Determinants of Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Determinants of Complexes APPENDIX A Determinants of Complexes Complexes Let k be a field. A complex of k-vector spaces is a graded vector space W· = EBieZ Wi together with a family of linear operators di+l Odi = o. The spaces Wi are called the terms of W·. Throughout this Appendix we shall assume that all but finitely many tenns of a complex are zero. Cohomology spaces of a complex w· are defined as Hi (W·) = Ker(di)/Im(di_l). A complex w· is called exact if all Hi (W·) are equal to zero. Example 1. Any linear operator between two vector spaces, say, w- 1 and Wo, can be regarded as a complex with only two non-zero tenns: Such a complex is exact if and only if d_1 is invertible. For any graded vector space w· and any m E Z we shall denote by W·[m] the same vector space but with the grading shifted by m: The same notation will be used for complexes. Let v· and w· be two complexes of vector spaces. A morphism of complexes J : V· -+ w· is a collection of linear operators /; : Vi -+ Wi which commute with the differentials in v· and w·. The cone of a morphism J is a new complex Cone(f) with tenns Cone(fi = Wi 6) Vi+l and the differential given by d(w, v) = (dw(w) + (-li+1J(v), dv(v»), WE Wi, V E Vi+l. (I) Any morphism of complexes J : V· -+ w· induces a morphism of cohomology spaces Hi (f) : Hi(V.) -+ Hi(W·). Amorphism J is called a quasi-isomorphism if all Hi (f) are isomorphisms. The derived category of vector spaces D(Vect) is obtained from the category of complexes of vector spaces by fonnally inverting the quasi-isomorphisms. Determinants of complexes 481 The proofs of several results in this Appendix and in the main body of the book require the use of more general derived categories involving, for example, complexes of modules over a ring R, complexes of sheaves etc. We refrain from giving more detailed background material on this subject referring the reader to first chapters in [Bo], [KS]. Determinantal vector spaces Let W be a vector space of dimension n over a field k. Denote the one-dimensional vector space 1\"(W) by Det(W). For W = 0, we set Det(O) = k. Let now W· = ffi Wi be a finite-dimensional graded vector space. We set (2) where V-I for a one-dimensional vector space V stands for the dual vector space V*. The correspondence W· t---+ Det(W·) defines a functor Det from the cat­ egory of finite-dimensional graded vector spaces and their isomorphisms to the category of one-dimensional vector spaces and isomorphisms. Let us list some basic properties of this functor. Proposition 2. (a) Det takes multiplication by )., E k* to the multiplication by ).,x(w·), where X(W·) = Li(-I)idim(Wi). (b) Let V· and W· be two graded vector spaces. Then there is a natural isomor­ phism (c) There is a natural isomorphism The proofs are obvious. The Euler isomorphism Let (W·, d) be a finite-dimensional complex of vector spaces. Forgetting the differential, we can regard W· simply as a graded vector space. The cohomology spaces of our complex form another graded vector space H·(W·) = EB Hi (W·). Proposition 3. There is a natural isomorphism 482 Appendix A We call E1ld the Euler isomorphism because of the following corollary. Corollary 4. We have an equality To deduce Corollary 4 from Proposition 3 it suffices to consider the action of A. e k* on Det(We ) and Det(He(we». Proof of Proposition 3. As in the standard proof of the above corollary, we split our complex into several short exact sequences: and 0-+ Im(dl-I) -+ Ker(dj ) -+ H'(we) -+ 0 for all i. The proof then reduces to the following particular case. Lemma S. For an exact sequence of vector spaces there is a natural isomorphism Det(B) ~ Det(A) ® Det(e). Proof. Let m, n, p be the dimensions of A, B, e respectively. We identify A with its image in B, and e with the quotient space B / A. Let m P al A ••• A am e Det(A) = /\(A), CI A··· ACp e Det(e) = /\(e). We define a map Det(A) ® Det(e) -+ Det(B) by sending where Cj e B is some representative of Cj e C = B / A. We leave it to the reader to check that this map is well-defined and establishes the desired isomorphism. Corollary 6. Let (we, d) be an exact complex ofk-vector spaces. Then there is a natural identification Determinants of complexes 483 Indeed, Det(H·(W·» is canonically identified with k. (We can easily avoid appealing to the detenninant of the zero vector space by splitting an exact complex into only one group of short exact sequences and then applying Lemma 5.) Note that even if we fix the tenns Wi, the isomorphism in Corollary 6 depends on d in a very essential way. The determinant of a based exact complex Let e = {ea, a = 1, ... , dim(W)} be a basis of a vector space W. Denote by Det(e) E Det(W) the wedge product el /\ ... /\ edim(W). Clearly, Det(e) is a basis (i.e., a non-zero vector) in Det(W). Now let W· = EB Wi be a graded vector space and suppose that e = {e(i)} is a system of bases in all Wi, so that each e(i) isa basis (e(ih, e(ih, ... , e(i)dim(WI)} in Wi. Let us define a non-zero vector Det(e) E Det(W·) as Det(e) = ®Det(e(i))Hi, i where for any non-zero element I of a I-dimensional vector space L the element I-I E L -I = L* is defined by I-I (I) = 1. We call a based complex a system (W·, d, e), where (W·, d) is a complex and e = (e(i)} is a system of bases in all tenns of w·. Definition 7. Let (W·, d, e) be a based exact complex. We call its determinant the number det(W·, d, e) = EUd(Det(e» E k*. Proposition 8. (a) Let W-I ~ WO be a two-term exact complex (i.e., just an isomorphism of vector spaces). Then det(W·, d, e) is the usual determinant ofthe matrix ofd with respect to the chosen bases. (b) For the shifted complex we have det(W·[I], d, e) = det(W·, d, e)-I. Proposition 9. Lete = {e(i)} and f = {f(i)} be two systems of bases in an exact complex (W·, d). Let {A (i)} be the transition matrices, i.e., we have dimWi f(i)p = L A(i)pqe(i)q. q=1 484 Appendix A Then we have det(W·, d, f) = det(W·, d, e) . ndet(A(i))(-I)i. i The proofs of Propositions 8 and 9 are obvious. Example 10. Suppose we have a three-term exact complex O~ A~ B~ C~O. Let {at. ... , am}, {bt. ... , bn }, {CI' ... , cp } be bases in A, B, C respectively, so n = m + p. Let us fix the grading of the complex so that B lies in degree O. Let us calculate the determinant of this exact complex with respect to the chosen bases. Denote by D-I and Do the matrices of d-l and do in the chosen bases; thus, D-I is an n x m matrix of rank m, and Do is a p x n matrix of rank p. Let D-I be the submatrix of D-I given by all the m columns and first m rows. Permuting if necessary the basis vectors bi (i.e., the rows of D_I) we can assume thatdet(D_I) =1= O. Denote by Do thesubmatrixof Do formed by the last p = n-m columns and all the p rows. It follows from our assumption that det( Do) =1= 0 either. Proposition 11. In the above situation, the determinant ofthe complex 0 ~ A ~ B ~ C ~ 0 with respect to the chosen bases is equal to w~:ri/. Proof. Let CI,.'" cp E B have the same meaning as in the proof of Lemma 5, i.e., do(cj) = Cj. Using the construction in Lemma 5, we see that the determinant in question is the coefficient of proportionality d_l(al) A··· A d_l(am ) A CI A··· A Cp bi A··· Abn Since Do is invertible, we can choose all the Cj to be linear combinations of bm+l , ••• , bn • Hence the transition matrix between the bases {d-I (aI), ... , d_ I (am), CI,"" cp } and {bI, ... , bn } in B has the block form (D;I D~-I). The determinant of our complex is the determinant of this matrix, i.e., is equal to det(D:j) as claimed. det(Do) , Thus we have several different ways to calculate the determinant of a three­ term exact complex: they correspond to different choices of a non-zero minor of order m of the matrix D-I. Determinants of complexes 485 The Cayley formula for the determinant of a complex Proposition 11 can be generalized to the case of an exact complex of arbitrary length. For simplicity we assume that the non-zero terms of the complex are situated in degrees between 0 and r > 0 (the general case can be reduced to this one by using Proposition 8 (b». We shall write our complex in the explicit coordinate form (3) so that a totally ordered set Bi is the indexing set for the chosen basis in the i-th term of the complex, and Di is a matrix with columns Bi and rows Bi+I.
Recommended publications
  • 1. Introduction There Is a Deep Connection Between Algebras and the Categories of Their Modules
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 09{15 SEMI-PERFECT CATEGORY-GRADED ALGEBRAS IVAN YUDIN Abstract: We introduce the notion of algebras graded over a small category and give a criterion for such algebras to be semi-perfect. AMS Subject Classification (2000): 18E15,16W50. 1. Introduction There is a deep connection between algebras and the categories of their modules. The interplay between their properties contributes to both the structure theory of algebras and the theory of abelian categories. It is often the case that the study of the category of modules over a par- ticular algebra can lead to the use of other abelian categories, which are non-equivalent to module categories over any algebra. One of such exam- ples is the category of modules over a C-graded algebra, where C is a small category. Such categories appear in the joint work of the author and A. P. Santana [18] on homological properties of Schur algebras. Algebras graded over a small category generalise the widely known group graded algebras (see [16, 12, 8, 15, 14]), the recently introduced groupoid graded algebras (see [10, 11, 9]), and Z-algebras, used in the theory of operads (see [17]). One of the important properties of some abelian categories, that consider- ably simplifies the study of their homological properties, is the existence of projective covers for finitely generated objects. Such categories were called semi-perfect in [7]. We give in this article the characterisation of C-graded algebras whose categories of modules are semi-perfect.
    [Show full text]
  • Z3-Graded Geometric Algebra 1 Introduction
    Adv. Studies Theor. Phys., Vol. 4, 2010, no. 8, 383 - 392 Z3-Graded Geometric Algebra Farid Makhsoos Department of Mathematics Faculty of Sciences Islamic Azad University of Varamin(Pishva) Varamin-Tehran-Iran Majid Bashour Department of Mathematics Faculty of Sciences Islamic Azad University of Varamin(Pishva) Varamin-Tehran-Iran [email protected] Abstract By considering the Z2 gradation structure, the aim of this paper is constructing Z3 gradation structure of multivectors in geometric alge- bra. Mathematics Subject Classification: 16E45, 15A66 Keywords: Graded Algebra, Geometric Algebra 1 Introduction The foundations of geometric algebra, or what today is more commonly known as Clifford algebra, were put forward already in 1844 by Grassmann. He introduced vectors, scalar products and extensive quantities such as exterior products. His ideas were far ahead of his time and formulated in an abstract and rather philosophical form which was hard to follow for contemporary math- ematicians. Because of this, his work was largely ignored until around 1876, when Clifford took up Grassmann’s ideas and formulated a natural algebra on vectors with combined interior and exterior products. He referred to this as an application of Grassmann’s geometric algebra. Due to unfortunate historic events, such as Clifford’s early death in 1879, his ideas did not reach the wider part of the mathematics community. Hamil- ton had independently invented the quaternion algebra which was a special 384 F. Makhsoos and M. Bashour case of Grassmann’s constructions, a fact Hamilton quickly realized himself. Gibbs reformulated, largely due to a misinterpretation, the quaternion alge- bra to a system for calculating with vectors in three dimensions with scalar and cross products.
    [Show full text]
  • Dimension Formula for Graded Lie Algebras and Its Applications
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 351, Number 11, Pages 4281–4336 S 0002-9947(99)02239-4 Article electronically published on June 29, 1999 DIMENSION FORMULA FOR GRADED LIE ALGEBRAS AND ITS APPLICATIONS SEOK-JIN KANG AND MYUNG-HWAN KIM Abstract. In this paper, we investigate the structure of infinite dimensional Lie algebras L = α Γ Lα graded by a countable abelian semigroup Γ sat- isfying a certain finiteness∈ condition. The Euler-Poincar´e principle yields the denominator identitiesL for the Γ-graded Lie algebras, from which we derive a dimension formula for the homogeneous subspaces Lα (α Γ). Our dimen- sion formula enables us to study the structure of the Γ-graded2 Lie algebras in a unified way. We will discuss some interesting applications of our dimension formula to the various classes of graded Lie algebras such as free Lie algebras, Kac-Moody algebras, and generalized Kac-Moody algebras. We will also dis- cuss the relation of graded Lie algebras and the product identities for formal power series. Introduction In [K1] and [Mo1], Kac and Moody independently introduced a new class of Lie algebras, called Kac-Moody algebras, as a generalization of finite dimensional simple Lie algebras over C. These algebras are ususally infinite dimensional, and are defined by the generators and relations associated with generalized Cartan matrices, which is similar to Serre’s presentation of complex semisimple Lie algebras. In [M], by generalizing Weyl’s denominator identity to the affine root system, Macdonald obtained a new family of combinatorial identities, including Jacobi’s triple product identity as the simplest case.
    [Show full text]
  • Graded Polynomial Identities of Matrices Yuri Bahturin A,B,∗,1, Vesselin Drensky C Adepartment of Mathematics and Statistics, Memorial University of Newfoundland, St
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 357 (2002) 15–34 www.elsevier.com/locate/laa Graded polynomial identities of matrices Yuri Bahturin a,b,∗,1, Vesselin Drensky c aDepartment of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada NF A1A 5K9 bDepartment of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119899, Russia cInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria Received 17 October 2001; accepted 9 March 2002 Submitted by R. Guralnick Abstract We consider G-graded polynomial identities of the p × p matrix algebra Mp(K) over a field K of characteristic 0 graded by an arbitrary group G. We find relations between the G- graded identities of the G-graded algebra Mp(K) and the (G × H)-graded identities of the tensor product of Mp(K) and the H-graded algebra Mq (K) with a fine H-grading. We also find a basis of the G-graded identities of Mp(K) with an elementary grading such that the identity component coincides with the diagonal of Mp(K). © 2002 Elsevier Science Inc. All rights reserved. AMS classification: 16R20; 16W50 Keywords: Full matrix algebras; Graded algebras; Identical relations 1. Introduction In this paper we study graded polynomial identities of the p × p matrix algebra Mp(K) over a field K of characteristic 0. Concerning the ordinary polynomial iden- tities, the picture is completely clear only for 2 × 2 matrices.
    [Show full text]
  • Properadic Homotopical Calculus 3
    PROPERADIC HOMOTOPICAL CALCULUS ERIC HOFFBECK, JOHAN LERAY, AND BRUNO VALLETTE Abstract. In this paper, we initiate the generalisation of the operadic calculus which governs the prop- erties of homotopy algebras to a properadic calculus which governs the properties of homotopy gebras over a properad. In this first article of a series, we generalise the seminal notion of ∞-morphisms and the ubiquitous homotopy transfer theorem. As an application, we recover the homotopy properties of in- volutive Lie bialgebras developed by Cieliebak–Fukaya–Latschev and we produce new explicit formulas. Contents Introduction 1 1. Monoidal structures on symmetric bimodules 3 2. Properadic homological algebra 7 3. Infinity-morphisms of homotopy gebras 11 4. The homotopy transfer theorem 19 5. Obstruction theory 26 6. Examples 28 References 35 Introduction There are basically two ways to do algebraic homotopy theory: one can work on a conceptual level using model categories and higher categories or one can use the more explicit operadic calculus. Let us see how this works. Suppose that one is interested in understanding the homotopical properties of a category of algebras of type P. This means that one would like to describe their behaviour under quasi-isomorphisms, i.e. the morphisms which induce isomorphisms on the level of homology. The main issue is that being quasi-isomorphic is not an equivalence relation: quasi-isomorphisms are not invertible in general. This problem is similar to the invertibility of 1−x: it is not invertible in the space arXiv:1910.05027v2 [math.QA] 25 Nov 2019 of degree 1 polynomials but it is invertible if one can consider series where (1− x)−1 = 1+ x + x2 +··· .
    [Show full text]
  • Dg Lie Algebras and the Maurer-Cartan Equation
    LECTURE 3: DG LIE ALGEBRAS AND THE MAURER-CARTAN EQUATION 1. Where are we going? This lecture marks the end of motivation from classical deformation theory and begins the bulk portion of course. Recall, we have defined the theory of formal moduli problems from a functor of points perspective. Precisely, a formal moduli problem over k is a functor F : Artk ! Set satisfying some hypotheses. In many examples, we found that such a formal moduli problem are \controlled" by the cohomology of another algebraic object that was equipped with a Lie bracket of sorts. In this lecture we begin to formalize this algebraic notion, namely dg Lie algebras, as well as connect it back to deformation theory through the Maurer-Cartan equation. After introducing some definitions and foundational context, our goal in the next few lectures is to construct a functor dg Def : Liek ! Modulik from the category of dg Lie algebras to the category of formal moduli problems over k. Most of the rest of the course contemplates how far (or close) this functor is from being an equivalence. 2. A introduction to dg Lie algebras Let R be a commutative ring over k. A derivation of R is a k-linear map D : R ! R such that for all a; b 2 R one has D(ab) = D(a)b + aD(b): Let Der(R) be the vector space of all derivations. Suppose D1;D2 are R-derivations and consider the composition D1 ◦ D2 : R ! R. Applied to the product of two elements we compute (D1◦D2)(ab) = D1(D2(a)b+aD2(b)) = (D1◦D2)(a)b+D1(a)D2(b)+D2(a)D1(b)+a(D1◦D2)(b): In particular, D1 ◦D2 is not a derivation.
    [Show full text]
  • SOME MULTILINEAR ALGEBRA OVER FIELDS WHICH I UNDERSTAND Most of What Is Discussed in This Handout Extends Verbatim to All Fields
    SOME MULTILINEAR ALGEBRA OVER FIELDS WHICH I UNDERSTAND Most of what is discussed in this handout extends verbatim to all fields with the exception of the description of the Exterior and Symmetric Algebras, which requires more care in non-zero characteristic. These differences can be easily accounted for except for the properties of the Exterior Algebra in characteristic 2, which require a significant amount of work to understand. I will, however, assume that the vector field is R. 1 1. The Tensor Product Definition 1. Let V , U and W be vector spaces. A bilinear map Á from V £ U to W is a map which satisfies the following conditions: ² Á(a1v1 + a2v2; u) = a1Á(v1; u) + a2Á(v2; u) for all v1; v2 2 V , u 2 U, a1; a2 2 R. ² Á(v; b1u1 + b2u2) = b1Á(v; u1) + b2Á(v; u2) for all v 2 V , u1; u2 2 U, b1; b2 2 R. Here are some examples of bilinear maps: (1) If U = R and V is any vector space, we may define a bilinear map with range W = V using the formula Á(v; c) = cv: (2) If U is any vector space, and V is the dual vector space U ?, we may define a bilinear map with range R using the formula Á(v; ®) = ®(v): (3) If A is an algebra over R, then the product operation defines a bilinear map Á : A £ A ! A: Á(a; b) = ab: (4) More generally, if A is an algebra over R, and M is a module over the algebra A, then the action of A on M defines a bilinear map Á : A £ M ! M: Á(a; m) = am: (5) Going back to reality, we can pick M = Rn, and A = M(n; n), the set of n£ n matrices with coefficients in R.
    [Show full text]
  • An Introduction to Combinatorial Hopf Algebras and Renormalisation
    AN INTRODUCTION TO COMBINATORIAL HOPF ALGEBRAS AND RENORMALISATION DOMINIQUE MANCHON Abstract. We give an account of renormalisation in connected graded Hopf algebras. MSC Classification: 05C05, 16T05, 16T10, 16T15, 16T30. Keywords: Bialgebras, Hopf algebras, Comodules, Rooted trees, Renormalisation, Shuffle, quasi-shuffle. Contents Introduction 2 1. Preliminaries 2 1.1. Semigroups, monoids and groups 3 1.2. Rings and fields 4 1.3. Modules over a ring 7 1.4. Linear algebra 7 1.5. Tensor product 8 1.6. Duality 10 1.7. Graded vector spaces 11 1.8. Filtrations and the functor Gr 11 Exercices for Section 1 12 2. Hopf algebras: an elementary introduction 13 2.1. Algebras and modules 13 2.2. Coalgebras and comodules 16 2.3. Convolution product 20 2.4. Intermezzo: Lie algebras 20 2.5. Bialgebras and Hopf algebras 20 Exercises for Section 2 23 3. Gradings, filtrations, connectedness 25 3.1. Connected graded bialgebras 25 3.2. Connected filtered bialgebras 27 3.3. Characters and infinitesimal characters 29 Exercises for Section 3 31 4. Examples of graded bialgebras 32 4.1. The Hopf algebra of rooted forests 32 Date: December 2016. 1 2 DOMINIQUE MANCHON 4.2. Shuffle and quasi-shuffle Hopf algebras 34 4.3. Incidence Hopf algebras 35 4.4. The extraction-contraction forest bialgebra 39 Exercises for Section 4 40 5. Birkhoff decomposition and renormalisation 40 5.1. Birkhoff decomposition 40 5.2. A short account of renormalisation in physics 42 5.3. Renormalisation from Birkhoff decomposition 43 Exercises for Section 5 44 6. Comodule-bialgebras 44 6.1. Definition 44 6.2.
    [Show full text]
  • Graded Manifolds: Some Issues
    Graded Manifolds: Some Issues Jan Vysok´y (joint work with Rudolf Smolka)ˇ Higher Structures and Field Theory ESI Wien, 11 September 2020 Z-graded manifolds: overview Z-graded (or simply graded) manifolds, Z-graded supermanifolds: Suitable mathematical theory of \generalized manifolds", where functions locally depend on Z-graded variables (which do commute accordingly). There are two basic approaches to this problem: 1 Consider (smooth) Z2-supermanifolds with an additional Z-grading. Kontsevich (1997), Severaˇ (2001), Roytenberg, Voronov (2002). 2 Define Z-graded (henceforth just graded) manifolds without an underlying supermanifold. Mehta (2006), Cattaneo & Sch¨atz (2010), Fairon (2017). Optimal scenario Mimic Berezin-Leites approach to supermanifolds (1983) with \purely graded" coordinates of all degrees (not just N-manifolds). Jan Vysok´y Graded Manifolds: Some Issues 1 / 25 Graded algebra: usual approach Definition (graded \object") An object (vector space, ring, algebra) V is graded, if it can be L written as as a direct sum V = Vk of its subspaces Vk ⊆ V . k2Z h Elements of V := [k2ZVk − f0g have defined degree jvj 2 Z and are called homogeneous elements. Algebraic structures (e.g. ring multiplication) satisfy additional grading requirements (e.g. jv · wj = jvj + jwj). Object morphisms ' : V ! W have to preserve the grading, that is j'(v)j = jvj (or shift it by a given number, when required). Example L V = Vk a graded vector space. Symmetric algebra S(V ) is k2Z S(V ) = T (V )=J; J = hfv ⊗ w − (−1)jwjjvjw ⊗ v j v; w 2 V hgi: It is a graded commutative associative algebra. Jan Vysok´y Graded Manifolds: Some Issues 2 / 25 Graded manifolds: usual approach Definition (graded manifold) Let M be a second countable Hausdorff space.
    [Show full text]
  • Differential Graded Lie Groups and Their Differential Graded Lie Algebras Benoît Jubin, Alexei Kotov, Norbert Poncin, Vladimir Salnikov
    Differential graded Lie groups and their differential graded Lie algebras Benoît Jubin, Alexei Kotov, Norbert Poncin, Vladimir Salnikov To cite this version: Benoît Jubin, Alexei Kotov, Norbert Poncin, Vladimir Salnikov. Differential graded Lie groups and their differential graded Lie algebras. 2019. hal-02403755 HAL Id: hal-02403755 https://hal.archives-ouvertes.fr/hal-02403755 Preprint submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Differential graded Lie groups and their differential graded Lie algebras Benoit Jubin∗1, Alexei Kotov†2, Norbert Poncin‡3, and Vladimir Salnikov§4 1Institut de Math´ematiques de Jussieu - Paris Rive Gauche, 4 place Jussieu, B.C. 247, 75252 Paris Cedex 5, France 2Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic 3RMATH, FSTC, Universit´edu Luxembourg, Maison du Nombre 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg 4LaSIE – CNRS & La Rochelle University, Av. Michel Cr´epeau, 17042 La Rochelle Cedex 1, France June 25, 2019 Abstract In this paper we discuss the question of integrating differential graded Lie algebras (DGLA) to differential graded Lie groups (DGLG). We first recall the classical problem of integration in the context, and present the construc- tion for (non-graded) differential Lie algebras.
    [Show full text]
  • Notes on Super Math Bernstein–Deligne–Morgan
    NOTES ON SUPER MATH MOSTLY FOLLOWING BERNSTEIN–DELIGNE–MORGAN Contents References 3 1. Linear algebra 3 1.1. Super-math as the math in the braided tensor category of super vector spaces 4 1.2. The effect of the sign rule on linear algebra over the base ring k 5 1.3. Super algebras 9 1.4. Lie algebras and their enveloping algebras 10 1.5. Linear algebra on free modules over super-algebras (inner Hom, free modules and matrices) 10 1.6. Berezinian (super determinant) of free modules and automorphisms of free modules 11 1.7. The automatic extension of algebraic concepts to the super setting (“Even rules”) 15 2. Manifolds 17 2.1. Super manifolds – definitions 17 2.2. Versions: dimensional super manifolds and super-schemes 20 ∞ 2.3. Super-manifold as a functor 20 2.4. The functor of maps between two super spaces 21 2.5. Lie groups and algebraic groups 22 2.6. Sheaves 22 3. Differential Geometry 23 3.1. Vector bundles 23 3.2. (Co)tangent bundles 24 3.3. Parity change of the tangent bundle 25 4. Integration on super affine spaces 26 4.1. Integration on affine spaces 26 Date: Long Long Time Ago in a Land Far Away . 1 2 4.2. Gaussian integrals 27 4.3. Wick’s theorem 29 5. Integration on supermanifolds 30 5.1. Integration on superdomains 30 5.2. Change of variable formula on superdomains 31 5.3. Integration of densities on super manifolds 32 5.4. Summary 33 6. Super-symmetry of integrals 34 6.1.
    [Show full text]
  • Superspaces Definition. the Superspace E Is Z2-Graded Vector
    Superspaces Definition. The superspace E is Z2-graded vector space E = E+ ⊕ E−. A superalgebra is an algebra A whose underlying vector space is a superspace, and whose products respects the Z2-grading; in other words, Ai · Aj ⊂ Ai+j . Example 1. An exterior algebra is a supertrace with the Z2-grading Λ±E = X ΛiE. (−1)i=±1 + Example 2. An ungraded vector space E is implicitly Z2-graded with E = E and E− =0. • The algebra of endomorphisms End(E) of a superspace is a superalgebra, when graded in the usual way: End+(E) =Hom(E+,E+) ⊕ Hom(E−,E−) End+(E) =Hom(E+,E+) ⊕ Hom(E−,E−). Definition. A superbundle on a manifold M is a bundle E = E+ ⊕E−, where E+ and E− are two vector bundles on M such that the fibers of E are superspaces. • If E is a vector bundle, we will identify it with the superbundle E+ = E and E− =0. • There is a general principle in dealing with elements of a superspace, that whenever a formula involves commuting an element a past another b, one must insert a sign (−1)|a||b|, where |a| is the parity of a, which equals 0 or 1 accrording to whether the degree of a is even or odd. – Thus, the supercommutator of a pair of odd parity elements of a superalgebra is actually their anticommutator, due to the extra minus sign. • We will use the same bracket notation for this supercommutator as is usually used for the commutator: [a, b]=ab − (−1)|a|·|b|ba.
    [Show full text]