primaries 29 4.1 Propertiesofprimeideals . ........ 29 4.2 Primary ideals and primary decompositions . ............ 35 4.3 Primarydecompositions . ....... 36 5 Localization and completion 39 5.1 Localization.................................... ..... 39 5.2 Application to Artinian superrings . ........... 45 5.3 Geometricsuperalgebras. ........ 46 5.4 Superschemes................................... -
Z3-Graded Geometric Algebra 1 Introduction
Adv. Studies Theor. Phys., Vol. 4, 2010, no. 8, 383 - 392 Z3-Graded Geometric Algebra Farid Makhsoos Department of Mathematics Faculty of Sciences Islamic Azad University of Varamin(Pishva) Varamin-Tehran-Iran Majid Bashour Department of Mathematics Faculty of Sciences Islamic Azad University of Varamin(Pishva) Varamin-Tehran-Iran [email protected] Abstract By considering the Z2 gradation structure, the aim of this paper is constructing Z3 gradation structure of multivectors in geometric alge- bra. Mathematics Subject Classification: 16E45, 15A66 Keywords: Graded Algebra, Geometric Algebra 1 Introduction The foundations of geometric algebra, or what today is more commonly known as Clifford algebra, were put forward already in 1844 by Grassmann. He introduced vectors, scalar products and extensive quantities such as exterior products. His ideas were far ahead of his time and formulated in an abstract and rather philosophical form which was hard to follow for contemporary math- ematicians. Because of this, his work was largely ignored until around 1876, when Clifford took up Grassmann’s ideas and formulated a natural algebra on vectors with combined interior and exterior products. He referred to this as an application of Grassmann’s geometric algebra. Due to unfortunate historic events, such as Clifford’s early death in 1879, his ideas did not reach the wider part of the mathematics community. Hamil- ton had independently invented the quaternion algebra which was a special 384 F. Makhsoos and M. Bashour case of Grassmann’s constructions, a fact Hamilton quickly realized himself. Gibbs reformulated, largely due to a misinterpretation, the quaternion alge- bra to a system for calculating with vectors in three dimensions with scalar and cross products. -
Dimension Formula for Graded Lie Algebras and Its Applications
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 351, Number 11, Pages 4281–4336 S 0002-9947(99)02239-4 Article electronically published on June 29, 1999 DIMENSION FORMULA FOR GRADED LIE ALGEBRAS AND ITS APPLICATIONS SEOK-JIN KANG AND MYUNG-HWAN KIM Abstract. In this paper, we investigate the structure of infinite dimensional Lie algebras L = α Γ Lα graded by a countable abelian semigroup Γ sat- isfying a certain finiteness∈ condition. The Euler-Poincar´e principle yields the denominator identitiesL for the Γ-graded Lie algebras, from which we derive a dimension formula for the homogeneous subspaces Lα (α Γ). Our dimen- sion formula enables us to study the structure of the Γ-graded2 Lie algebras in a unified way. We will discuss some interesting applications of our dimension formula to the various classes of graded Lie algebras such as free Lie algebras, Kac-Moody algebras, and generalized Kac-Moody algebras. We will also dis- cuss the relation of graded Lie algebras and the product identities for formal power series. Introduction In [K1] and [Mo1], Kac and Moody independently introduced a new class of Lie algebras, called Kac-Moody algebras, as a generalization of finite dimensional simple Lie algebras over C. These algebras are ususally infinite dimensional, and are defined by the generators and relations associated with generalized Cartan matrices, which is similar to Serre’s presentation of complex semisimple Lie algebras. In [M], by generalizing Weyl’s denominator identity to the affine root system, Macdonald obtained a new family of combinatorial identities, including Jacobi’s triple product identity as the simplest case. -
Simple Weight Q2(ℂ)-Supermodules
U.U.D.M. Project Report 2009:12 Simple weight q2( )-supermodules Ekaterina Orekhova ℂ Examensarbete i matematik, 30 hp Handledare och examinator: Volodymyr Mazorchuk Juni 2009 Department of Mathematics Uppsala University Simple weight q2(C)-supermodules Ekaterina Orekhova June 6, 2009 1 Abstract The first part of this paper gives the definition and basic properties of the queer Lie superalgebra q2(C). This is followed by a complete classification of simple h-supermodules, which leads to a classification of all simple high- est and lowest weight q2(C)-supermodules. The paper also describes the structure of all Verma supermodules for q2(C) and gives a classification of finite-dimensional q2(C)-supermodules. 2 Contents 1 Introduction 4 1.1 General definitions . 4 1.2 The queer Lie superalgebra q2(C)................ 5 2 Classification of simple h-supermodules 6 3 Properties of weight q-supermodules 11 4 Universal enveloping algebra U(q) 13 5 Simple highest weight q-supermodules 15 5.1 Definition and properties of Verma supermodules . 15 5.2 Structure of typical Verma supermodules . 27 5.3 Structure of atypical Verma supermodules . 28 6 Finite-Dimensional simple weight q-supermodules 31 7 Simple lowest weight q-supermodules 31 3 1 Introduction Significant study of the characters and blocks of the category O of the queer Lie superalgebra qn(C) has been done by Brundan [Br], Frisk [Fr], Penkov [Pe], Penkov and Serganova [PS1], and Sergeev [Se1]. This paper focuses on the case n = 2 and gives explicit formulas, diagrams, and classification results for simple lowest and highest weight q2(C) supermodules. -
Bases of Infinite-Dimensional Representations Of
BASES OF INFINITE-DIMENSIONAL REPRESENTATIONS OF ORTHOSYMPLECTIC LIE SUPERALGEBRAS by DWIGHT ANDERSON WILLIAMS II Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2020 Copyright c by Dwight Anderson Williams II 2020 All Rights Reserved ACKNOWLEDGEMENTS God is the only mathematician who should say that the proof is trivial. Thank you God for showing me well-timed hints and a few nearly-complete solutions. \The beginning of the beginning." Thank you Dimitar Grantcharov for advising me, for allowing your great sense of humor, kindness, brilliance, respect, and mathe- matical excellence to easily surpass your great height{it is an honor to look up to you and to look forward towards continued collaboration. Work done by committee Thank you to my committe members (alphabetically listed by surname): Edray Goins, David Jorgensen, Christopher Kribs, Barbara Shipman, and Michaela Vancliff. April 30, 2020 iii ABSTRACT BASES OF INFINITE-DIMENSIONAL REPRESENTATIONS OF ORTHOSYMPLECTIC LIE SUPERALGEBRAS Dwight Anderson Williams II, Ph.D. The University of Texas at Arlington, 2020 Supervising Professor: Dimitar Grantcharov We provide explicit bases of representations of the Lie superalgebra osp(1j2n) obtained by taking tensor products of infinite-dimensional representation and the standard representation. This infinite-dimensional representation is the space of polynomials C[x1; : : : ; xn]. Also, we provide a new differential operator realization of osp(1j2n) in terms of differential operators of n commuting variables x1; : : : ; xn and 2n anti-commuting variables ξ1; : : : ; ξ2n. -
Ricci Measure for Some Singular Riemannian Metrics
Math. Ann. (2016) 365:449–471 DOI 10.1007/s00208-015-1288-7 Mathematische Annalen Ricci measure for some singular Riemannian metrics John Lott1 Received: 10 April 2015 / Revised: 14 August 2015 / Published online: 4 September 2015 © Springer-Verlag Berlin Heidelberg 2015 Abstract We define the Ricci curvature, as a measure, for certain singular torsion- free connections on the tangent bundle of a manifold. The definition uses an integral formula and vector-valued half-densities. We give relevant examples in which the Ricci measure can be computed. In the time dependent setting, we give a weak notion of a Ricci flow solution on a manifold. 1 Introduction There has been much recent work about metric measure spaces with lower Ricci bounds, particularly the Ricci limit spaces that arise as measured Gromov–Hausdorff limits of smooth manifolds with a uniform lower Ricci bound. In this paper we address the question of whether one can make sense of the Ricci curvature itself on singular spaces. From one’s intuition about a two dimensional cone with total cone angle less than 2π, the Ricci curvature should exist at best as a measure. One natural approach toward a weak notion of Ricci curvature is to use an integral formula, such as the Bochner formula. The Bochner identity says that if ω1 and ω2 are smooth compactly supported 1-forms on a smooth Riemannian manifold M then ∗ ∗ ω1, Ric(ω2) = dω1, dω2+d ω1, d ω2−∇ω1, ∇ω2 dvol . (1.1) M B John Lott [email protected] 1 Department of Mathematics, University of California - Berkeley, Berkeley, CA 94720-3840, USA 123 450 J. -
Matrix Computations in Linear Superalgebra Institute De Znvestigaciones En Matemhticas Aplicadas Y Sistemus Universidad Nacionul
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Matrix Computations in Linear Superalgebra Oscar Adolf0 Sanchez Valenzuela* Institute de Znvestigaciones en Matemhticas Aplicadas y Sistemus Universidad Nacionul Authwmu de M&co Apdo, Postal 20-726; Admon. No. 20 Deleg. Alvaro Obreg6n 01000 M&ico D.F., M&co Submitted by Marvin D. Marcus ABSTRACT The notions of supervector space, superalgebra, supermodule, and finite dimen- sional free super-module over a supercommutative superalgebra are reviewed. Then, a functorial correspondence is established between (free) supermodule morphisms and matrices with coefficients in the corresponding supercommutative superalgebra. It is shown that functoriality requires the rule for matrix multiplication to be different from the usual one. It has the advantage, however, of making the analogues of the nongraded formulas retain their familiar form (the chain rule is but one example of this). INTRODUCTION This paper is intended to serve as reference for definitions and conven- tions behind our work in super-manifolds: [6], [7], and [8]. More important perhaps, is the fact that we show here how computations have to be carried out in a consistent way within the category of supermodules over a super- commutative superalgebra-a point that has not been stressed in the litera- ture so far., To begin with, we shall adhere to the standard usage of the prefix super by letting it stand for Z,-graded, as in [l]. Thus, we shall review the notions *Current address: Centro de Investigacibn en Matemiticas, CIMAT, Apartado Postal 402, C.P. -
Determinants of Complexes
APPENDIX A Determinants of Complexes Complexes Let k be a field. A complex of k-vector spaces is a graded vector space W· = EBieZ Wi together with a family of linear operators di+l Odi = o. The spaces Wi are called the terms of W·. Throughout this Appendix we shall assume that all but finitely many tenns of a complex are zero. Cohomology spaces of a complex w· are defined as Hi (W·) = Ker(di)/Im(di_l). A complex w· is called exact if all Hi (W·) are equal to zero. Example 1. Any linear operator between two vector spaces, say, w- 1 and Wo, can be regarded as a complex with only two non-zero tenns: Such a complex is exact if and only if d_1 is invertible. For any graded vector space w· and any m E Z we shall denote by W·[m] the same vector space but with the grading shifted by m: The same notation will be used for complexes. Let v· and w· be two complexes of vector spaces. A morphism of complexes J : V· -+ w· is a collection of linear operators /; : Vi -+ Wi which commute with the differentials in v· and w·. The cone of a morphism J is a new complex Cone(f) with tenns Cone(fi = Wi 6) Vi+l and the differential given by d(w, v) = (dw(w) + (-li+1J(v), dv(v»), WE Wi, V E Vi+l. (I) Any morphism of complexes J : V· -+ w· induces a morphism of cohomology spaces Hi (f) : Hi(V.) -+ Hi(W·). -
Supersymmetric Field Theories and Generalized Cohomology
Supersymmetric field theories and generalized cohomology Stephan Stolz and Peter Teichner Contents 1. Results and conjectures 1 2. Geometric field theories 11 3. Euclidean field theories and their partition function 32 4. Supersymmetric Euclidean field theories 43 5. Twisted field theories 50 6. A periodicity theorem 58 References 61 1. Results and conjectures This paper is a survey of our mathematical notions of Euclidean field theories as models for (the cocycles in) a cohomology theory. This subject was pioneered by Graeme Segal [Se1] who suggested more than two decades ago that a cohomology theory known as elliptic cohomology can be described in terms of 2-dimensional (conformal) field theories. Generally what we are looking for are isomorphisms of the form ∼ n (1.1) fsupersymmetric field theories of degree n over Xg =concordance = h (X) where a field theory over a manifold X can be thought of as a family of field theories parametrized by X, and the abelian groups hn(X); n 2 Z, form some (generalized) cohomology theory. Such an isomorphism would give geometric cocycles for these cohomology groups in terms of objects from physics, and it would allow us to use the computational power of algebraic topology to determine families of field theories up to concordance. To motivate our interest in isomorphisms of type (1.1), we recall the well-known isomorphism ∼ 0 (1.2) fFredholm bundles over Xg =concordance = K (X); Supported by grants from the National Science Foundation, the Max Planck Society and the Deutsche Forschungsgemeinschaft. [2010] Primary 55N20 Secondary 11F23 18D10 55N34 57R56 81T60. 1 2 STEPHAN STOLZ AND PETER TEICHNER where K0(X) is complex K-theory.